Viewing file: Graph.h (17.07 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===-- Graph.h - XRay Graph Class ------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // A Graph Datatype for XRay. // //===----------------------------------------------------------------------===//
#ifndef LLVM_XRAY_GRAPH_H #define LLVM_XRAY_GRAPH_H
#include <initializer_list> #include <stdint.h> #include <type_traits> #include <utility>
#include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/iterator.h" #include "llvm/Support/Error.h"
namespace llvm { namespace xray {
/// A Graph object represents a Directed Graph and is used in XRay to compute /// and store function call graphs and associated statistical information. /// /// The graph takes in four template parameters, these are: /// - VertexAttribute, this is a structure which is stored for each vertex. /// Must be DefaultConstructible, CopyConstructible, CopyAssignable and /// Destructible. /// - EdgeAttribute, this is a structure which is stored for each edge /// Must be DefaultConstructible, CopyConstructible, CopyAssignable and /// Destructible. /// - EdgeAttribute, this is a structure which is stored for each variable /// - VI, this is a type over which DenseMapInfo is defined and is the type /// used look up strings, available as VertexIdentifier. /// - If the built in DenseMapInfo is not defined, provide a specialization /// class type here. /// /// Graph is CopyConstructible, CopyAssignable, MoveConstructible and /// MoveAssignable but is not EqualityComparible or LessThanComparible. /// /// Usage Example Graph with weighted edges and vertices: /// Graph<int, int, int> G; /// /// G[1] = 0; /// G[2] = 2; /// G[{1,2}] = 1; /// G[{2,1}] = -1; /// for(const auto &v : G.vertices()){ /// // Do something with the vertices in the graph; /// } /// for(const auto &e : G.edges()){ /// // Do something with the edges in the graph; /// } /// /// Usage Example with StrRef keys. /// Graph<int, double, StrRef> StrG; /// char va[] = "Vertex A"; /// char vaa[] = "Vertex A"; /// char vb[] = "Vertex B"; // Vertices are referenced by String Refs. /// G[va] = 0; /// G[vb] = 1; /// G[{va, vb}] = 1.0; /// cout() << G[vaa] << " " << G[{vaa, vb}]; //prints "0 1.0". /// template <typename VertexAttribute, typename EdgeAttribute, typename VI = int32_t> class Graph { public: /// These objects are used to name edges and vertices in the graph. typedef VI VertexIdentifier; typedef std::pair<VI, VI> EdgeIdentifier;
/// This type is the value_type of all iterators which range over vertices, /// Determined by the Vertices DenseMap using VertexValueType = detail::DenseMapPair<VertexIdentifier, VertexAttribute>;
/// This type is the value_type of all iterators which range over edges, /// Determined by the Edges DenseMap. using EdgeValueType = detail::DenseMapPair<EdgeIdentifier, EdgeAttribute>;
using size_type = std::size_t;
private: /// The type used for storing the EdgeAttribute for each edge in the graph using EdgeMapT = DenseMap<EdgeIdentifier, EdgeAttribute>;
/// The type used for storing the VertexAttribute for each vertex in /// the graph. using VertexMapT = DenseMap<VertexIdentifier, VertexAttribute>;
/// The type used for storing the edges entering a vertex. Indexed by /// the VertexIdentifier of the start of the edge. Only used to determine /// where the incoming edges are, the EdgeIdentifiers are stored in an /// InnerEdgeMapT. using NeighborSetT = DenseSet<VertexIdentifier>;
/// The type storing the InnerInvGraphT corresponding to each vertex in /// the graph (When a vertex has an incoming edge incident to it) using NeighborLookupT = DenseMap<VertexIdentifier, NeighborSetT>;
private: /// Stores the map from the start and end vertex of an edge to it's /// EdgeAttribute EdgeMapT Edges;
/// Stores the map from VertexIdentifier to VertexAttribute VertexMapT Vertices;
/// Allows fast lookup for the incoming edge set of any given vertex. NeighborLookupT InNeighbors;
