Viewing file: gtest-printers.h (40.09 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Google Test - The Google C++ Testing and Mocking Framework // // This file implements a universal value printer that can print a // value of any type T: // // void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr); // // A user can teach this function how to print a class type T by // defining either operator<<() or PrintTo() in the namespace that // defines T. More specifically, the FIRST defined function in the // following list will be used (assuming T is defined in namespace // foo): // // 1. foo::PrintTo(const T&, ostream*) // 2. operator<<(ostream&, const T&) defined in either foo or the // global namespace. // * Prefer AbslStringify(..) to operator<<(..), per https://abseil.io/tips/215. // * Define foo::PrintTo(..) if the type already has AbslStringify(..), but an // alternative presentation in test results is of interest. // // However if T is an STL-style container then it is printed element-wise // unless foo::PrintTo(const T&, ostream*) is defined. Note that // operator<<() is ignored for container types. // // If none of the above is defined, it will print the debug string of // the value if it is a protocol buffer, or print the raw bytes in the // value otherwise. // // To aid debugging: when T is a reference type, the address of the // value is also printed; when T is a (const) char pointer, both the // pointer value and the NUL-terminated string it points to are // printed. // // We also provide some convenient wrappers: // // // Prints a value to a string. For a (const or not) char // // pointer, the NUL-terminated string (but not the pointer) is // // printed. // std::string ::testing::PrintToString(const T& value); // // // Prints a value tersely: for a reference type, the referenced // // value (but not the address) is printed; for a (const or not) char // // pointer, the NUL-terminated string (but not the pointer) is // // printed. // void ::testing::internal::UniversalTersePrint(const T& value, ostream*); // // // Prints value using the type inferred by the compiler. The difference // // from UniversalTersePrint() is that this function prints both the // // pointer and the NUL-terminated string for a (const or not) char pointer. // void ::testing::internal::UniversalPrint(const T& value, ostream*); // // // Prints the fields of a tuple tersely to a string vector, one // // element for each field. Tuple support must be enabled in // // gtest-port.h. // std::vector<string> UniversalTersePrintTupleFieldsToStrings( // const Tuple& value); // // Known limitation: // // The print primitives print the elements of an STL-style container // using the compiler-inferred type of *iter where iter is a // const_iterator of the container. When const_iterator is an input // iterator but not a forward iterator, this inferred type may not // match value_type, and the print output may be incorrect. In // practice, this is rarely a problem as for most containers // const_iterator is a forward iterator. We'll fix this if there's an // actual need for it. Note that this fix cannot rely on value_type // being defined as many user-defined container types don't have // value_type.
// IWYU pragma: private, include "gtest/gtest.h" // IWYU pragma: friend gtest/.* // IWYU pragma: friend gmock/.*
#ifndef GOOGLETEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ #define GOOGLETEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
#include <functional> #include <memory> #include <ostream> // NOLINT #include <sstream> #include <string> #include <tuple> #include <type_traits> #include <typeinfo> #include <utility> #include <vector>
#ifdef GTEST_HAS_ABSL #include "absl/strings/internal/has_absl_stringify.h" #include "absl/strings/str_cat.h" #endif // GTEST_HAS_ABSL #include "gtest/internal/gtest-internal.h" #include "gtest/internal/gtest-port.h"
namespace testing {
// Definitions in the internal* namespaces are subject to change without notice. // DO NOT USE THEM IN USER CODE! namespace internal {
template <typename T> void UniversalPrint(const T& value, ::std::ostream* os);
// Used to print an STL-style container when the user doesn't define // a PrintTo() for it. struct ContainerPrinter { template <typename T, typename = typename std::enable_if< (sizeof(IsContainerTest<T>(0)) == sizeof(IsContainer)) && !IsRecursiveContainer<T>::value>::type> static void PrintValue(const T& container, std::ostream* os) { const size_t kMaxCount = 32; // The maximum number of elements to print. *os << '{'; size_t count = 0; for (auto&& elem : container) { if (count > 0) { *os << ','; if (count == kMaxCount) { // Enough has been printed. *os << " ..."; break; } } *os << ' '; // We cannot call PrintTo(elem, os) here as PrintTo() doesn't // handle `elem` being a native array. internal::UniversalPrint(elem, os); ++count; }
if (count > 0) { *os << ' '; } *os << '}'; } };
// Used to print a pointer that is neither a char pointer nor a member // pointer, when the user doesn't define PrintTo() for it. (A member // variable pointer or member function pointer doesn't really point to // a location in the address space. Their representation is // implementation-defined. Therefore they will be printed as raw // bytes.) struct FunctionPointerPrinter { template <typename T, typename = typename std::enable_if< std::is_function<T>::value>::type> static void PrintValue(T* p, ::std::ostream* os) { if (p == nullptr) { *os << "NULL"; } else { // T is a function type, so '*os << p' doesn't do what we want // (it just prints p as bool). We want to print p as a const // void*. *os << reinterpret_cast<const void*>(p); } } };
