Viewing file: Instrumentation.h (7.02 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- Transforms/Instrumentation.h - Instrumentation passes ----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines constructor functions for instrumentation passes. // //===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_INSTRUMENTATION_H #define LLVM_TRANSFORMS_INSTRUMENTATION_H
#include "llvm/ADT/StringRef.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instruction.h" #include <cassert> #include <cstdint> #include <limits> #include <string>
namespace llvm {
class Triple; class OptimizationRemarkEmitter; class Comdat; class CallBase;
/// Instrumentation passes often insert conditional checks into entry blocks. /// Call this function before splitting the entry block to move instructions /// that must remain in the entry block up before the split point. Static /// allocas and llvm.localescape calls, for example, must remain in the entry /// block. BasicBlock::iterator PrepareToSplitEntryBlock(BasicBlock &BB, BasicBlock::iterator IP);
// Create a constant for Str so that we can pass it to the run-time lib. GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str, bool AllowMerging, const char *NamePrefix = "");
// Returns F.getComdat() if it exists. // Otherwise creates a new comdat, sets F's comdat, and returns it. // Returns nullptr on failure. Comdat *getOrCreateFunctionComdat(Function &F, Triple &T);
// Place global in a large section for x86-64 ELF binaries to mitigate // relocation overflow pressure. This can be be used for metadata globals that // aren't directly accessed by code, which has no performance impact. void setGlobalVariableLargeSection(const Triple &TargetTriple, GlobalVariable &GV);
// Insert GCOV profiling instrumentation struct GCOVOptions { static GCOVOptions getDefault();
// Specify whether to emit .gcno files. bool EmitNotes;
// Specify whether to modify the program to emit .gcda files when run. bool EmitData;
// A four-byte version string. The meaning of a version string is described in // gcc's gcov-io.h char Version[4];
// Add the 'noredzone' attribute to added runtime library calls. bool NoRedZone;
// Use atomic profile counter increments. bool Atomic = false;
// Regexes separated by a semi-colon to filter the files to instrument. std::string Filter;
// Regexes separated by a semi-colon to filter the files to not instrument. std::string Exclude; };
// The pgo-specific indirect call promotion function declared below is used by // the pgo-driven indirect call promotion and sample profile passes. It's a // wrapper around llvm::promoteCall, et al. that additionally computes !prof // metadata. We place it in a pgo namespace so it's not confused with the // generic utilities. namespace pgo {
// Helper function that transforms CB (either an indirect-call instruction, or // an invoke instruction , to a conditional call to F. This is like: // if (Inst.CalledValue == F) // F(...); // else // Inst(...); // end // TotalCount is the profile count value that the instruction executes. // Count is the profile count value that F is the target function. // These two values are used to update the branch weight. // If \p AttachProfToDirectCall is true, a prof metadata is attached to the // new direct call to contain \p Count. // Returns the promoted direct call instruction. CallBase &promoteIndirectCall(CallBase &CB, Function *F, uint64_t Count, uint64_t TotalCount, bool AttachProfToDirectCall, OptimizationRemarkEmitter *ORE); } // namespace pgo
/// Options for the frontend instrumentation based profiling pass. struct InstrProfOptions { // Add the 'noredzone' attribute to added runtime library calls. bool NoRedZone = false;
// Do counter register promotion bool DoCounterPromotion = false;
// Use atomic profile counter increments. bool Atomic = false;
// Use BFI to guide register promotion bool UseBFIInPromotion = false;
// Use sampling to reduce the profile instrumentation runtime overhead. bool Sampling = false;
// Name of the profile file to use as output std::string InstrProfileOutput;
InstrProfOptions() = default; };
// Create the variable for profile sampling. void createProfileSamplingVar(Module &M);
// Options for sanitizer coverage instrumentation. struct SanitizerCoverageOptions { enum Type { SCK_None = 0, SCK_Function, SCK_BB, SCK_Edge } CoverageType = SCK_None; bool IndirectCalls = false; bool TraceBB = false; bool TraceCmp = false; bool TraceDiv = false; bool TraceGep = false; bool Use8bitCounters = false; bool TracePC = false; bool TracePCGuard = false; bool Inline8bitCounters = false; bool InlineBoolFlag = false; bool PCTable = false; bool NoPrune = false; bool StackDepth = false; bool TraceLoads = false; bool TraceStores = false; bool CollectControlFlow = false;
SanitizerCoverageOptions() = default; };
/// Calculate what to divide by to scale counts. /// /// Given the maximum count, calculate a divisor that will scale all the /// weights to strictly less than std::numeric_limits<uint32_t>::max(). static inline uint64_t calculateCountScale(uint64_t MaxCount) { return MaxCount < std::numeric_limits<uint32_t>::max() ? 1 : MaxCount / std::numeric_limits<uint32_t>::max() + 1; }
/// Scale an individual branch count. /// /// Scale a 64-bit weight down to 32-bits using \c Scale. /// static inline uint32_t scaleBranchCount(uint64_t Count, uint64_t Scale) { uint64_t Scaled = Count / Scale; assert(Scaled <= std::numeric_limits<uint32_t>::max() && "overflow 32-bits"); return Scaled; }
// Use to ensure the inserted instrumentation has a DebugLocation; if none is // attached to the source instruction, try to use a DILocation with offset 0 // scoped to surrounding function (if it has a DebugLocation). // // Some non-call instructions may be missing debug info, but when inserting // instrumentation calls, some builds (e.g. LTO) want calls to have debug info // if the enclosing function does. struct InstrumentationIRBuilder : IRBuilder<> { static void ensureDebugInfo(IRBuilder<> &IRB, const Function &F) { if (IRB.getCurrentDebugLocation()) return; if (DISubprogram *SP = F.getSubprogram()) IRB.SetCurrentDebugLocation(DILocation::get(SP->getContext(), 0, 0, SP)); }
explicit InstrumentationIRBuilder(Instruction *IP) : IRBuilder<>(IP) { ensureDebugInfo(*this, *IP->getFunction()); } }; } // end namespace llvm
#endif // LLVM_TRANSFORMS_INSTRUMENTATION_H
|