Viewing file: MathExtras.h (28.57 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains some functions that are useful for math stuff. // //===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_MATHEXTRAS_H #define LLVM_SUPPORT_MATHEXTRAS_H
#include "llvm/ADT/bit.h" #include "llvm/Support/Compiler.h" #include <cassert> #include <climits> #include <cstdint> #include <cstring> #include <limits> #include <type_traits>
namespace llvm { /// Some template parameter helpers to optimize for bitwidth, for functions that /// take multiple arguments.
// We can't verify signedness, since callers rely on implicit coercions to // signed/unsigned. template <typename T, typename U> using enableif_int = std::enable_if_t<std::is_integral_v<T> && std::is_integral_v<U>>;
// Use std::common_type_t to widen only up to the widest argument. template <typename T, typename U, typename = enableif_int<T, U>> using common_uint = std::common_type_t<std::make_unsigned_t<T>, std::make_unsigned_t<U>>; template <typename T, typename U, typename = enableif_int<T, U>> using common_sint = std::common_type_t<std::make_signed_t<T>, std::make_signed_t<U>>;
/// Mathematical constants. namespace numbers { // TODO: Track C++20 std::numbers. // TODO: Favor using the hexadecimal FP constants (requires C++17). constexpr double e = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113 egamma = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620 ln2 = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162 ln10 = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392 log2e = 1.4426950408889634074, // (0x1.71547652b82feP+0) log10e = .43429448190325182765, // (0x1.bcb7b1526e50eP-2) pi = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796 inv_pi = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541 sqrtpi = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161 inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197 sqrt2 = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219 inv_sqrt2 = .70710678118654752440, // (0x1.6a09e667f3bcdP-1) sqrt3 = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194 inv_sqrt3 = .57735026918962576451, // (0x1.279a74590331cP-1) phi = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622 constexpr float ef = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113 egammaf = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620 ln2f = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162 ln10f = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392 log2ef = 1.44269504F, // (0x1.715476P+0) log10ef = .434294482F, // (0x1.bcb7b2P-2) pif = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796 inv_pif = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541 sqrtpif = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161 inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197 sqrt2f = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193 inv_sqrt2f = .707106781F, // (0x1.6a09e6P-1) sqrt3f = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194 inv_sqrt3f = .577350269F, // (0x1.279a74P-1) phif = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622 } // namespace numbers
/// Create a bitmask with the N right-most bits set to 1, and all other /// bits set to 0. Only unsigned types are allowed. template <typename T> T maskTrailingOnes(unsigned N) { static_assert(std::is_unsigned_v<T>, "Invalid type!"); const unsigned Bits = CHAR_BIT * sizeof(T); assert(N <= Bits && "Invalid bit index"); if (N == 0) return 0; return T(-1) >> (Bits - N); }
/// Create a bitmask with the N left-most bits set to 1, and all other /// bits set to 0. Only unsigned types are allowed. template <typename T> T maskLeadingOnes(unsigned N) { return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); }
/// Create a bitmask with the N right-most bits set to 0, and all other /// bits set to 1. Only unsigned types are allowed. template <typename T> T maskTrailingZeros(unsigned N) { return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N); }
/// Create a bitmask with the N left-most bits set to 0, and all other /// bits set to 1. Only unsigned types are allowed. template <typename T> T maskLeadingZeros(unsigned N) { return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); }
/// Macro compressed bit reversal table for 256 bits. /// /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable static const unsigned char BitReverseTable256[256] = { #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64 #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16) #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4) R6(0), R6(2), R6(1), R6(3) #undef R2 #undef R4 #undef R6 };
/// Reverse the bits in \p Val. template <typename T> T reverseBits(T Val) { #if __has_builtin(__builtin_bitreverse8) if constexpr (std::is_same_v<T, uint8_t>) return __builtin_bitreverse8(Val); #endif #if __has_builtin(__builtin_bitreverse16) if constexpr (std::is_same_v<T, uint16_t>) return __builtin_bitreverse16(Val); #endif #if __has_builtin(__builtin_bitreverse32) if constexpr (std::is_same_v<T, uint32_t>) return __builtin_bitreverse32(Val); #endif #if __has_builtin(__builtin_bitreverse64) if constexpr (std::is_same_v<T, uint64_t>) return __builtin_bitreverse64(Val); #endif
unsigned char in[sizeof(Val)]; unsigned char out[sizeof(Val)]; std::memcpy(in, &Val, sizeof(Val)); for (unsigned i = 0; i < sizeof(Val); ++i) out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]]; std::memcpy(&Val, out, sizeof(Val)); return Val; }
// NOTE: The following support functions use the _32/_64 extensions instead of // type overloading so that signed and unsigned integers can be used without // ambiguity.