struct PointerPrinter { template <typename T> static void PrintValue(T* p, ::std::ostream* os) { if (p == nullptr) { *os << "NULL"; } else { // T is not a function type. We just call << to print p, // relying on ADL to pick up user-defined << for their pointer // types, if any. *os << p; } } };
namespace internal_stream_operator_without_lexical_name_lookup {
// The presence of an operator<< here will terminate lexical scope lookup // straight away (even though it cannot be a match because of its argument // types). Thus, the two operator<< calls in StreamPrinter will find only ADL // candidates. struct LookupBlocker {}; void operator<<(LookupBlocker, LookupBlocker);
struct StreamPrinter { template <typename T, // Don't accept member pointers here. We'd print them via implicit // conversion to bool, which isn't useful. typename = typename std::enable_if< !std::is_member_pointer<T>::value>::type> // Only accept types for which we can find a streaming operator via // ADL (possibly involving implicit conversions). // (Use SFINAE via return type, because it seems GCC < 12 doesn't handle name // lookup properly when we do it in the template parameter list.)
// LLVM local change to support llvm printables. // // static auto PrintValue(const T& value, ::std::ostream* os) // -> decltype((void)(*os << value)) { // // Call streaming operator found by ADL, possibly with implicit conversions // // of the arguments. // // LLVM local change to support llvm printables. // // // *os << value; // // LLVM local change end. // } static auto PrintValue(const T& value, ::std::ostream* os) -> decltype((void)(*os << ::llvm_gtest::printable(value))) { // Call streaming operator found by ADL, possibly with implicit conversions // of the arguments. // LLVM local change to support llvm printables. // *os << ::llvm_gtest::printable(value); // LLVM local change end. } };
} // namespace internal_stream_operator_without_lexical_name_lookup
struct ProtobufPrinter { // We print a protobuf using its ShortDebugString() when the string // doesn't exceed this many characters; otherwise we print it using // DebugString() for better readability. static const size_t kProtobufOneLinerMaxLength = 50;
template <typename T, typename = typename std::enable_if< internal::HasDebugStringAndShortDebugString<T>::value>::type> static void PrintValue(const T& value, ::std::ostream* os) { std::string pretty_str = value.ShortDebugString(); if (pretty_str.length() > kProtobufOneLinerMaxLength) { pretty_str = "\n" + value.DebugString(); } *os << ("<" + pretty_str + ">"); } };
struct ConvertibleToIntegerPrinter { // Since T has no << operator or PrintTo() but can be implicitly // converted to BiggestInt, we print it as a BiggestInt. // // Most likely T is an enum type (either named or unnamed), in which // case printing it as an integer is the desired behavior. In case // T is not an enum, printing it as an integer is the best we can do // given that it has no user-defined printer. static void PrintValue(internal::BiggestInt value, ::std::ostream* os) { *os << value; } };
struct ConvertibleToStringViewPrinter { #if GTEST_INTERNAL_HAS_STRING_VIEW static void PrintValue(internal::StringView value, ::std::ostream* os) { internal::UniversalPrint(value, os); } #endif };
#ifdef GTEST_HAS_ABSL struct ConvertibleToAbslStringifyPrinter { template < typename T, typename = typename std::enable_if< absl::strings_internal::HasAbslStringify<T>::value>::type> // NOLINT static void PrintValue(const T& value, ::std::ostream* os) { *os << absl::StrCat(value); } }; #endif // GTEST_HAS_ABSL
// Prints the given number of bytes in the given object to the given // ostream. GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes, size_t count, ::std::ostream* os); struct RawBytesPrinter { // SFINAE on `sizeof` to make sure we have a complete type. template <typename T, size_t = sizeof(T)> static void PrintValue(const T& value, ::std::ostream* os) { PrintBytesInObjectTo( static_cast<const unsigned char*>( // Load bearing cast to void* to support iOS reinterpret_cast<const void*>(std::addressof(value))), sizeof(value), os); } };
struct FallbackPrinter { template <typename T> static void PrintValue(const T&, ::std::ostream* os) { *os << "(incomplete type)"; } };
// Try every printer in order and return the first one that works. template <typename T, typename E, typename Printer, typename... Printers> struct FindFirstPrinter : FindFirstPrinter<T, E, Printers...> {};
template <typename T, typename Printer, typename... Printers> struct FindFirstPrinter< T, decltype(Printer::PrintValue(std::declval<const T&>(), nullptr)), Printer, Printers...> { using type = Printer; };
// Select the best printer in the following order: // - Print containers (they have begin/end/etc). // - Print function pointers. // - Print object pointers. // - Print protocol buffers. // - Use the stream operator, if available. // - Print types convertible to BiggestInt. // - Print types convertible to StringView, if available. // - Fallback to printing the raw bytes of the object. template <typename T> void PrintWithFallback(const T& value, ::std::ostream* os) { using Printer = typename FindFirstPrinter< T, void, ContainerPrinter, FunctionPointerPrinter, PointerPrinter, ProtobufPrinter, #ifdef GTEST_HAS_ABSL ConvertibleToAbslStringifyPrinter, #endif // GTEST_HAS_ABSL internal_stream_operator_without_lexical_name_lookup::StreamPrinter, ConvertibleToIntegerPrinter, ConvertibleToStringViewPrinter, RawBytesPrinter, FallbackPrinter>::type; Printer::PrintValue(value, os); }
