Viewing file: JSON.h (37.03 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===--- JSON.h - JSON values, parsing and serialization -------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===---------------------------------------------------------------------===// /// /// \file /// This file supports working with JSON data. /// /// It comprises: /// /// - classes which hold dynamically-typed parsed JSON structures /// These are value types that can be composed, inspected, and modified. /// See json::Value, and the related types json::Object and json::Array. /// /// - functions to parse JSON text into Values, and to serialize Values to text. /// See parse(), operator<<, and format_provider. /// /// - a convention and helpers for mapping between json::Value and user-defined /// types. See fromJSON(), ObjectMapper, and the class comment on Value. /// /// - an output API json::OStream which can emit JSON without materializing /// all structures as json::Value. /// /// Typically, JSON data would be read from an external source, parsed into /// a Value, and then converted into some native data structure before doing /// real work on it. (And vice versa when writing). /// /// Other serialization mechanisms you may consider: /// /// - YAML is also text-based, and more human-readable than JSON. It's a more /// complex format and data model, and YAML parsers aren't ubiquitous. /// YAMLParser.h is a streaming parser suitable for parsing large documents /// (including JSON, as YAML is a superset). It can be awkward to use /// directly. YAML I/O (YAMLTraits.h) provides data mapping that is more /// declarative than the toJSON/fromJSON conventions here. /// /// - LLVM bitstream is a space- and CPU- efficient binary format. Typically it /// encodes LLVM IR ("bitcode"), but it can be a container for other data. /// Low-level reader/writer libraries are in Bitstream/Bitstream*.h /// //===---------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_JSON_H #define LLVM_SUPPORT_JSON_H
#include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLFunctionalExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Error.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/raw_ostream.h" #include <cmath> #include <map>
namespace llvm { namespace json {
// === String encodings === // // JSON strings are character sequences (not byte sequences like std::string). // We need to know the encoding, and for simplicity only support UTF-8. // // - When parsing, invalid UTF-8 is a syntax error like any other // // - When creating Values from strings, callers must ensure they are UTF-8. // with asserts on, invalid UTF-8 will crash the program // with asserts off, we'll substitute the replacement character (U+FFFD) // Callers can use json::isUTF8() and json::fixUTF8() for validation. // // - When retrieving strings from Values (e.g. asString()), the result will // always be valid UTF-8.
template <typename T> constexpr bool is_uint_64_bit_v = std::is_integral_v<T> && std::is_unsigned_v<T> && sizeof(T) == sizeof(uint64_t);
/// Returns true if \p S is valid UTF-8, which is required for use as JSON. /// If it returns false, \p Offset is set to a byte offset near the first error. bool isUTF8(llvm::StringRef S, size_t *ErrOffset = nullptr); /// Replaces invalid UTF-8 sequences in \p S with the replacement character /// (U+FFFD). The returned string is valid UTF-8. /// This is much slower than isUTF8, so test that first. std::string fixUTF8(llvm::StringRef S);
class Array; class ObjectKey; class Value; template <typename T> Value toJSON(const std::optional<T> &Opt);
/// An Object is a JSON object, which maps strings to heterogenous JSON values. /// It simulates DenseMap<ObjectKey, Value>. ObjectKey is a maybe-owned string. class Object { using Storage = DenseMap<ObjectKey, Value, llvm::DenseMapInfo<StringRef>>; Storage M;
public: using key_type = ObjectKey; using mapped_type = Value; using value_type = Storage::value_type; using iterator = Storage::iterator; using const_iterator = Storage::const_iterator;
Object() = default; // KV is a trivial key-value struct for list-initialization. // (using std::pair forces extra copies). struct KV; explicit Object(std::initializer_list<KV> Properties);
iterator begin() { return M.begin(); } const_iterator begin() const { return M.begin(); } iterator end() { return M.end(); } const_iterator end() const { return M.end(); }