/// Allows fast lookup for the outgoing edge set of any given vertex. NeighborLookupT OutNeighbors;
/// An Iterator adapter using an InnerInvGraphT::iterator as a base iterator, /// and storing the VertexIdentifier the iterator range comes from. The /// dereference operator is then performed using a pointer to the graph's edge /// set. template <bool IsConst, bool IsOut, typename BaseIt = typename NeighborSetT::const_iterator, typename T = std::conditional_t<IsConst, const EdgeValueType, EdgeValueType>> class NeighborEdgeIteratorT : public iterator_adaptor_base< NeighborEdgeIteratorT<IsConst, IsOut>, BaseIt, typename std::iterator_traits<BaseIt>::iterator_category, T> { using InternalEdgeMapT = std::conditional_t<IsConst, const EdgeMapT, EdgeMapT>;
friend class NeighborEdgeIteratorT<false, IsOut, BaseIt, EdgeValueType>; friend class NeighborEdgeIteratorT<true, IsOut, BaseIt, const EdgeValueType>;
InternalEdgeMapT *MP; VertexIdentifier SI;
public: template <bool IsConstDest, typename = std::enable_if_t<IsConstDest && !IsConst>> operator NeighborEdgeIteratorT<IsConstDest, IsOut, BaseIt, const EdgeValueType>() const { return NeighborEdgeIteratorT<IsConstDest, IsOut, BaseIt, const EdgeValueType>(this->I, MP, SI); }
NeighborEdgeIteratorT() = default; NeighborEdgeIteratorT(BaseIt _I, InternalEdgeMapT *_MP, VertexIdentifier _SI) : iterator_adaptor_base< NeighborEdgeIteratorT<IsConst, IsOut>, BaseIt, typename std::iterator_traits<BaseIt>::iterator_category, T>(_I), MP(_MP), SI(_SI) {}
T &operator*() const { if (!IsOut) return *(MP->find({*(this->I), SI})); else return *(MP->find({SI, *(this->I)})); } };
public: /// A const iterator type for iterating through the set of edges entering a /// vertex. /// /// Has a const EdgeValueType as its value_type using ConstInEdgeIterator = NeighborEdgeIteratorT<true, false>;
/// An iterator type for iterating through the set of edges leaving a vertex. /// /// Has an EdgeValueType as its value_type using InEdgeIterator = NeighborEdgeIteratorT<false, false>;
/// A const iterator type for iterating through the set of edges entering a /// vertex. /// /// Has a const EdgeValueType as its value_type using ConstOutEdgeIterator = NeighborEdgeIteratorT<true, true>;
/// An iterator type for iterating through the set of edges leaving a vertex. /// /// Has an EdgeValueType as its value_type using OutEdgeIterator = NeighborEdgeIteratorT<false, true>;
/// A class for ranging over the incoming edges incident to a vertex. /// /// Like all views in this class it provides methods to get the beginning and /// past the range iterators for the range, as well as methods to determine /// the number of elements in the range and whether the range is empty. template <bool isConst, bool isOut> class InOutEdgeView { public: using iterator = NeighborEdgeIteratorT<isConst, isOut>; using const_iterator = NeighborEdgeIteratorT<true, isOut>; using GraphT = std::conditional_t<isConst, const Graph, Graph>; using InternalEdgeMapT = std::conditional_t<isConst, const EdgeMapT, EdgeMapT>;
private: InternalEdgeMapT &M; const VertexIdentifier A; const NeighborLookupT &NL;
public: iterator begin() { auto It = NL.find(A); if (It == NL.end()) return iterator(); return iterator(It->second.begin(), &M, A); }
const_iterator cbegin() const { auto It = NL.find(A); if (It == NL.end()) return const_iterator(); return const_iterator(It->second.begin(), &M, A); }
const_iterator begin() const { return cbegin(); }
iterator end() { auto It = NL.find(A); if (It == NL.end()) return iterator(); return iterator(It->second.end(), &M, A); } const_iterator cend() const { auto It = NL.find(A); if (It == NL.end()) return const_iterator(); return const_iterator(It->second.end(), &M, A); }
const_iterator end() const { return cend(); }
size_type size() const { auto I = NL.find(A); if (I == NL.end()) return 0; else return I->second.size(); }