// FormatForComparison<ToPrint, OtherOperand>::Format(value) formats a // value of type ToPrint that is an operand of a comparison assertion // (e.g. ASSERT_EQ). OtherOperand is the type of the other operand in // the comparison, and is used to help determine the best way to // format the value. In particular, when the value is a C string // (char pointer) and the other operand is an STL string object, we // want to format the C string as a string, since we know it is // compared by value with the string object. If the value is a char // pointer but the other operand is not an STL string object, we don't // know whether the pointer is supposed to point to a NUL-terminated // string, and thus want to print it as a pointer to be safe. // // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM.
// The default case. template <typename ToPrint, typename OtherOperand> class FormatForComparison { public: static ::std::string Format(const ToPrint& value) { return ::testing::PrintToString(value); } };
// Array. template <typename ToPrint, size_t N, typename OtherOperand> class FormatForComparison<ToPrint[N], OtherOperand> { public: static ::std::string Format(const ToPrint* value) { return FormatForComparison<const ToPrint*, OtherOperand>::Format(value); } };
// By default, print C string as pointers to be safe, as we don't know // whether they actually point to a NUL-terminated string.
#define GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(CharType) \ template <typename OtherOperand> \ class FormatForComparison<CharType*, OtherOperand> { \ public: \ static ::std::string Format(CharType* value) { \ return ::testing::PrintToString(static_cast<const void*>(value)); \ } \ }
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char); GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char); GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(wchar_t); GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const wchar_t); #ifdef __cpp_lib_char8_t GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char8_t); GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char8_t); #endif GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char16_t); GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char16_t); GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char32_t); GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char32_t);
#undef GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_
// If a C string is compared with an STL string object, we know it's meant // to point to a NUL-terminated string, and thus can print it as a string.
#define GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(CharType, OtherStringType) \ template <> \ class FormatForComparison<CharType*, OtherStringType> { \ public: \ static ::std::string Format(CharType* value) { \ return ::testing::PrintToString(value); \ } \ }
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char, ::std::string); GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char, ::std::string); #ifdef __cpp_lib_char8_t GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char8_t, ::std::u8string); GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char8_t, ::std::u8string); #endif GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char16_t, ::std::u16string); GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char16_t, ::std::u16string); GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char32_t, ::std::u32string); GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char32_t, ::std::u32string);
#if GTEST_HAS_STD_WSTRING GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(wchar_t, ::std::wstring); GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const wchar_t, ::std::wstring); #endif
#undef GTEST_IMPL_FORMAT_C_STRING_AS_STRING_
// Formats a comparison assertion (e.g. ASSERT_EQ, EXPECT_LT, and etc) // operand to be used in a failure message. The type (but not value) // of the other operand may affect the format. This allows us to // print a char* as a raw pointer when it is compared against another // char* or void*, and print it as a C string when it is compared // against an std::string object, for example. // // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. template <typename T1, typename T2> std::string FormatForComparisonFailureMessage(const T1& value, const T2& /* other_operand */) { return FormatForComparison<T1, T2>::Format(value); }
// UniversalPrinter<T>::Print(value, ostream_ptr) prints the given // value to the given ostream. The caller must ensure that // 'ostream_ptr' is not NULL, or the behavior is undefined. // // We define UniversalPrinter as a class template (as opposed to a // function template), as we need to partially specialize it for // reference types, which cannot be done with function templates. template <typename T> class UniversalPrinter;
// Prints the given value using the << operator if it has one; // otherwise prints the bytes in it. This is what // UniversalPrinter<T>::Print() does when PrintTo() is not specialized // or overloaded for type T. // // A user can override this behavior for a class type Foo by defining // an overload of PrintTo() in the namespace where Foo is defined. We // give the user this option as sometimes defining a << operator for // Foo is not desirable (e.g. the coding style may prevent doing it, // or there is already a << operator but it doesn't do what the user // wants). template <typename T> void PrintTo(const T& value, ::std::ostream* os) { internal::PrintWithFallback(value, os); }
// The following list of PrintTo() overloads tells // UniversalPrinter<T>::Print() how to print standard types (built-in // types, strings, plain arrays, and pointers).