bool empty() const { return M.empty(); } size_t size() const { return M.size(); }
void clear() { M.clear(); } std::pair<iterator, bool> insert(KV E); template <typename... Ts> std::pair<iterator, bool> try_emplace(const ObjectKey &K, Ts &&... Args) { return M.try_emplace(K, std::forward<Ts>(Args)...); } template <typename... Ts> std::pair<iterator, bool> try_emplace(ObjectKey &&K, Ts &&... Args) { return M.try_emplace(std::move(K), std::forward<Ts>(Args)...); } bool erase(StringRef K); void erase(iterator I) { M.erase(I); }
iterator find(StringRef K) { return M.find_as(K); } const_iterator find(StringRef K) const { return M.find_as(K); } // operator[] acts as if Value was default-constructible as null. Value &operator[](const ObjectKey &K); Value &operator[](ObjectKey &&K); // Look up a property, returning nullptr if it doesn't exist. Value *get(StringRef K); const Value *get(StringRef K) const; // Typed accessors return std::nullopt/nullptr if // - the property doesn't exist // - or it has the wrong type std::optional<std::nullptr_t> getNull(StringRef K) const; std::optional<bool> getBoolean(StringRef K) const; std::optional<double> getNumber(StringRef K) const; std::optional<int64_t> getInteger(StringRef K) const; std::optional<llvm::StringRef> getString(StringRef K) const; const json::Object *getObject(StringRef K) const; json::Object *getObject(StringRef K); const json::Array *getArray(StringRef K) const; json::Array *getArray(StringRef K); }; bool operator==(const Object &LHS, const Object &RHS); inline bool operator!=(const Object &LHS, const Object &RHS) { return !(LHS == RHS); }
/// An Array is a JSON array, which contains heterogeneous JSON values. /// It simulates std::vector<Value>. class Array { std::vector<Value> V;
public: using value_type = Value; using iterator = std::vector<Value>::iterator; using const_iterator = std::vector<Value>::const_iterator;
Array() = default; explicit Array(std::initializer_list<Value> Elements); template <typename Collection> explicit Array(const Collection &C) { for (const auto &V : C) emplace_back(V); }
Value &operator[](size_t I); const Value &operator[](size_t I) const; Value &front(); const Value &front() const; Value &back(); const Value &back() const; Value *data(); const Value *data() const;
iterator begin(); const_iterator begin() const; iterator end(); const_iterator end() const;
bool empty() const; size_t size() const; void reserve(size_t S);
void clear(); void push_back(const Value &E); void push_back(Value &&E); template <typename... Args> void emplace_back(Args &&...A); void pop_back(); iterator insert(const_iterator P, const Value &E); iterator insert(const_iterator P, Value &&E); template <typename It> iterator insert(const_iterator P, It A, It Z); template <typename... Args> iterator emplace(const_iterator P, Args &&...A);
friend bool operator==(const Array &L, const Array &R); }; inline bool operator!=(const Array &L, const Array &R) { return !(L == R); }
/// A Value is an JSON value of unknown type. /// They can be copied, but should generally be moved. /// /// === Composing values === /// /// You can implicitly construct Values from: /// - strings: std::string, SmallString, formatv, StringRef, char* /// (char*, and StringRef are references, not copies!) /// - numbers /// - booleans /// - null: nullptr /// - arrays: {"foo", 42.0, false} /// - serializable things: types with toJSON(const T&)->Value, found by ADL /// /// They can also be constructed from object/array helpers: /// - json::Object is a type like map<ObjectKey, Value> /// - json::Array is a type like vector<Value> /// These can be list-initialized, or used to build up collections in a loop. /// json::ary(Collection) converts all items in a collection to Values. /// /// === Inspecting values === /// /// Each Value is one of the JSON kinds: /// null (nullptr_t) /// boolean (bool) /// number (double, int64 or uint64) /// string (StringRef) /// array (json::Array) /// object (json::Object) /// /// The kind can be queried directly, or implicitly via the typed accessors: /// if (std::optional<StringRef> S = E.getAsString() /// assert(E.kind() == Value::String); /// /// Array and Object also have typed indexing accessors for easy traversal: /// Expected<Value> E = parse(R"( {"options": {"font": "sans-serif"}} )"); /// if (Object* O = E->getAsObject()) /// if (Object* Opts = O->getObject("options")) /// if (std::optional<StringRef> Font = Opts->getString("font")) /// assert(Opts->at("font").kind() == Value::String); /// /// === Converting JSON values to C++ types === /// /// The convention is to have a deserializer function findable via ADL: /// fromJSON(const json::Value&, T&, Path) -> bool /// /// The return value indicates overall success, and Path is used for precise /// error reporting. (The Path::Root passed in at the top level fromJSON call /// captures any nested error and can render it in context). /// If conversion fails, fromJSON calls Path::report() and immediately returns. /// This ensures that the first fatal error survives. /// /// Deserializers are provided for: /// - bool /// - int and int64_t /// - double /// - std::string /// - vector<T>, where T is deserializable /// - map<string, T>, where T is deserializable /// - std::optional<T>, where T is deserializable /// ObjectMapper can help writing fromJSON() functions for object types. /// /// For conversion in the other direction, the serializer function is: /// toJSON(const T&) -> json::Value /// If this exists, then it also allows constructing Value from T, and can /// be used to serialize vector<T>, map<string, T>, and std::optional<T>. /// /// === Serialization === /// /// Values can be serialized to JSON: /// 1) raw_ostream << Value // Basic formatting. /// 2) raw_ostream << formatv("{0}", Value) // Basic formatting. /// 3) raw_ostream << formatv("{0:2}", Value) // Pretty-print with indent 2. /// /// And parsed: /// Expected<Value> E = json::parse("[1, 2, null]"); /// assert(E && E->kind() == Value::Array); class Value { public: enum Kind { Null, Boolean, /// Number values can store both int64s and doubles at full precision, /// depending on what they were constructed/parsed from. Number, String, Array, Object, };
// It would be nice to have Value() be null. But that would make {} null too. Value(const Value &M) { copyFrom(M); } Value(Value &&M) { moveFrom(std::move(M)); } Value(std::initializer_list<Value> Elements); Value(json::Array &&Elements) : Type(T_Array) { create<json::Array>(std::move(Elements)); } template <typename Elt> Value(const std::vector<Elt> &C) : Value(json::Array(C)) {} Value(json::Object &&Properties) : Type(T_Object) { create<json::Object>(std::move(Properties)); } template <typename Elt> Value(const std::map<std::string, Elt> &C) : Value(json::Object(C)) {} // Strings: types with value semantics. Must be valid UTF-8. Value(std::string V) : Type(T_String) { if (LLVM_UNLIKELY(!isUTF8(V))) { assert(false && "Invalid UTF-8 in value used as JSON"); V = fixUTF8(std::move(V)); } create<std::string>(std::move(V)); } Value(const llvm::SmallVectorImpl<char> &V) : Value(std::string(V.begin(), V.end())) {} Value(const llvm::formatv_object_base &V) : Value(V.str()) {} // Strings: types with reference semantics. Must be valid UTF-8. Value(StringRef V) : Type(T_StringRef) { create<llvm::StringRef>(V); if (LLVM_UNLIKELY(!isUTF8(V))) { assert(false && "Invalid UTF-8 in value used as JSON"); *this = Value(fixUTF8(V)); } } Value(const char *V) : Value(StringRef(V)) {} Value(std::nullptr_t) : Type(T_Null) {} // Boolean (disallow implicit conversions). // (The last template parameter is a dummy to keep templates distinct.) template <typename T, typename = std::enable_if_t<std::is_same_v<T, bool>>, bool = false> Value(T B) : Type(T_Boolean) { create<bool>(B); }
// Unsigned 64-bit integers. template <typename T, typename = std::enable_if_t<is_uint_64_bit_v<T>>> Value(T V) : Type(T_UINT64) { create<uint64_t>(uint64_t{V}); }
// Integers (except boolean and uint64_t). // Must be non-narrowing convertible to int64_t. template <typename T, typename = std::enable_if_t<std::is_integral_v<T>>, typename = std::enable_if_t<!std::is_same_v<T, bool>>, typename = std::enable_if_t<!is_uint_64_bit_v<T>>> Value(T I) : Type(T_Integer) { create<int64_t>(int64_t{I}); } // Floating point. Must be non-narrowing convertible to double. template <typename T, typename = std::enable_if_t<std::is_floating_point_v<T>>, double * = nullptr> Value(T D) : Type(T_Double) { create<double>(double{D}); } // Serializable types: with a toJSON(const T&)->Value function, found by ADL. template <typename T, typename = std::enable_if_t< std::is_same_v<Value, decltype(toJSON(*(const T *)nullptr))>>, Value * = nullptr> Value(const T &V) : Value(toJSON(V)) {}