/// Return the high 32 bits of a 64 bit value. constexpr uint32_t Hi_32(uint64_t Value) { return static_cast<uint32_t>(Value >> 32); }
/// Return the low 32 bits of a 64 bit value. constexpr uint32_t Lo_32(uint64_t Value) { return static_cast<uint32_t>(Value); }
/// Make a 64-bit integer from a high / low pair of 32-bit integers. constexpr uint64_t Make_64(uint32_t High, uint32_t Low) { return ((uint64_t)High << 32) | (uint64_t)Low; }
/// Checks if an integer fits into the given bit width. template <unsigned N> constexpr bool isInt(int64_t x) { if constexpr (N == 0) return 0 == x; if constexpr (N == 8) return static_cast<int8_t>(x) == x; if constexpr (N == 16) return static_cast<int16_t>(x) == x; if constexpr (N == 32) return static_cast<int32_t>(x) == x; if constexpr (N < 64) return -(INT64_C(1) << (N - 1)) <= x && x < (INT64_C(1) << (N - 1)); (void)x; // MSVC v19.25 warns that x is unused. return true; }
/// Checks if a signed integer is an N bit number shifted left by S. template <unsigned N, unsigned S> constexpr bool isShiftedInt(int64_t x) { static_assert(S < 64, "isShiftedInt<N, S> with S >= 64 is too much."); static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide."); return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); }
/// Checks if an unsigned integer fits into the given bit width. template <unsigned N> constexpr bool isUInt(uint64_t x) { if constexpr (N == 0) return 0 == x; if constexpr (N == 8) return static_cast<uint8_t>(x) == x; if constexpr (N == 16) return static_cast<uint16_t>(x) == x; if constexpr (N == 32) return static_cast<uint32_t>(x) == x; if constexpr (N < 64) return x < (UINT64_C(1) << (N)); (void)x; // MSVC v19.25 warns that x is unused. return true; }
/// Checks if a unsigned integer is an N bit number shifted left by S. template <unsigned N, unsigned S> constexpr bool isShiftedUInt(uint64_t x) { static_assert(S < 64, "isShiftedUInt<N, S> with S >= 64 is too much."); static_assert(N + S <= 64, "isShiftedUInt<N, S> with N + S > 64 is too wide."); // S must be strictly less than 64. So 1 << S is not undefined behavior. return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); }
/// Gets the maximum value for a N-bit unsigned integer. inline uint64_t maxUIntN(uint64_t N) { assert(N <= 64 && "integer width out of range");
// uint64_t(1) << 64 is undefined behavior, so we can't do // (uint64_t(1) << N) - 1 // without checking first that N != 64. But this works and doesn't have a // branch for N != 0. // Unfortunately, shifting a uint64_t right by 64 bit is undefined // behavior, so the condition on N == 0 is necessary. Fortunately, most // optimizers do not emit branches for this check. if (N == 0) return 0; return UINT64_MAX >> (64 - N); }
/// Gets the minimum value for a N-bit signed integer. inline int64_t minIntN(int64_t N) { assert(N <= 64 && "integer width out of range");
if (N == 0) return 0; return UINT64_C(1) + ~(UINT64_C(1) << (N - 1)); }
/// Gets the maximum value for a N-bit signed integer. inline int64_t maxIntN(int64_t N) { assert(N <= 64 && "integer width out of range");
// This relies on two's complement wraparound when N == 64, so we convert to // int64_t only at the very end to avoid UB. if (N == 0) return 0; return (UINT64_C(1) << (N - 1)) - 1; }
/// Checks if an unsigned integer fits into the given (dynamic) bit width. inline bool isUIntN(unsigned N, uint64_t x) { return N >= 64 || x <= maxUIntN(N); }
/// Checks if an signed integer fits into the given (dynamic) bit width. inline bool isIntN(unsigned N, int64_t x) { return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N)); }
/// Return true if the argument is a non-empty sequence of ones starting at the /// least significant bit with the remainder zero (32 bit version). /// Ex. isMask_32(0x0000FFFFU) == true. constexpr bool isMask_32(uint32_t Value) { return Value && ((Value + 1) & Value) == 0; }
/// Return true if the argument is a non-empty sequence of ones starting at the /// least significant bit with the remainder zero (64 bit version). constexpr bool isMask_64(uint64_t Value) { return Value && ((Value + 1) & Value) == 0; }