bool empty() const { return NL.count(A) == 0; };
InOutEdgeView(GraphT &G, VertexIdentifier A) : M(G.Edges), A(A), NL(isOut ? G.OutNeighbors : G.InNeighbors) {} };
/// A const iterator type for iterating through the whole vertex set of the /// graph. /// /// Has a const VertexValueType as its value_type using ConstVertexIterator = typename VertexMapT::const_iterator;
/// An iterator type for iterating through the whole vertex set of the graph. /// /// Has a VertexValueType as its value_type using VertexIterator = typename VertexMapT::iterator;
/// A class for ranging over the vertices in the graph. /// /// Like all views in this class it provides methods to get the beginning and /// past the range iterators for the range, as well as methods to determine /// the number of elements in the range and whether the range is empty. template <bool isConst> class VertexView { public: using iterator = std::conditional_t<isConst, ConstVertexIterator, VertexIterator>; using const_iterator = ConstVertexIterator; using GraphT = std::conditional_t<isConst, const Graph, Graph>;
private: GraphT &G;
public: iterator begin() { return G.Vertices.begin(); } iterator end() { return G.Vertices.end(); } const_iterator cbegin() const { return G.Vertices.cbegin(); } const_iterator cend() const { return G.Vertices.cend(); } const_iterator begin() const { return G.Vertices.begin(); } const_iterator end() const { return G.Vertices.end(); } size_type size() const { return G.Vertices.size(); } bool empty() const { return G.Vertices.empty(); } VertexView(GraphT &_G) : G(_G) {} };
/// A const iterator for iterating through the entire edge set of the graph. /// /// Has a const EdgeValueType as its value_type using ConstEdgeIterator = typename EdgeMapT::const_iterator;
/// An iterator for iterating through the entire edge set of the graph. /// /// Has an EdgeValueType as its value_type using EdgeIterator = typename EdgeMapT::iterator;
/// A class for ranging over all the edges in the graph. /// /// Like all views in this class it provides methods to get the beginning and /// past the range iterators for the range, as well as methods to determine /// the number of elements in the range and whether the range is empty. template <bool isConst> class EdgeView { public: using iterator = std::conditional_t<isConst, ConstEdgeIterator, EdgeIterator>; using const_iterator = ConstEdgeIterator; using GraphT = std::conditional_t<isConst, const Graph, Graph>;
private: GraphT &G;
public: iterator begin() { return G.Edges.begin(); } iterator end() { return G.Edges.end(); } const_iterator cbegin() const { return G.Edges.cbegin(); } const_iterator cend() const { return G.Edges.cend(); } const_iterator begin() const { return G.Edges.begin(); } const_iterator end() const { return G.Edges.end(); } size_type size() const { return G.Edges.size(); } bool empty() const { return G.Edges.empty(); } EdgeView(GraphT &_G) : G(_G) {} };
public: // TODO: implement constructor to enable Graph Initialisation.\ // Something like: // Graph<int, int, int> G( // {1, 2, 3, 4, 5}, // {{1, 2}, {2, 3}, {3, 4}});
/// Empty the Graph void clear() { Edges.clear(); Vertices.clear(); InNeighbors.clear(); OutNeighbors.clear(); }
/// Returns a view object allowing iteration over the vertices of the graph. /// also allows access to the size of the vertex set. VertexView<false> vertices() { return VertexView<false>(*this); }
VertexView<true> vertices() const { return VertexView<true>(*this); }
/// Returns a view object allowing iteration over the edges of the graph. /// also allows access to the size of the edge set. EdgeView<false> edges() { return EdgeView<false>(*this); }
EdgeView<true> edges() const { return EdgeView<true>(*this); }
/// Returns a view object allowing iteration over the edges which start at /// a vertex I. InOutEdgeView<false, true> outEdges(const VertexIdentifier I) { return InOutEdgeView<false, true>(*this, I); }