Value &operator=(const Value &M) { destroy(); copyFrom(M); return *this; } Value &operator=(Value &&M) { destroy(); moveFrom(std::move(M)); return *this; } ~Value() { destroy(); }
Kind kind() const { switch (Type) { case T_Null: return Null; case T_Boolean: return Boolean; case T_Double: case T_Integer: case T_UINT64: return Number; case T_String: case T_StringRef: return String; case T_Object: return Object; case T_Array: return Array; } llvm_unreachable("Unknown kind"); }
// Typed accessors return std::nullopt/nullptr if the Value is not of this // type. std::optional<std::nullptr_t> getAsNull() const { if (LLVM_LIKELY(Type == T_Null)) return nullptr; return std::nullopt; } std::optional<bool> getAsBoolean() const { if (LLVM_LIKELY(Type == T_Boolean)) return as<bool>(); return std::nullopt; } std::optional<double> getAsNumber() const { if (LLVM_LIKELY(Type == T_Double)) return as<double>(); if (LLVM_LIKELY(Type == T_Integer)) return as<int64_t>(); if (LLVM_LIKELY(Type == T_UINT64)) return as<uint64_t>(); return std::nullopt; } // Succeeds if the Value is a Number, and exactly representable as int64_t. std::optional<int64_t> getAsInteger() const { if (LLVM_LIKELY(Type == T_Integer)) return as<int64_t>(); if (LLVM_LIKELY(Type == T_UINT64)) { uint64_t U = as<uint64_t>(); if (LLVM_LIKELY(U <= uint64_t(std::numeric_limits<int64_t>::max()))) { return U; } } if (LLVM_LIKELY(Type == T_Double)) { double D = as<double>(); if (LLVM_LIKELY(std::modf(D, &D) == 0.0 && D >= double(std::numeric_limits<int64_t>::min()) && D <= double(std::numeric_limits<int64_t>::max()))) return D; } return std::nullopt; } std::optional<uint64_t> getAsUINT64() const { if (Type == T_UINT64) return as<uint64_t>(); else if (Type == T_Integer) { int64_t N = as<int64_t>(); if (N >= 0) return as<uint64_t>(); } return std::nullopt; } std::optional<llvm::StringRef> getAsString() const { if (Type == T_String) return llvm::StringRef(as<std::string>()); if (LLVM_LIKELY(Type == T_StringRef)) return as<llvm::StringRef>(); return std::nullopt; } const json::Object *getAsObject() const { return LLVM_LIKELY(Type == T_Object) ? &as<json::Object>() : nullptr; } json::Object *getAsObject() { return LLVM_LIKELY(Type == T_Object) ? &as<json::Object>() : nullptr; } const json::Array *getAsArray() const { return LLVM_LIKELY(Type == T_Array) ? &as<json::Array>() : nullptr; } json::Array *getAsArray() { return LLVM_LIKELY(Type == T_Array) ? &as<json::Array>() : nullptr; }
private: void destroy(); void copyFrom(const Value &M); // We allow moving from *const* Values, by marking all members as mutable! // This hack is needed to support initializer-list syntax efficiently. // (std::initializer_list<T> is a container of const T). void moveFrom(const Value &&M); friend class Array; friend class Object;
template <typename T, typename... U> void create(U &&... V) { #if LLVM_ADDRESS_SANITIZER_BUILD // Unpoisoning to prevent overwriting poisoned object (e.g., annotated short // string). Objects that have had their memory poisoned may cause an ASan // error if their memory is reused without calling their destructor. // Unpoisoning the memory prevents this error from occurring. // FIXME: This is a temporary solution to prevent buildbots from failing. // The more appropriate approach would be to call the object's destructor // to unpoison memory. This would prevent any potential memory leaks (long // strings). Read for details: // https://github.com/llvm/llvm-project/pull/79065#discussion_r1462621761 __asan_unpoison_memory_region(&Union, sizeof(T)); #endif new (reinterpret_cast<T *>(&Union)) T(std::forward<U>(V)...); } template <typename T> T &as() const { // Using this two-step static_cast via void * instead of reinterpret_cast // silences a -Wstrict-aliasing false positive from GCC6 and earlier. void *Storage = static_cast<void *>(&Union); return *static_cast<T *>(Storage); }
friend class OStream;
enum ValueType : char16_t { T_Null, T_Boolean, T_Double, T_Integer, T_UINT64, T_StringRef, T_String, T_Object, T_Array, }; // All members mutable, see moveFrom(). mutable ValueType Type; mutable llvm::AlignedCharArrayUnion<bool, double, int64_t, uint64_t, llvm::StringRef, std::string, json::Array, json::Object> Union; friend bool operator==(const Value &, const Value &); };
bool operator==(const Value &, const Value &); inline bool operator!=(const Value &L, const Value &R) { return !(L == R); }
