Viewing file: GenericLoopInfo.h (26.54 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- GenericLoopInfo - Generic Loop Info for graphs -----------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the LoopInfoBase class that is used to identify natural // loops and determine the loop depth of various nodes in a generic graph of // blocks. A natural loop has exactly one entry-point, which is called the // header. Note that natural loops may actually be several loops that share the // same header node. // // This analysis calculates the nesting structure of loops in a function. For // each natural loop identified, this analysis identifies natural loops // contained entirely within the loop and the basic blocks that make up the // loop. // // It can calculate on the fly various bits of information, for example: // // * whether there is a preheader for the loop // * the number of back edges to the header // * whether or not a particular block branches out of the loop // * the successor blocks of the loop // * the loop depth // * etc... // // Note that this analysis specifically identifies *Loops* not cycles or SCCs // in the graph. There can be strongly connected components in the graph which // this analysis will not recognize and that will not be represented by a Loop // instance. In particular, a Loop might be inside such a non-loop SCC, or a // non-loop SCC might contain a sub-SCC which is a Loop. // // For an overview of terminology used in this API (and thus all of our loop // analyses or transforms), see docs/LoopTerminology.rst. // //===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_GENERICLOOPINFO_H #define LLVM_SUPPORT_GENERICLOOPINFO_H
#include "llvm/ADT/DenseSet.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetOperations.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/GenericDomTree.h"
namespace llvm {
template <class N, class M> class LoopInfoBase; template <class N, class M> class LoopBase;
//===----------------------------------------------------------------------===// /// Instances of this class are used to represent loops that are detected in the /// flow graph. /// template <class BlockT, class LoopT> class LoopBase { LoopT *ParentLoop; // Loops contained entirely within this one. std::vector<LoopT *> SubLoops;
// The list of blocks in this loop. First entry is the header node. std::vector<BlockT *> Blocks;
SmallPtrSet<const BlockT *, 8> DenseBlockSet;
#if LLVM_ENABLE_ABI_BREAKING_CHECKS /// Indicator that this loop is no longer a valid loop. bool IsInvalid = false; #endif
LoopBase(const LoopBase<BlockT, LoopT> &) = delete; const LoopBase<BlockT, LoopT> & operator=(const LoopBase<BlockT, LoopT> &) = delete;
public: /// Return the nesting level of this loop. An outer-most loop has depth 1, /// for consistency with loop depth values used for basic blocks, where depth /// 0 is used for blocks not inside any loops. unsigned getLoopDepth() const { assert(!isInvalid() && "Loop not in a valid state!"); unsigned D = 1; for (const LoopT *CurLoop = ParentLoop; CurLoop; CurLoop = CurLoop->ParentLoop) ++D; return D; } BlockT *getHeader() const { return getBlocks().front(); } /// Return the parent loop if it exists or nullptr for top /// level loops.
/// A loop is either top-level in a function (that is, it is not /// contained in any other loop) or it is entirely enclosed in /// some other loop. /// If a loop is top-level, it has no parent, otherwise its /// parent is the innermost loop in which it is enclosed. LoopT *getParentLoop() const { return ParentLoop; }
/// Get the outermost loop in which this loop is contained. /// This may be the loop itself, if it already is the outermost loop. const LoopT *getOutermostLoop() const { const LoopT *L = static_cast<const LoopT *>(this); while (L->ParentLoop) L = L->ParentLoop; return L; }
LoopT *getOutermostLoop() { LoopT *L = static_cast<LoopT *>(this); while (L->ParentLoop) L = L->ParentLoop; return L; }
/// This is a raw interface for bypassing addChildLoop. void setParentLoop(LoopT *L) { assert(!isInvalid() && "Loop not in a valid state!"); ParentLoop = L; }
/// Return true if the specified loop is contained within in this loop. bool contains(const LoopT *L) const { assert(!isInvalid() && "Loop not in a valid state!"); if (L == this) return true; if (!L) return false; return contains(L->getParentLoop()); }
/// Return true if the specified basic block is in this loop. bool contains(const BlockT *BB) const { assert(!isInvalid() && "Loop not in a valid state!"); return DenseBlockSet.count(BB); }
/// Return true if the specified instruction is in this loop. template <class InstT> bool contains(const InstT *Inst) const { return contains(Inst->getParent()); }
/// Return the loops contained entirely within this loop. const std::vector<LoopT *> &getSubLoops() const { assert(!isInvalid() && "Loop not in a valid state!"); return SubLoops; } std::vector<LoopT *> &getSubLoopsVector() { assert(!isInvalid() && "Loop not in a valid state!"); return SubLoops; } typedef typename std::vector<LoopT *>::const_iterator iterator; typedef typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator; iterator begin() const { return getSubLoops().begin(); } iterator end() const { return getSubLoops().end(); } reverse_iterator rbegin() const { return getSubLoops().rbegin(); } reverse_iterator rend() const { return getSubLoops().rend(); }
// LoopInfo does not detect irreducible control flow, just natural // loops. That is, it is possible that there is cyclic control // flow within the "innermost loop" or around the "outermost // loop".