// Overloads for various char types. GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os); GTEST_API_ void PrintTo(signed char c, ::std::ostream* os); inline void PrintTo(char c, ::std::ostream* os) { // When printing a plain char, we always treat it as unsigned. This // way, the output won't be affected by whether the compiler thinks // char is signed or not. PrintTo(static_cast<unsigned char>(c), os); }
// Overloads for other simple built-in types. inline void PrintTo(bool x, ::std::ostream* os) { *os << (x ? "true" : "false"); }
// Overload for wchar_t type. // Prints a wchar_t as a symbol if it is printable or as its internal // code otherwise and also as its decimal code (except for L'\0'). // The L'\0' char is printed as "L'\\0'". The decimal code is printed // as signed integer when wchar_t is implemented by the compiler // as a signed type and is printed as an unsigned integer when wchar_t // is implemented as an unsigned type. GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os);
GTEST_API_ void PrintTo(char32_t c, ::std::ostream* os); inline void PrintTo(char16_t c, ::std::ostream* os) { PrintTo(ImplicitCast_<char32_t>(c), os); } #ifdef __cpp_lib_char8_t inline void PrintTo(char8_t c, ::std::ostream* os) { PrintTo(ImplicitCast_<char32_t>(c), os); } #endif
// gcc/clang __{u,}int128_t #if defined(__SIZEOF_INT128__) GTEST_API_ void PrintTo(__uint128_t v, ::std::ostream* os); GTEST_API_ void PrintTo(__int128_t v, ::std::ostream* os); #endif // __SIZEOF_INT128__
// The default resolution used to print floating-point values uses only // 6 digits, which can be confusing if a test compares two values whose // difference lies in the 7th digit. So we'd like to print out numbers // in full precision. // However if the value is something simple like 1.1, full will print a // long string like 1.100000001 due to floating-point numbers not using // a base of 10. This routiune returns an appropriate resolution for a // given floating-point number, that is, 6 if it will be accurate, or a // max_digits10 value (full precision) if it won't, for values between // 0.0001 and one million. // It does this by computing what those digits would be (by multiplying // by an appropriate power of 10), then dividing by that power again to // see if gets the original value back. // A similar algorithm applies for values larger than one million; note // that for those values, we must divide to get a six-digit number, and // then multiply to possibly get the original value again. template <typename FloatType> int AppropriateResolution(FloatType val) { int full = std::numeric_limits<FloatType>::max_digits10; if (val < 0) val = -val;
if (val < 1000000) { FloatType mulfor6 = 1e10; if (val >= 100000.0) { // 100,000 to 999,999 mulfor6 = 1.0; } else if (val >= 10000.0) { mulfor6 = 1e1; } else if (val >= 1000.0) { mulfor6 = 1e2; } else if (val >= 100.0) { mulfor6 = 1e3; } else if (val >= 10.0) { mulfor6 = 1e4; } else if (val >= 1.0) { mulfor6 = 1e5; } else if (val >= 0.1) { mulfor6 = 1e6; } else if (val >= 0.01) { mulfor6 = 1e7; } else if (val >= 0.001) { mulfor6 = 1e8; } else if (val >= 0.0001) { mulfor6 = 1e9; } if (static_cast<FloatType>(static_cast<int32_t>(val * mulfor6 + 0.5)) / mulfor6 == val) return 6; } else if (val < 1e10) { FloatType divfor6 = 1.0; if (val >= 1e9) { // 1,000,000,000 to 9,999,999,999 divfor6 = 10000; } else if (val >= 1e8) { // 100,000,000 to 999,999,999 divfor6 = 1000; } else if (val >= 1e7) { // 10,000,000 to 99,999,999 divfor6 = 100; } else if (val >= 1e6) { // 1,000,000 to 9,999,999 divfor6 = 10; } if (static_cast<FloatType>(static_cast<int32_t>(val / divfor6 + 0.5)) * divfor6 == val) return 6; } return full; }
inline void PrintTo(float f, ::std::ostream* os) { auto old_precision = os->precision(); os->precision(AppropriateResolution(f)); *os << f; os->precision(old_precision); }