// Array Methods inline Value &Array::operator[](size_t I) { return V[I]; } inline const Value &Array::operator[](size_t I) const { return V[I]; } inline Value &Array::front() { return V.front(); } inline const Value &Array::front() const { return V.front(); } inline Value &Array::back() { return V.back(); } inline const Value &Array::back() const { return V.back(); } inline Value *Array::data() { return V.data(); } inline const Value *Array::data() const { return V.data(); }
inline typename Array::iterator Array::begin() { return V.begin(); } inline typename Array::const_iterator Array::begin() const { return V.begin(); } inline typename Array::iterator Array::end() { return V.end(); } inline typename Array::const_iterator Array::end() const { return V.end(); }
inline bool Array::empty() const { return V.empty(); } inline size_t Array::size() const { return V.size(); } inline void Array::reserve(size_t S) { V.reserve(S); }
inline void Array::clear() { V.clear(); } inline void Array::push_back(const Value &E) { V.push_back(E); } inline void Array::push_back(Value &&E) { V.push_back(std::move(E)); } template <typename... Args> inline void Array::emplace_back(Args &&...A) { V.emplace_back(std::forward<Args>(A)...); } inline void Array::pop_back() { V.pop_back(); } inline typename Array::iterator Array::insert(const_iterator P, const Value &E) { return V.insert(P, E); } inline typename Array::iterator Array::insert(const_iterator P, Value &&E) { return V.insert(P, std::move(E)); } template <typename It> inline typename Array::iterator Array::insert(const_iterator P, It A, It Z) { return V.insert(P, A, Z); } template <typename... Args> inline typename Array::iterator Array::emplace(const_iterator P, Args &&...A) { return V.emplace(P, std::forward<Args>(A)...); } inline bool operator==(const Array &L, const Array &R) { return L.V == R.V; }
/// ObjectKey is a used to capture keys in Object. Like Value but: /// - only strings are allowed /// - it's optimized for the string literal case (Owned == nullptr) /// Like Value, strings must be UTF-8. See isUTF8 documentation for details. class ObjectKey { public: ObjectKey(const char *S) : ObjectKey(StringRef(S)) {} ObjectKey(std::string S) : Owned(new std::string(std::move(S))) { if (LLVM_UNLIKELY(!isUTF8(*Owned))) { assert(false && "Invalid UTF-8 in value used as JSON"); *Owned = fixUTF8(std::move(*Owned)); } Data = *Owned; } ObjectKey(llvm::StringRef S) : Data(S) { if (LLVM_UNLIKELY(!isUTF8(Data))) { assert(false && "Invalid UTF-8 in value used as JSON"); *this = ObjectKey(fixUTF8(S)); } } ObjectKey(const llvm::SmallVectorImpl<char> &V) : ObjectKey(std::string(V.begin(), V.end())) {} ObjectKey(const llvm::formatv_object_base &V) : ObjectKey(V.str()) {}
ObjectKey(const ObjectKey &C) { *this = C; } ObjectKey(ObjectKey &&C) : ObjectKey(static_cast<const ObjectKey &&>(C)) {} ObjectKey &operator=(const ObjectKey &C) { if (C.Owned) { Owned.reset(new std::string(*C.Owned)); Data = *Owned; } else { Data = C.Data; } return *this; } ObjectKey &operator=(ObjectKey &&) = default;
operator llvm::StringRef() const { return Data; } std::string str() const { return Data.str(); }
private: // FIXME: this is unneccesarily large (3 pointers). Pointer + length + owned // could be 2 pointers at most. std::unique_ptr<std::string> Owned; llvm::StringRef Data; };
inline bool operator==(const ObjectKey &L, const ObjectKey &R) { return llvm::StringRef(L) == llvm::StringRef(R); } inline bool operator!=(const ObjectKey &L, const ObjectKey &R) { return !(L == R); } inline bool operator<(const ObjectKey &L, const ObjectKey &R) { return StringRef(L) < StringRef(R); }
struct Object::KV { ObjectKey K; Value V; };
inline Object::Object(std::initializer_list<KV> Properties) { for (const auto &P : Properties) { auto R = try_emplace(P.K, nullptr); if (R.second) R.first->getSecond().moveFrom(std::move(P.V)); } } inline std::pair<Object::iterator, bool> Object::insert(KV E) { return try_emplace(std::move(E.K), std::move(E.V)); } inline bool Object::erase(StringRef K) { return M.erase(ObjectKey(K)); }
std::vector<const Object::value_type *> sortedElements(const Object &O);
/// A "cursor" marking a position within a Value. /// The Value is a tree, and this is the path from the root to the current node. /// This is used to associate errors with particular subobjects. class Path { public: class Root;