/// Return true if the argument contains a non-empty sequence of ones with the /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. constexpr bool isShiftedMask_32(uint32_t Value) { return Value && isMask_32((Value - 1) | Value); }
/// Return true if the argument contains a non-empty sequence of ones with the /// remainder zero (64 bit version.) constexpr bool isShiftedMask_64(uint64_t Value) { return Value && isMask_64((Value - 1) | Value); }
/// Return true if the argument is a power of two > 0. /// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) constexpr bool isPowerOf2_32(uint32_t Value) { return llvm::has_single_bit(Value); }
/// Return true if the argument is a power of two > 0 (64 bit edition.) constexpr bool isPowerOf2_64(uint64_t Value) { return llvm::has_single_bit(Value); }
/// Return true if the argument contains a non-empty sequence of ones with the /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. /// If true, \p MaskIdx will specify the index of the lowest set bit and \p /// MaskLen is updated to specify the length of the mask, else neither are /// updated. inline bool isShiftedMask_32(uint32_t Value, unsigned &MaskIdx, unsigned &MaskLen) { if (!isShiftedMask_32(Value)) return false; MaskIdx = llvm::countr_zero(Value); MaskLen = llvm::popcount(Value); return true; }
/// Return true if the argument contains a non-empty sequence of ones with the /// remainder zero (64 bit version.) If true, \p MaskIdx will specify the index /// of the lowest set bit and \p MaskLen is updated to specify the length of the /// mask, else neither are updated. inline bool isShiftedMask_64(uint64_t Value, unsigned &MaskIdx, unsigned &MaskLen) { if (!isShiftedMask_64(Value)) return false; MaskIdx = llvm::countr_zero(Value); MaskLen = llvm::popcount(Value); return true; }
/// Compile time Log2. /// Valid only for positive powers of two. template <size_t kValue> constexpr size_t CTLog2() { static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue), "Value is not a valid power of 2"); return 1 + CTLog2<kValue / 2>(); }
template <> constexpr size_t CTLog2<1>() { return 0; }
/// Return the floor log base 2 of the specified value, -1 if the value is zero. /// (32 bit edition.) /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 inline unsigned Log2_32(uint32_t Value) { return 31 - llvm::countl_zero(Value); }
/// Return the floor log base 2 of the specified value, -1 if the value is zero. /// (64 bit edition.) inline unsigned Log2_64(uint64_t Value) { return 63 - llvm::countl_zero(Value); }
/// Return the ceil log base 2 of the specified value, 32 if the value is zero. /// (32 bit edition). /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 inline unsigned Log2_32_Ceil(uint32_t Value) { return 32 - llvm::countl_zero(Value - 1); }
/// Return the ceil log base 2 of the specified value, 64 if the value is zero. /// (64 bit edition.) inline unsigned Log2_64_Ceil(uint64_t Value) { return 64 - llvm::countl_zero(Value - 1); }
/// A and B are either alignments or offsets. Return the minimum alignment that /// may be assumed after adding the two together. template <typename U, typename V, typename T = common_uint<U, V>> constexpr T MinAlign(U A, V B) { // The largest power of 2 that divides both A and B. // // Replace "-Value" by "1+~Value" in the following commented code to avoid // MSVC warning C4146 // return (A | B) & -(A | B); return (A | B) & (1 + ~(A | B)); }
/// Fallback when arguments aren't integral. constexpr uint64_t MinAlign(uint64_t A, uint64_t B) { return (A | B) & (1 + ~(A | B)); }
/// Returns the next power of two (in 64-bits) that is strictly greater than A. /// Returns zero on overflow. constexpr uint64_t NextPowerOf2(uint64_t A) { A |= (A >> 1); A |= (A >> 2); A |= (A >> 4); A |= (A >> 8); A |= (A >> 16); A |= (A >> 32); return A + 1; }
/// Returns the power of two which is greater than or equal to the given value. /// Essentially, it is a ceil operation across the domain of powers of two. inline uint64_t PowerOf2Ceil(uint64_t A) { if (!A || A > UINT64_MAX / 2) return 0; return UINT64_C(1) << Log2_64_Ceil(A); }