/// Return true if the loop does not contain any (natural) loops. bool isInnermost() const { return getSubLoops().empty(); } /// Return true if the loop does not have a parent (natural) loop // (i.e. it is outermost, which is the same as top-level). bool isOutermost() const { return getParentLoop() == nullptr; }
/// Get a list of the basic blocks which make up this loop. ArrayRef<BlockT *> getBlocks() const { assert(!isInvalid() && "Loop not in a valid state!"); return Blocks; } typedef typename ArrayRef<BlockT *>::const_iterator block_iterator; block_iterator block_begin() const { return getBlocks().begin(); } block_iterator block_end() const { return getBlocks().end(); } inline iterator_range<block_iterator> blocks() const { assert(!isInvalid() && "Loop not in a valid state!"); return make_range(block_begin(), block_end()); }
/// Get the number of blocks in this loop in constant time. /// Invalidate the loop, indicating that it is no longer a loop. unsigned getNumBlocks() const { assert(!isInvalid() && "Loop not in a valid state!"); return Blocks.size(); }
/// Return a direct, mutable handle to the blocks vector so that we can /// mutate it efficiently with techniques like `std::remove`. std::vector<BlockT *> &getBlocksVector() { assert(!isInvalid() && "Loop not in a valid state!"); return Blocks; } /// Return a direct, mutable handle to the blocks set so that we can /// mutate it efficiently. SmallPtrSetImpl<const BlockT *> &getBlocksSet() { assert(!isInvalid() && "Loop not in a valid state!"); return DenseBlockSet; }
/// Return a direct, immutable handle to the blocks set. const SmallPtrSetImpl<const BlockT *> &getBlocksSet() const { assert(!isInvalid() && "Loop not in a valid state!"); return DenseBlockSet; }
/// Return true if this loop is no longer valid. The only valid use of this /// helper is "assert(L.isInvalid())" or equivalent, since IsInvalid is set to /// true by the destructor. In other words, if this accessor returns true, /// the caller has already triggered UB by calling this accessor; and so it /// can only be called in a context where a return value of true indicates a /// programmer error. bool isInvalid() const { #if LLVM_ENABLE_ABI_BREAKING_CHECKS return IsInvalid; #else return false; #endif }
/// True if terminator in the block can branch to another block that is /// outside of the current loop. \p BB must be inside the loop. bool isLoopExiting(const BlockT *BB) const { assert(!isInvalid() && "Loop not in a valid state!"); assert(contains(BB) && "Exiting block must be part of the loop"); for (const auto *Succ : children<const BlockT *>(BB)) { if (!contains(Succ)) return true; } return false; }
/// Returns true if \p BB is a loop-latch. /// A latch block is a block that contains a branch back to the header. /// This function is useful when there are multiple latches in a loop /// because \fn getLoopLatch will return nullptr in that case. bool isLoopLatch(const BlockT *BB) const { assert(!isInvalid() && "Loop not in a valid state!"); assert(contains(BB) && "block does not belong to the loop"); return llvm::is_contained(inverse_children<BlockT *>(getHeader()), BB); }
/// Calculate the number of back edges to the loop header. unsigned getNumBackEdges() const { assert(!isInvalid() && "Loop not in a valid state!"); return llvm::count_if(inverse_children<BlockT *>(getHeader()), [&](BlockT *Pred) { return contains(Pred); }); }
//===--------------------------------------------------------------------===// // APIs for simple analysis of the loop. // // Note that all of these methods can fail on general loops (ie, there may not // be a preheader, etc). For best success, the loop simplification and // induction variable canonicalization pass should be used to normalize loops // for easy analysis. These methods assume canonical loops.