/// Records that the value at the current path is invalid. /// Message is e.g. "expected number" and becomes part of the final error. /// This overwrites any previously written error message in the root. void report(llvm::StringLiteral Message);
/// The root may be treated as a Path. Path(Root &R) : Parent(nullptr), Seg(&R) {} /// Derives a path for an array element: this[Index] Path index(unsigned Index) const { return Path(this, Segment(Index)); } /// Derives a path for an object field: this.Field Path field(StringRef Field) const { return Path(this, Segment(Field)); }
private: /// One element in a JSON path: an object field (.foo) or array index [27]. /// Exception: the root Path encodes a pointer to the Path::Root. class Segment { uintptr_t Pointer; unsigned Offset;
public: Segment() = default; Segment(Root *R) : Pointer(reinterpret_cast<uintptr_t>(R)) {} Segment(llvm::StringRef Field) : Pointer(reinterpret_cast<uintptr_t>(Field.data())), Offset(static_cast<unsigned>(Field.size())) {} Segment(unsigned Index) : Pointer(0), Offset(Index) {}
bool isField() const { return Pointer != 0; } StringRef field() const { return StringRef(reinterpret_cast<const char *>(Pointer), Offset); } unsigned index() const { return Offset; } Root *root() const { return reinterpret_cast<Root *>(Pointer); } };
const Path *Parent; Segment Seg;
Path(const Path *Parent, Segment S) : Parent(Parent), Seg(S) {} };
/// The root is the trivial Path to the root value. /// It also stores the latest reported error and the path where it occurred. class Path::Root { llvm::StringRef Name; llvm::StringLiteral ErrorMessage; std::vector<Path::Segment> ErrorPath; // Only valid in error state. Reversed.
friend void Path::report(llvm::StringLiteral Message);
public: Root(llvm::StringRef Name = "") : Name(Name), ErrorMessage("") {} // No copy/move allowed as there are incoming pointers. Root(Root &&) = delete; Root &operator=(Root &&) = delete; Root(const Root &) = delete; Root &operator=(const Root &) = delete;
/// Returns the last error reported, or else a generic error. Error getError() const; /// Print the root value with the error shown inline as a comment. /// Unrelated parts of the value are elided for brevity, e.g. /// { /// "id": 42, /// "name": /* expected string */ null, /// "properties": { ... } /// } void printErrorContext(const Value &, llvm::raw_ostream &) const; };
// Standard deserializers are provided for primitive types. // See comments on Value. inline bool fromJSON(const Value &E, std::string &Out, Path P) { if (auto S = E.getAsString()) { Out = std::string(*S); return true; } P.report("expected string"); return false; } inline bool fromJSON(const Value &E, int &Out, Path P) { if (auto S = E.getAsInteger()) { Out = *S; return true; } P.report("expected integer"); return false; } inline bool fromJSON(const Value &E, int64_t &Out, Path P) { if (auto S = E.getAsInteger()) { Out = *S; return true; } P.report("expected integer"); return false; } inline bool fromJSON(const Value &E, double &Out, Path P) { if (auto S = E.getAsNumber()) { Out = *S; return true; } P.report("expected number"); return false; } inline bool fromJSON(const Value &E, bool &Out, Path P) { if (auto S = E.getAsBoolean()) { Out = *S; return true; } P.report("expected boolean"); return false; } inline bool fromJSON(const Value &E, uint64_t &Out, Path P) { if (auto S = E.getAsUINT64()) { Out = *S; return true; } P.report("expected uint64_t"); return false; } inline bool fromJSON(const Value &E, std::nullptr_t &Out, Path P) { if (auto S = E.getAsNull()) { Out = *S; return true; } P.report("expected null"); return false; } template <typename T> bool fromJSON(const Value &E, std::optional<T> &Out, Path P) { if (E.getAsNull()) { Out = std::nullopt; return true; } T Result = {}; if (!fromJSON(E, Result, P)) return false; Out = std::move(Result); return true; } template <typename T> bool fromJSON(const Value &E, std::vector<T> &Out, Path P) { if (auto *A = E.getAsArray()) { Out.clear(); Out.resize(A->size()); for (size_t I = 0; I < A->size(); ++I) if (!fromJSON((*A)[I], Out[I], P.index(I))) return false; return true; } P.report("expected array"); return false; } template <typename T> bool fromJSON(const Value &E, std::map<std::string, T> &Out, Path P) { if (auto *O = E.getAsObject()) { Out.clear(); for (const auto &KV : *O) if (!fromJSON(KV.second, Out[std::string(llvm::StringRef(KV.first))], P.field(KV.first))) return false; return true; } P.report("expected object"); return false; }