inline void PrintTo(double d, ::std::ostream* os) { auto old_precision = os->precision(); os->precision(AppropriateResolution(d)); *os << d; os->precision(old_precision); }
// Overloads for C strings. GTEST_API_ void PrintTo(const char* s, ::std::ostream* os); inline void PrintTo(char* s, ::std::ostream* os) { PrintTo(ImplicitCast_<const char*>(s), os); }
// signed/unsigned char is often used for representing binary data, so // we print pointers to it as void* to be safe. inline void PrintTo(const signed char* s, ::std::ostream* os) { PrintTo(ImplicitCast_<const void*>(s), os); } inline void PrintTo(signed char* s, ::std::ostream* os) { PrintTo(ImplicitCast_<const void*>(s), os); } inline void PrintTo(const unsigned char* s, ::std::ostream* os) { PrintTo(ImplicitCast_<const void*>(s), os); } inline void PrintTo(unsigned char* s, ::std::ostream* os) { PrintTo(ImplicitCast_<const void*>(s), os); } #ifdef __cpp_lib_char8_t // Overloads for u8 strings. GTEST_API_ void PrintTo(const char8_t* s, ::std::ostream* os); inline void PrintTo(char8_t* s, ::std::ostream* os) { PrintTo(ImplicitCast_<const char8_t*>(s), os); } #endif // Overloads for u16 strings. GTEST_API_ void PrintTo(const char16_t* s, ::std::ostream* os); inline void PrintTo(char16_t* s, ::std::ostream* os) { PrintTo(ImplicitCast_<const char16_t*>(s), os); } // Overloads for u32 strings. GTEST_API_ void PrintTo(const char32_t* s, ::std::ostream* os); inline void PrintTo(char32_t* s, ::std::ostream* os) { PrintTo(ImplicitCast_<const char32_t*>(s), os); }
// MSVC can be configured to define wchar_t as a typedef of unsigned // short. It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native // type. When wchar_t is a typedef, defining an overload for const // wchar_t* would cause unsigned short* be printed as a wide string, // possibly causing invalid memory accesses. #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) // Overloads for wide C strings GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os); inline void PrintTo(wchar_t* s, ::std::ostream* os) { PrintTo(ImplicitCast_<const wchar_t*>(s), os); } #endif
// Overload for C arrays. Multi-dimensional arrays are printed // properly.
// Prints the given number of elements in an array, without printing // the curly braces. template <typename T> void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) { UniversalPrint(a[0], os); for (size_t i = 1; i != count; i++) { *os << ", "; UniversalPrint(a[i], os); } }
// Overloads for ::std::string. GTEST_API_ void PrintStringTo(const ::std::string& s, ::std::ostream* os); inline void PrintTo(const ::std::string& s, ::std::ostream* os) { PrintStringTo(s, os); }
// Overloads for ::std::u8string #ifdef __cpp_lib_char8_t GTEST_API_ void PrintU8StringTo(const ::std::u8string& s, ::std::ostream* os); inline void PrintTo(const ::std::u8string& s, ::std::ostream* os) { PrintU8StringTo(s, os); } #endif
// Overloads for ::std::u16string GTEST_API_ void PrintU16StringTo(const ::std::u16string& s, ::std::ostream* os); inline void PrintTo(const ::std::u16string& s, ::std::ostream* os) { PrintU16StringTo(s, os); }
// Overloads for ::std::u32string GTEST_API_ void PrintU32StringTo(const ::std::u32string& s, ::std::ostream* os); inline void PrintTo(const ::std::u32string& s, ::std::ostream* os) { PrintU32StringTo(s, os); }
// Overloads for ::std::wstring. #if GTEST_HAS_STD_WSTRING GTEST_API_ void PrintWideStringTo(const ::std::wstring& s, ::std::ostream* os); inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) { PrintWideStringTo(s, os); } #endif // GTEST_HAS_STD_WSTRING
#if GTEST_INTERNAL_HAS_STRING_VIEW // Overload for internal::StringView. inline void PrintTo(internal::StringView sp, ::std::ostream* os) { PrintTo(::std::string(sp), os); } #endif // GTEST_INTERNAL_HAS_STRING_VIEW
inline void PrintTo(std::nullptr_t, ::std::ostream* os) { *os << "(nullptr)"; }