InOutEdgeView<true, true> outEdges(const VertexIdentifier I) const { return InOutEdgeView<true, true>(*this, I); }
/// Returns a view object allowing iteration over the edges which point to /// a vertex I. InOutEdgeView<false, false> inEdges(const VertexIdentifier I) { return InOutEdgeView<false, false>(*this, I); }
InOutEdgeView<true, false> inEdges(const VertexIdentifier I) const { return InOutEdgeView<true, false>(*this, I); }
/// Looks up the vertex with identifier I, if it does not exist it default /// constructs it. VertexAttribute &operator[](const VertexIdentifier &I) { return Vertices.FindAndConstruct(I).second; }
/// Looks up the edge with identifier I, if it does not exist it default /// constructs it, if it's endpoints do not exist it also default constructs /// them. EdgeAttribute &operator[](const EdgeIdentifier &I) { auto &P = Edges.FindAndConstruct(I); Vertices.FindAndConstruct(I.first); Vertices.FindAndConstruct(I.second); InNeighbors[I.second].insert(I.first); OutNeighbors[I.first].insert(I.second); return P.second; }
/// Looks up a vertex with Identifier I, or an error if it does not exist. Expected<VertexAttribute &> at(const VertexIdentifier &I) { auto It = Vertices.find(I); if (It == Vertices.end()) return make_error<StringError>( "Vertex Identifier Does Not Exist", std::make_error_code(std::errc::invalid_argument)); return It->second; }
Expected<const VertexAttribute &> at(const VertexIdentifier &I) const { auto It = Vertices.find(I); if (It == Vertices.end()) return make_error<StringError>( "Vertex Identifier Does Not Exist", std::make_error_code(std::errc::invalid_argument)); return It->second; }
/// Looks up an edge with Identifier I, or an error if it does not exist. Expected<EdgeAttribute &> at(const EdgeIdentifier &I) { auto It = Edges.find(I); if (It == Edges.end()) return make_error<StringError>( "Edge Identifier Does Not Exist", std::make_error_code(std::errc::invalid_argument)); return It->second; }
Expected<const EdgeAttribute &> at(const EdgeIdentifier &I) const { auto It = Edges.find(I); if (It == Edges.end()) return make_error<StringError>( "Edge Identifier Does Not Exist", std::make_error_code(std::errc::invalid_argument)); return It->second; }
/// Looks for a vertex with identifier I, returns 1 if one exists, and /// 0 otherwise size_type count(const VertexIdentifier &I) const { return Vertices.count(I); }
/// Looks for an edge with Identifier I, returns 1 if one exists and 0 /// otherwise size_type count(const EdgeIdentifier &I) const { return Edges.count(I); }
/// Inserts a vertex into the graph with Identifier Val.first, and /// Attribute Val.second. std::pair<VertexIterator, bool> insert(const std::pair<VertexIdentifier, VertexAttribute> &Val) { return Vertices.insert(Val); }
std::pair<VertexIterator, bool> insert(std::pair<VertexIdentifier, VertexAttribute> &&Val) { return Vertices.insert(std::move(Val)); }
/// Inserts an edge into the graph with Identifier Val.first, and /// Attribute Val.second. If the key is already in the map, it returns false /// and doesn't update the value. std::pair<EdgeIterator, bool> insert(const std::pair<EdgeIdentifier, EdgeAttribute> &Val) { const auto &p = Edges.insert(Val); if (p.second) { const auto &EI = Val.first; Vertices.FindAndConstruct(EI.first); Vertices.FindAndConstruct(EI.second); InNeighbors[EI.second].insert(EI.first); OutNeighbors[EI.first].insert(EI.second); };
return p; }
/// Inserts an edge into the graph with Identifier Val.first, and /// Attribute Val.second. If the key is already in the map, it returns false /// and doesn't update the value. std::pair<EdgeIterator, bool> insert(std::pair<EdgeIdentifier, EdgeAttribute> &&Val) { auto EI = Val.first; const auto &p = Edges.insert(std::move(Val)); if (p.second) { Vertices.FindAndConstruct(EI.first); Vertices.FindAndConstruct(EI.second); InNeighbors[EI.second].insert(EI.first); OutNeighbors[EI.first].insert(EI.second); };
return p; } }; } } #endif
|