// Allow serialization of std::optional<T> for supported T. template <typename T> Value toJSON(const std::optional<T> &Opt) { return Opt ? Value(*Opt) : Value(nullptr); }
/// Helper for mapping JSON objects onto protocol structs. /// /// Example: /// \code /// bool fromJSON(const Value &E, MyStruct &R, Path P) { /// ObjectMapper O(E, P); /// // When returning false, error details were already reported. /// return O && O.map("mandatory_field", R.MandatoryField) && /// O.mapOptional("optional_field", R.OptionalField); /// } /// \endcode class ObjectMapper { public: /// If O is not an object, this mapper is invalid and an error is reported. ObjectMapper(const Value &E, Path P) : O(E.getAsObject()), P(P) { if (!O) P.report("expected object"); }
/// True if the expression is an object. /// Must be checked before calling map(). operator bool() const { return O; }
/// Maps a property to a field. /// If the property is missing or invalid, reports an error. template <typename T> bool map(StringLiteral Prop, T &Out) { assert(*this && "Must check this is an object before calling map()"); if (const Value *E = O->get(Prop)) return fromJSON(*E, Out, P.field(Prop)); P.field(Prop).report("missing value"); return false; }
/// Maps a property to a field, if it exists. /// If the property exists and is invalid, reports an error. /// (Optional requires special handling, because missing keys are OK). template <typename T> bool map(StringLiteral Prop, std::optional<T> &Out) { assert(*this && "Must check this is an object before calling map()"); if (const Value *E = O->get(Prop)) return fromJSON(*E, Out, P.field(Prop)); Out = std::nullopt; return true; }
/// Maps a property to a field, if it exists. /// If the property exists and is invalid, reports an error. /// If the property does not exist, Out is unchanged. template <typename T> bool mapOptional(StringLiteral Prop, T &Out) { assert(*this && "Must check this is an object before calling map()"); if (const Value *E = O->get(Prop)) return fromJSON(*E, Out, P.field(Prop)); return true; }
private: const Object *O; Path P; };
/// Parses the provided JSON source, or returns a ParseError. /// The returned Value is self-contained and owns its strings (they do not refer /// to the original source). llvm::Expected<Value> parse(llvm::StringRef JSON);
class ParseError : public llvm::ErrorInfo<ParseError> { const char *Msg; unsigned Line, Column, Offset;
public: static char ID; ParseError(const char *Msg, unsigned Line, unsigned Column, unsigned Offset) : Msg(Msg), Line(Line), Column(Column), Offset(Offset) {} void log(llvm::raw_ostream &OS) const override { OS << llvm::formatv("[{0}:{1}, byte={2}]: {3}", Line, Column, Offset, Msg); } std::error_code convertToErrorCode() const override { return llvm::inconvertibleErrorCode(); } };
/// Version of parse() that converts the parsed value to the type T. /// RootName describes the root object and is used in error messages. template <typename T> Expected<T> parse(const llvm::StringRef &JSON, const char *RootName = "") { auto V = parse(JSON); if (!V) return V.takeError(); Path::Root R(RootName); T Result; if (fromJSON(*V, Result, R)) return std::move(Result); return R.getError(); }
/// json::OStream allows writing well-formed JSON without materializing /// all structures as json::Value ahead of time. /// It's faster, lower-level, and less safe than OS << json::Value. /// It also allows emitting more constructs, such as comments. /// /// Only one "top-level" object can be written to a stream. /// Simplest usage involves passing lambdas (Blocks) to fill in containers: /// /// json::OStream J(OS); /// J.array([&]{ /// for (const Event &E : Events) /// J.object([&] { /// J.attribute("timestamp", int64_t(E.Time)); /// J.attributeArray("participants", [&] { /// for (const Participant &P : E.Participants) /// J.value(P.toString()); /// }); /// }); /// }); /// /// This would produce JSON like: /// /// [ /// { /// "timestamp": 19287398741, /// "participants": [ /// "King Kong", /// "Miley Cyrus", /// "Cleopatra" /// ] /// }, /// ... /// ] /// /// The lower level begin/end methods (arrayBegin()) are more flexible but /// care must be taken to pair them correctly: /// /// json::OStream J(OS); // J.arrayBegin(); /// for (const Event &E : Events) { /// J.objectBegin(); /// J.attribute("timestamp", int64_t(E.Time)); /// J.attributeBegin("participants"); /// for (const Participant &P : E.Participants) /// J.value(P.toString()); /// J.attributeEnd(); /// J.objectEnd(); /// } /// J.arrayEnd(); /// /// If the call sequence isn't valid JSON, asserts will fire in debug mode. /// This can be mismatched begin()/end() pairs, trying to emit attributes inside /// an array, and so on. /// With asserts disabled, this is undefined behavior. class OStream { public: using Block = llvm::function_ref<void()>; // If IndentSize is nonzero, output is pretty-printed. explicit OStream(llvm::raw_ostream &OS, unsigned IndentSize = 0) : OS(OS), IndentSize(IndentSize) { Stack.emplace_back(); } ~OStream() { assert(Stack.size() == 1 && "Unmatched begin()/end()"); assert(Stack.back().Ctx == Singleton); assert(Stack.back().HasValue && "Did not write top-level value"); }
/// Flushes the underlying ostream. OStream does not buffer internally. void flush() { OS.flush(); }
// High level functions to output a value. // Valid at top-level (exactly once), in an attribute value (exactly once), // or in an array (any number of times).
/// Emit a self-contained value (number, string, vector<string> etc). void value(const Value &V); /// Emit an array whose elements are emitted in the provided Block. void array(Block Contents) { arrayBegin(); Contents(); arrayEnd(); } /// Emit an object whose elements are emitted in the provided Block. void object(Block Contents) { objectBegin(); Contents(); objectEnd(); } /// Emit an externally-serialized value. /// The caller must write exactly one valid JSON value to the provided stream. /// No validation or formatting of this value occurs. void rawValue(llvm::function_ref<void(raw_ostream &)> Contents) { rawValueBegin(); Contents(OS); rawValueEnd(); } void rawValue(llvm::StringRef Contents) { rawValue([&](raw_ostream &OS) { OS << Contents; }); } /// Emit a JavaScript comment associated with the next printed value. /// The string must be valid until the next attribute or value is emitted. /// Comments are not part of standard JSON, and many parsers reject them! void comment(llvm::StringRef);
// High level functions to output object attributes. // Valid only within an object (any number of times).
/// Emit an attribute whose value is self-contained (number, vector<int> etc). void attribute(llvm::StringRef Key, const Value& Contents) { attributeImpl(Key, [&] { value(Contents); }); } /// Emit an attribute whose value is an array with elements from the Block. void attributeArray(llvm::StringRef Key, Block Contents) { attributeImpl(Key, [&] { array(Contents); }); } /// Emit an attribute whose value is an object with attributes from the Block. void attributeObject(llvm::StringRef Key, Block Contents) { attributeImpl(Key, [&] { object(Contents); }); }
// Low-level begin/end functions to output arrays, objects, and attributes. // Must be correctly paired. Allowed contexts are as above.
void arrayBegin(); void arrayEnd(); void objectBegin(); void objectEnd(); void attributeBegin(llvm::StringRef Key); void attributeEnd(); raw_ostream &rawValueBegin(); void rawValueEnd();
private: void attributeImpl(llvm::StringRef Key, Block Contents) { attributeBegin(Key); Contents(); attributeEnd(); }
void valueBegin(); void flushComment(); void newline();
enum Context { Singleton, // Top level, or object attribute. Array, Object, RawValue, // External code writing a value to OS directly. }; struct State { Context Ctx = Singleton; bool HasValue = false; }; llvm::SmallVector<State, 16> Stack; // Never empty. llvm::StringRef PendingComment; llvm::raw_ostream &OS; unsigned IndentSize; unsigned Indent = 0; };
/// Serializes this Value to JSON, writing it to the provided stream. /// The formatting is compact (no extra whitespace) and deterministic. /// For pretty-printing, use the formatv() format_provider below. inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, const Value &V) { OStream(OS).value(V); return OS; } } // namespace json
/// Allow printing json::Value with formatv(). /// The default style is basic/compact formatting, like operator<<. /// A format string like formatv("{0:2}", Value) pretty-prints with indent 2. template <> struct format_provider<llvm::json::Value> { static void format(const llvm::json::Value &, raw_ostream &, StringRef); }; } // namespace llvm
#endif
|