/// Returns the integer ceil(Numerator / Denominator). Unsigned version. /// Guaranteed to never overflow. template <typename U, typename V, typename T = common_uint<U, V>> constexpr T divideCeil(U Numerator, V Denominator) { assert(Denominator && "Division by zero"); T Bias = (Numerator != 0); return (Numerator - Bias) / Denominator + Bias; }
/// Fallback when arguments aren't integral. constexpr uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) { assert(Denominator && "Division by zero"); uint64_t Bias = (Numerator != 0); return (Numerator - Bias) / Denominator + Bias; }
// Check whether divideCeilSigned or divideFloorSigned would overflow. This // happens only when Numerator = INT_MIN and Denominator = -1. template <typename U, typename V> constexpr bool divideSignedWouldOverflow(U Numerator, V Denominator) { return Numerator == std::numeric_limits<U>::min() && Denominator == -1; }
/// Returns the integer ceil(Numerator / Denominator). Signed version. /// Overflow is explicitly forbidden with an assert. template <typename U, typename V, typename T = common_sint<U, V>> constexpr T divideCeilSigned(U Numerator, V Denominator) { assert(Denominator && "Division by zero"); assert(!divideSignedWouldOverflow(Numerator, Denominator) && "Divide would overflow"); if (!Numerator) return 0; // C's integer division rounds towards 0. T Bias = Denominator >= 0 ? 1 : -1; bool SameSign = (Numerator >= 0) == (Denominator >= 0); return SameSign ? (Numerator - Bias) / Denominator + 1 : Numerator / Denominator; }
/// Returns the integer floor(Numerator / Denominator). Signed version. /// Overflow is explicitly forbidden with an assert. template <typename U, typename V, typename T = common_sint<U, V>> constexpr T divideFloorSigned(U Numerator, V Denominator) { assert(Denominator && "Division by zero"); assert(!divideSignedWouldOverflow(Numerator, Denominator) && "Divide would overflow"); if (!Numerator) return 0; // C's integer division rounds towards 0. T Bias = Denominator >= 0 ? -1 : 1; bool SameSign = (Numerator >= 0) == (Denominator >= 0); return SameSign ? Numerator / Denominator : (Numerator - Bias) / Denominator - 1; }
/// Returns the remainder of the Euclidean division of LHS by RHS. Result is /// always non-negative. template <typename U, typename V, typename T = common_sint<U, V>> constexpr T mod(U Numerator, V Denominator) { assert(Denominator >= 1 && "Mod by non-positive number"); T Mod = Numerator % Denominator; return Mod < 0 ? Mod + Denominator : Mod; }
/// Returns (Numerator / Denominator) rounded by round-half-up. Guaranteed to /// never overflow. template <typename U, typename V, typename T = common_uint<U, V>> constexpr T divideNearest(U Numerator, V Denominator) { assert(Denominator && "Division by zero"); T Mod = Numerator % Denominator; return (Numerator / Denominator) + (Mod > (static_cast<T>(Denominator) - 1) / 2); }
/// Returns the next integer (mod 2**nbits) that is greater than or equal to /// \p Value and is a multiple of \p Align. \p Align must be non-zero. /// /// Examples: /// \code /// alignTo(5, 8) = 8 /// alignTo(17, 8) = 24 /// alignTo(~0LL, 8) = 0 /// alignTo(321, 255) = 510 /// \endcode /// /// Will overflow only if result is not representable in T. template <typename U, typename V, typename T = common_uint<U, V>> constexpr T alignTo(U Value, V Align) { assert(Align != 0u && "Align can't be 0."); T CeilDiv = divideCeil(Value, Align); return CeilDiv * Align; }
/// Fallback when arguments aren't integral. constexpr uint64_t alignTo(uint64_t Value, uint64_t Align) { assert(Align != 0u && "Align can't be 0."); uint64_t CeilDiv = divideCeil(Value, Align); return CeilDiv * Align; }
constexpr uint64_t alignToPowerOf2(uint64_t Value, uint64_t Align) { assert(Align != 0 && (Align & (Align - 1)) == 0 && "Align must be a power of 2"); // Replace unary minus to avoid compilation error on Windows: // "unary minus operator applied to unsigned type, result still unsigned" uint64_t NegAlign = (~Align) + 1; return (Value + Align - 1) & NegAlign; }
/// If non-zero \p Skew is specified, the return value will be a minimal integer /// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for /// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p /// Skew mod \p A'. \p Align must be non-zero. /// /// Examples: /// \code /// alignTo(5, 8, 7) = 7 /// alignTo(17, 8, 1) = 17 /// alignTo(~0LL, 8, 3) = 3 /// alignTo(321, 255, 42) = 552 /// \endcode /// /// May overflow. template <typename U, typename V, typename W, typename T = common_uint<common_uint<U, V>, W>> constexpr T alignTo(U Value, V Align, W Skew) { assert(Align != 0u && "Align can't be 0."); Skew %= Align; return alignTo(Value - Skew, Align) + Skew; }