#if GTEST_HAS_RTTI inline void PrintTo(const std::type_info& info, std::ostream* os) { *os << internal::GetTypeName(info); } #endif // GTEST_HAS_RTTI
template <typename T> void PrintTo(std::reference_wrapper<T> ref, ::std::ostream* os) { UniversalPrinter<T&>::Print(ref.get(), os); }
inline const void* VoidifyPointer(const void* p) { return p; } inline const void* VoidifyPointer(volatile const void* p) { return const_cast<const void*>(p); }
template <typename T, typename Ptr> void PrintSmartPointer(const Ptr& ptr, std::ostream* os, char) { if (ptr == nullptr) { *os << "(nullptr)"; } else { // We can't print the value. Just print the pointer.. *os << "(" << (VoidifyPointer)(ptr.get()) << ")"; } } template <typename T, typename Ptr, typename = typename std::enable_if<!std::is_void<T>::value && !std::is_array<T>::value>::type> void PrintSmartPointer(const Ptr& ptr, std::ostream* os, int) { if (ptr == nullptr) { *os << "(nullptr)"; } else { *os << "(ptr = " << (VoidifyPointer)(ptr.get()) << ", value = "; UniversalPrinter<T>::Print(*ptr, os); *os << ")"; } }
template <typename T, typename D> void PrintTo(const std::unique_ptr<T, D>& ptr, std::ostream* os) { (PrintSmartPointer<T>)(ptr, os, 0); }
template <typename T> void PrintTo(const std::shared_ptr<T>& ptr, std::ostream* os) { (PrintSmartPointer<T>)(ptr, os, 0); }
// Helper function for printing a tuple. T must be instantiated with // a tuple type. template <typename T> void PrintTupleTo(const T&, std::integral_constant<size_t, 0>, ::std::ostream*) {}
template <typename T, size_t I> void PrintTupleTo(const T& t, std::integral_constant<size_t, I>, ::std::ostream* os) { PrintTupleTo(t, std::integral_constant<size_t, I - 1>(), os); GTEST_INTENTIONAL_CONST_COND_PUSH_() if (I > 1) { GTEST_INTENTIONAL_CONST_COND_POP_() *os << ", "; } UniversalPrinter<typename std::tuple_element<I - 1, T>::type>::Print( std::get<I - 1>(t), os); }
template <typename... Types> void PrintTo(const ::std::tuple<Types...>& t, ::std::ostream* os) { *os << "("; PrintTupleTo(t, std::integral_constant<size_t, sizeof...(Types)>(), os); *os << ")"; }
// Overload for std::pair. template <typename T1, typename T2> void PrintTo(const ::std::pair<T1, T2>& value, ::std::ostream* os) { *os << '('; // We cannot use UniversalPrint(value.first, os) here, as T1 may be // a reference type. The same for printing value.second. UniversalPrinter<T1>::Print(value.first, os); *os << ", "; UniversalPrinter<T2>::Print(value.second, os); *os << ')'; }
// Implements printing a non-reference type T by letting the compiler // pick the right overload of PrintTo() for T. template <typename T> class UniversalPrinter { public: // MSVC warns about adding const to a function type, so we want to // disable the warning. GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180)
// Note: we deliberately don't call this PrintTo(), as that name // conflicts with ::testing::internal::PrintTo in the body of the // function. static void Print(const T& value, ::std::ostream* os) { // By default, ::testing::internal::PrintTo() is used for printing // the value. // // Thanks to Koenig look-up, if T is a class and has its own // PrintTo() function defined in its namespace, that function will // be visible here. Since it is more specific than the generic ones // in ::testing::internal, it will be picked by the compiler in the // following statement - exactly what we want. PrintTo(value, os); }
GTEST_DISABLE_MSC_WARNINGS_POP_() };
// Remove any const-qualifiers before passing a type to UniversalPrinter. template <typename T> class UniversalPrinter<const T> : public UniversalPrinter<T> {};
#if GTEST_INTERNAL_HAS_ANY
// Printer for std::any / absl::any
template <> class UniversalPrinter<Any> { public: static void Print(const Any& value, ::std::ostream* os) { if (value.has_value()) { *os << "value of type " << GetTypeName(value); } else { *os << "no value"; } }
