Viewing file: my_bit.h (3.64 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* Copyright (c) 2007, 2011, Oracle and/or its affiliates. Copyright (c) 2009-2011, Monty Program Ab
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */
#ifndef MY_BIT_INCLUDED #define MY_BIT_INCLUDED
#include <my_global.h>
/* Some useful bit functions */
C_MODE_START
extern const char _my_bits_nbits[256]; extern const uchar _my_bits_reverse_table[256];
/* Find smallest X in 2^X >= value This can be used to divide a number with value by doing a shift instead */
static inline uint my_bit_log2(ulong value) { uint bit; for (bit=0 ; value > 1 ; value>>=1, bit++) ; return bit; }
static inline uint my_count_bits(ulonglong v) { #if SIZEOF_LONG_LONG > 4 /* The following code is a bit faster on 16 bit machines than if we would only shift v */ ulong v2=(ulong) (v >> 32); return (uint) (uchar) (_my_bits_nbits[(uchar) v] + _my_bits_nbits[(uchar) (v >> 8)] + _my_bits_nbits[(uchar) (v >> 16)] + _my_bits_nbits[(uchar) (v >> 24)] + _my_bits_nbits[(uchar) (v2)] + _my_bits_nbits[(uchar) (v2 >> 8)] + _my_bits_nbits[(uchar) (v2 >> 16)] + _my_bits_nbits[(uchar) (v2 >> 24)]); #else return (uint) (uchar) (_my_bits_nbits[(uchar) v] + _my_bits_nbits[(uchar) (v >> 8)] + _my_bits_nbits[(uchar) (v >> 16)] + _my_bits_nbits[(uchar) (v >> 24)]); #endif }
static inline uint my_count_bits_uint32(uint32 v) { return (uint) (uchar) (_my_bits_nbits[(uchar) v] + _my_bits_nbits[(uchar) (v >> 8)] + _my_bits_nbits[(uchar) (v >> 16)] + _my_bits_nbits[(uchar) (v >> 24)]); }
/* Next highest power of two
SYNOPSIS my_round_up_to_next_power() v Value to check
RETURN Next or equal power of 2 Note: 0 will return 0
NOTES Algorithm by Sean Anderson, according to: http://graphics.stanford.edu/~seander/bithacks.html (Orignal code public domain)
Comments shows how this works with 01100000000000000000000000001011 */
static inline uint32 my_round_up_to_next_power(uint32 v) { v--; /* 01100000000000000000000000001010 */ v|= v >> 1; /* 01110000000000000000000000001111 */ v|= v >> 2; /* 01111100000000000000000000001111 */ v|= v >> 4; /* 01111111110000000000000000001111 */ v|= v >> 8; /* 01111111111111111100000000001111 */ v|= v >> 16; /* 01111111111111111111111111111111 */ return v+1; /* 10000000000000000000000000000000 */ }
static inline uint32 my_clear_highest_bit(uint32 v) { uint32 w=v >> 1; w|= w >> 1; w|= w >> 2; w|= w >> 4; w|= w >> 8; w|= w >> 16; return v & w; }
static inline uint32 my_reverse_bits(uint32 key) { return (_my_bits_reverse_table[ key & 255] << 24) | (_my_bits_reverse_table[(key>> 8) & 255] << 16) | (_my_bits_reverse_table[(key>>16) & 255] << 8) | _my_bits_reverse_table[(key>>24) ]; }
C_MODE_END
#endif /* MY_BIT_INCLUDED */
|