/// Returns the next integer (mod 2**nbits) that is greater than or equal to /// \p Value and is a multiple of \c Align. \c Align must be non-zero. /// /// Will overflow only if result is not representable in T. template <auto Align, typename V, typename T = common_uint<decltype(Align), V>> constexpr T alignTo(V Value) { static_assert(Align != 0u, "Align must be non-zero"); T CeilDiv = divideCeil(Value, Align); return CeilDiv * Align; }
/// Returns the largest unsigned integer less than or equal to \p Value and is /// \p Skew mod \p Align. \p Align must be non-zero. Guaranteed to never /// overflow. template <typename U, typename V, typename W = uint8_t, typename T = common_uint<common_uint<U, V>, W>> constexpr T alignDown(U Value, V Align, W Skew = 0) { assert(Align != 0u && "Align can't be 0."); Skew %= Align; return (Value - Skew) / Align * Align + Skew; }
/// Sign-extend the number in the bottom B bits of X to a 32-bit integer. /// Requires B <= 32. template <unsigned B> constexpr int32_t SignExtend32(uint32_t X) { static_assert(B <= 32, "Bit width out of range."); if constexpr (B == 0) return 0; return int32_t(X << (32 - B)) >> (32 - B); }
/// Sign-extend the number in the bottom B bits of X to a 32-bit integer. /// Requires B <= 32. inline int32_t SignExtend32(uint32_t X, unsigned B) { assert(B <= 32 && "Bit width out of range."); if (B == 0) return 0; return int32_t(X << (32 - B)) >> (32 - B); }
/// Sign-extend the number in the bottom B bits of X to a 64-bit integer. /// Requires B <= 64. template <unsigned B> constexpr int64_t SignExtend64(uint64_t x) { static_assert(B <= 64, "Bit width out of range."); if constexpr (B == 0) return 0; return int64_t(x << (64 - B)) >> (64 - B); }
/// Sign-extend the number in the bottom B bits of X to a 64-bit integer. /// Requires B <= 64. inline int64_t SignExtend64(uint64_t X, unsigned B) { assert(B <= 64 && "Bit width out of range."); if (B == 0) return 0; return int64_t(X << (64 - B)) >> (64 - B); }
/// Subtract two unsigned integers, X and Y, of type T and return the absolute /// value of the result. template <typename U, typename V, typename T = common_uint<U, V>> constexpr T AbsoluteDifference(U X, V Y) { return X > Y ? (X - Y) : (Y - X); }
/// Add two unsigned integers, X and Y, of type T. Clamp the result to the /// maximum representable value of T on overflow. ResultOverflowed indicates if /// the result is larger than the maximum representable value of type T. template <typename T> std::enable_if_t<std::is_unsigned_v<T>, T> SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) { bool Dummy; bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; // Hacker's Delight, p. 29 T Z = X + Y; Overflowed = (Z < X || Z < Y); if (Overflowed) return std::numeric_limits<T>::max(); else return Z; }
/// Add multiple unsigned integers of type T. Clamp the result to the /// maximum representable value of T on overflow. template <class T, class... Ts> std::enable_if_t<std::is_unsigned_v<T>, T> SaturatingAdd(T X, T Y, T Z, Ts... Args) { bool Overflowed = false; T XY = SaturatingAdd(X, Y, &Overflowed); if (Overflowed) return SaturatingAdd(std::numeric_limits<T>::max(), T(1), Args...); return SaturatingAdd(XY, Z, Args...); }
/// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the /// maximum representable value of T on overflow. ResultOverflowed indicates if /// the result is larger than the maximum representable value of type T. template <typename T> std::enable_if_t<std::is_unsigned_v<T>, T> SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) { bool Dummy; bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
// Hacker's Delight, p. 30 has a different algorithm, but we don't use that // because it fails for uint16_t (where multiplication can have undefined // behavior due to promotion to int), and requires a division in addition // to the multiplication.