private: static std::string GetTypeName(const Any& value) { #if GTEST_HAS_RTTI return internal::GetTypeName(value.type()); #else static_cast<void>(value); // possibly unused return "<unknown_type>"; #endif // GTEST_HAS_RTTI } };
#endif // GTEST_INTERNAL_HAS_ANY
#if GTEST_INTERNAL_HAS_OPTIONAL
// Printer for std::optional / absl::optional
template <typename T> class UniversalPrinter<Optional<T>> { public: static void Print(const Optional<T>& value, ::std::ostream* os) { *os << '('; if (!value) { *os << "nullopt"; } else { UniversalPrint(*value, os); } *os << ')'; } };
template <> class UniversalPrinter<decltype(Nullopt())> { public: static void Print(decltype(Nullopt()), ::std::ostream* os) { *os << "(nullopt)"; } };
#endif // GTEST_INTERNAL_HAS_OPTIONAL
#if GTEST_INTERNAL_HAS_VARIANT
// Printer for std::variant / absl::variant
template <typename... T> class UniversalPrinter<Variant<T...>> { public: static void Print(const Variant<T...>& value, ::std::ostream* os) { *os << '('; #ifdef GTEST_HAS_ABSL absl::visit(Visitor{os, value.index()}, value); #else std::visit(Visitor{os, value.index()}, value); #endif // GTEST_HAS_ABSL *os << ')'; }
private: struct Visitor { template <typename U> void operator()(const U& u) const { *os << "'" << GetTypeName<U>() << "(index = " << index << ")' with value "; UniversalPrint(u, os); } ::std::ostream* os; std::size_t index; }; };
#endif // GTEST_INTERNAL_HAS_VARIANT
// UniversalPrintArray(begin, len, os) prints an array of 'len' // elements, starting at address 'begin'. template <typename T> void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) { if (len == 0) { *os << "{}"; } else { *os << "{ "; const size_t kThreshold = 18; const size_t kChunkSize = 8; // If the array has more than kThreshold elements, we'll have to // omit some details by printing only the first and the last // kChunkSize elements. if (len <= kThreshold) { PrintRawArrayTo(begin, len, os); } else { PrintRawArrayTo(begin, kChunkSize, os); *os << ", ..., "; PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os); } *os << " }"; } } // This overload prints a (const) char array compactly. GTEST_API_ void UniversalPrintArray(const char* begin, size_t len, ::std::ostream* os);
#ifdef __cpp_lib_char8_t // This overload prints a (const) char8_t array compactly. GTEST_API_ void UniversalPrintArray(const char8_t* begin, size_t len, ::std::ostream* os); #endif
// This overload prints a (const) char16_t array compactly. GTEST_API_ void UniversalPrintArray(const char16_t* begin, size_t len, ::std::ostream* os);
// This overload prints a (const) char32_t array compactly. GTEST_API_ void UniversalPrintArray(const char32_t* begin, size_t len, ::std::ostream* os);
// This overload prints a (const) wchar_t array compactly. GTEST_API_ void UniversalPrintArray(const wchar_t* begin, size_t len, ::std::ostream* os);
// Implements printing an array type T[N]. template <typename T, size_t N> class UniversalPrinter<T[N]> { public: // Prints the given array, omitting some elements when there are too // many. static void Print(const T (&a)[N], ::std::ostream* os) { UniversalPrintArray(a, N, os); } };
// Implements printing a reference type T&. template <typename T> class UniversalPrinter<T&> { public: // MSVC warns about adding const to a function type, so we want to // disable the warning. GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180)
static void Print(const T& value, ::std::ostream* os) { // Prints the address of the value. We use reinterpret_cast here // as static_cast doesn't compile when T is a function type. *os << "@" << reinterpret_cast<const void*>(&value) << " ";
// Then prints the value itself. UniversalPrint(value, os); }
GTEST_DISABLE_MSC_WARNINGS_POP_() };
// Prints a value tersely: for a reference type, the referenced value // (but not the address) is printed; for a (const) char pointer, the // NUL-terminated string (but not the pointer) is printed.
