Viewing file: opt-stats.py (2.42 KB) -rwxr-xr-x Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
#! /usr/bin/python3.12 -s
from __future__ import print_function
desc = """Generate statistics about optimization records from the YAML files generated with -fsave-optimization-record and -fdiagnostics-show-hotness.
The tools requires PyYAML and Pygments Python packages."""
import optrecord import argparse import operator from collections import defaultdict from multiprocessing import cpu_count, Pool
try: from guppy import hpy
hp = hpy() except ImportError: print("Memory consumption not shown because guppy is not installed") hp = None
if __name__ == "__main__": parser = argparse.ArgumentParser(description=desc) parser.add_argument( "yaml_dirs_or_files", nargs="+", help="List of optimization record files or directories searched " "for optimization record files.", ) parser.add_argument( "--jobs", "-j", default=None, type=int, help="Max job count (defaults to %(default)s, the current CPU count)", ) parser.add_argument( "--no-progress-indicator", "-n", action="store_true", default=False, help="Do not display any indicator of how many YAML files were read.", ) args = parser.parse_args()
print_progress = not args.no_progress_indicator
files = optrecord.find_opt_files(*args.yaml_dirs_or_files) if not files: parser.error("No *.opt.yaml files found") sys.exit(1)
all_remarks, file_remarks, _ = optrecord.gather_results( files, args.jobs, print_progress ) if print_progress: print("\n")
bypass = defaultdict(int) byname = defaultdict(int) for r in optrecord.itervalues(all_remarks): bypass[r.Pass] += 1 byname[r.Pass + "/" + r.Name] += 1
total = len(all_remarks) print("{:24s} {:10d}".format("Total number of remarks", total)) if hp: h = hp.heap() print("{:24s} {:10d}".format("Memory per remark", h.size / len(all_remarks))) print("\n")
print("Top 10 remarks by pass:") for (passname, count) in sorted( bypass.items(), key=operator.itemgetter(1), reverse=True )[:10]: print(" {:30s} {:2.0f}%".format(passname, count * 100.0 / total))
print("\nTop 10 remarks:") for (name, count) in sorted( byname.items(), key=operator.itemgetter(1), reverse=True )[:10]: print(" {:30s} {:2.0f}%".format(name, count * 100.0 / total))
|