Overflowed = false;
// Log2(Z) would be either Log2Z or Log2Z + 1. // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z // will necessarily be less than Log2Max as desired. int Log2Z = Log2_64(X) + Log2_64(Y); const T Max = std::numeric_limits<T>::max(); int Log2Max = Log2_64(Max); if (Log2Z < Log2Max) { return X * Y; } if (Log2Z > Log2Max) { Overflowed = true; return Max; }
// We're going to use the top bit, and maybe overflow one // bit past it. Multiply all but the bottom bit then add // that on at the end. T Z = (X >> 1) * Y; if (Z & ~(Max >> 1)) { Overflowed = true; return Max; } Z <<= 1; if (X & 1) return SaturatingAdd(Z, Y, ResultOverflowed);
return Z; }
/// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to /// the product. Clamp the result to the maximum representable value of T on /// overflow. ResultOverflowed indicates if the result is larger than the /// maximum representable value of type T. template <typename T> std::enable_if_t<std::is_unsigned_v<T>, T> SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) { bool Dummy; bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
T Product = SaturatingMultiply(X, Y, &Overflowed); if (Overflowed) return Product;
return SaturatingAdd(A, Product, &Overflowed); }
/// Use this rather than HUGE_VALF; the latter causes warnings on MSVC. extern const float huge_valf;
/// Add two signed integers, computing the two's complement truncated result, /// returning true if overflow occurred. template <typename T> std::enable_if_t<std::is_signed_v<T>, T> AddOverflow(T X, T Y, T &Result) { #if __has_builtin(__builtin_add_overflow) return __builtin_add_overflow(X, Y, &Result); #else // Perform the unsigned addition. using U = std::make_unsigned_t<T>; const U UX = static_cast<U>(X); const U UY = static_cast<U>(Y); const U UResult = UX + UY;
// Convert to signed. Result = static_cast<T>(UResult);
// Adding two positive numbers should result in a positive number. if (X > 0 && Y > 0) return Result <= 0; // Adding two negatives should result in a negative number. if (X < 0 && Y < 0) return Result >= 0; return false; #endif }
/// Subtract two signed integers, computing the two's complement truncated /// result, returning true if an overflow ocurred. template <typename T> std::enable_if_t<std::is_signed_v<T>, T> SubOverflow(T X, T Y, T &Result) { #if __has_builtin(__builtin_sub_overflow) return __builtin_sub_overflow(X, Y, &Result); #else // Perform the unsigned addition. using U = std::make_unsigned_t<T>; const U UX = static_cast<U>(X); const U UY = static_cast<U>(Y); const U UResult = UX - UY;
// Convert to signed. Result = static_cast<T>(UResult);
// Subtracting a positive number from a negative results in a negative number. if (X <= 0 && Y > 0) return Result >= 0; // Subtracting a negative number from a positive results in a positive number. if (X >= 0 && Y < 0) return Result <= 0; return false; #endif }
/// Multiply two signed integers, computing the two's complement truncated /// result, returning true if an overflow ocurred. template <typename T> std::enable_if_t<std::is_signed_v<T>, T> MulOverflow(T X, T Y, T &Result) { #if __has_builtin(__builtin_mul_overflow) return __builtin_mul_overflow(X, Y, &Result); #else // Perform the unsigned multiplication on absolute values. using U = std::make_unsigned_t<T>; const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X); const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y); const U UResult = UX * UY;
// Convert to signed. const bool IsNegative = (X < 0) ^ (Y < 0); Result = IsNegative ? (0 - UResult) : UResult;
// If any of the args was 0, result is 0 and no overflow occurs. if (UX == 0 || UY == 0) return false;
// UX and UY are in [1, 2^n], where n is the number of digits. // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for // positive) divided by an argument compares to the other. if (IsNegative) return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY; else return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY; #endif }
/// Type to force float point values onto the stack, so that x86 doesn't add /// hidden precision, avoiding rounding differences on various platforms. #if defined(__i386__) || defined(_M_IX86) using stack_float_t = volatile float; #else using stack_float_t = float; #endif
} // namespace llvm
#endif
|