template <typename T> class UniversalTersePrinter { public: static void Print(const T& value, ::std::ostream* os) { UniversalPrint(value, os); } }; template <typename T> class UniversalTersePrinter<T&> { public: static void Print(const T& value, ::std::ostream* os) { UniversalPrint(value, os); } }; template <typename T> class UniversalTersePrinter<std::reference_wrapper<T>> { public: static void Print(std::reference_wrapper<T> value, ::std::ostream* os) { UniversalTersePrinter<T>::Print(value.get(), os); } }; template <typename T, size_t N> class UniversalTersePrinter<T[N]> { public: static void Print(const T (&value)[N], ::std::ostream* os) { UniversalPrinter<T[N]>::Print(value, os); } }; template <> class UniversalTersePrinter<const char*> { public: static void Print(const char* str, ::std::ostream* os) { if (str == nullptr) { *os << "NULL"; } else { UniversalPrint(std::string(str), os); } } }; template <> class UniversalTersePrinter<char*> : public UniversalTersePrinter<const char*> { };
#ifdef __cpp_lib_char8_t template <> class UniversalTersePrinter<const char8_t*> { public: static void Print(const char8_t* str, ::std::ostream* os) { if (str == nullptr) { *os << "NULL"; } else { UniversalPrint(::std::u8string(str), os); } } }; template <> class UniversalTersePrinter<char8_t*> : public UniversalTersePrinter<const char8_t*> {}; #endif
template <> class UniversalTersePrinter<const char16_t*> { public: static void Print(const char16_t* str, ::std::ostream* os) { if (str == nullptr) { *os << "NULL"; } else { UniversalPrint(::std::u16string(str), os); } } }; template <> class UniversalTersePrinter<char16_t*> : public UniversalTersePrinter<const char16_t*> {};
template <> class UniversalTersePrinter<const char32_t*> { public: static void Print(const char32_t* str, ::std::ostream* os) { if (str == nullptr) { *os << "NULL"; } else { UniversalPrint(::std::u32string(str), os); } } }; template <> class UniversalTersePrinter<char32_t*> : public UniversalTersePrinter<const char32_t*> {};
#if GTEST_HAS_STD_WSTRING template <> class UniversalTersePrinter<const wchar_t*> { public: static void Print(const wchar_t* str, ::std::ostream* os) { if (str == nullptr) { *os << "NULL"; } else { UniversalPrint(::std::wstring(str), os); } } }; #endif
template <> class UniversalTersePrinter<wchar_t*> { public: static void Print(wchar_t* str, ::std::ostream* os) { UniversalTersePrinter<const wchar_t*>::Print(str, os); } };
template <typename T> void UniversalTersePrint(const T& value, ::std::ostream* os) { UniversalTersePrinter<T>::Print(value, os); }
// Prints a value using the type inferred by the compiler. The // difference between this and UniversalTersePrint() is that for a // (const) char pointer, this prints both the pointer and the // NUL-terminated string. template <typename T> void UniversalPrint(const T& value, ::std::ostream* os) { // A workarond for the bug in VC++ 7.1 that prevents us from instantiating // UniversalPrinter with T directly. typedef T T1; UniversalPrinter<T1>::Print(value, os); }
typedef ::std::vector<::std::string> Strings;
// Tersely prints the first N fields of a tuple to a string vector, // one element for each field. template <typename Tuple> void TersePrintPrefixToStrings(const Tuple&, std::integral_constant<size_t, 0>, Strings*) {} template <typename Tuple, size_t I> void TersePrintPrefixToStrings(const Tuple& t, std::integral_constant<size_t, I>, Strings* strings) { TersePrintPrefixToStrings(t, std::integral_constant<size_t, I - 1>(), strings); ::std::stringstream ss; UniversalTersePrint(std::get<I - 1>(t), &ss); strings->push_back(ss.str()); }
// Prints the fields of a tuple tersely to a string vector, one // element for each field. See the comment before // UniversalTersePrint() for how we define "tersely". template <typename Tuple> Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) { Strings result; TersePrintPrefixToStrings( value, std::integral_constant<size_t, std::tuple_size<Tuple>::value>(), &result); return result; }
} // namespace internal
template <typename T> ::std::string PrintToString(const T& value) { ::std::stringstream ss; internal::UniversalTersePrinter<T>::Print(value, &ss); return ss.str(); }
} // namespace testing
// Include any custom printer added by the local installation. // We must include this header at the end to make sure it can use the // declarations from this file. #include "gtest/internal/custom/gtest-printers.h"
#endif // GOOGLETEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
|