/// Return all blocks inside the loop that have successors outside of the /// loop. These are the blocks _inside of the current loop_ which branch out. /// The returned list is always unique. void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
/// If getExitingBlocks would return exactly one block, return that block. /// Otherwise return null. BlockT *getExitingBlock() const;
/// Return all of the successor blocks of this loop. These are the blocks /// _outside of the current loop_ which are branched to. void getExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
/// If getExitBlocks would return exactly one block, return that block. /// Otherwise return null. BlockT *getExitBlock() const;
/// Return true if no exit block for the loop has a predecessor that is /// outside the loop. bool hasDedicatedExits() const;
/// Return all unique successor blocks of this loop. /// These are the blocks _outside of the current loop_ which are branched to. void getUniqueExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
/// Return all unique successor blocks of this loop except successors from /// Latch block are not considered. If the exit comes from Latch has also /// non Latch predecessor in a loop it will be added to ExitBlocks. /// These are the blocks _outside of the current loop_ which are branched to. void getUniqueNonLatchExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
/// If getUniqueExitBlocks would return exactly one block, return that block. /// Otherwise return null. BlockT *getUniqueExitBlock() const;
/// Return true if this loop does not have any exit blocks. bool hasNoExitBlocks() const;
/// Edge type. typedef std::pair<BlockT *, BlockT *> Edge;
/// Return all pairs of (_inside_block_,_outside_block_). void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
/// If there is a preheader for this loop, return it. A loop has a preheader /// if there is only one edge to the header of the loop from outside of the /// loop. If this is the case, the block branching to the header of the loop /// is the preheader node. /// /// This method returns null if there is no preheader for the loop. BlockT *getLoopPreheader() const;
/// If the given loop's header has exactly one unique predecessor outside the /// loop, return it. Otherwise return null. /// This is less strict that the loop "preheader" concept, which requires /// the predecessor to have exactly one successor. BlockT *getLoopPredecessor() const;
/// If there is a single latch block for this loop, return it. /// A latch block is a block that contains a branch back to the header. BlockT *getLoopLatch() const;
/// Return all loop latch blocks of this loop. A latch block is a block that /// contains a branch back to the header. void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const { assert(!isInvalid() && "Loop not in a valid state!"); BlockT *H = getHeader(); for (const auto Pred : inverse_children<BlockT *>(H)) if (contains(Pred)) LoopLatches.push_back(Pred); }
/// Return all inner loops in the loop nest rooted by the loop in preorder, /// with siblings in forward program order. template <class Type> static void getInnerLoopsInPreorder(const LoopT &L, SmallVectorImpl<Type> &PreOrderLoops) { SmallVector<LoopT *, 4> PreOrderWorklist; PreOrderWorklist.append(L.rbegin(), L.rend());
while (!PreOrderWorklist.empty()) { LoopT *L = PreOrderWorklist.pop_back_val(); // Sub-loops are stored in forward program order, but will process the // worklist backwards so append them in reverse order. PreOrderWorklist.append(L->rbegin(), L->rend()); PreOrderLoops.push_back(L); } }
/// Return all loops in the loop nest rooted by the loop in preorder, with /// siblings in forward program order. SmallVector<const LoopT *, 4> getLoopsInPreorder() const { SmallVector<const LoopT *, 4> PreOrderLoops; const LoopT *CurLoop = static_cast<const LoopT *>(this); PreOrderLoops.push_back(CurLoop); getInnerLoopsInPreorder(*CurLoop, PreOrderLoops); return PreOrderLoops; } SmallVector<LoopT *, 4> getLoopsInPreorder() { SmallVector<LoopT *, 4> PreOrderLoops; LoopT *CurLoop = static_cast<LoopT *>(this); PreOrderLoops.push_back(CurLoop); getInnerLoopsInPreorder(*CurLoop, PreOrderLoops); return PreOrderLoops; }
//===--------------------------------------------------------------------===// // APIs for updating loop information after changing the CFG //
/// This method is used by other analyses to update loop information. /// NewBB is set to be a new member of the current loop. /// Because of this, it is added as a member of all parent loops, and is added /// to the specified LoopInfo object as being in the current basic block. It /// is not valid to replace the loop header with this method. void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
/// This is used when splitting loops up. It replaces the OldChild entry in /// our children list with NewChild, and updates the parent pointer of /// OldChild to be null and the NewChild to be this loop. /// This updates the loop depth of the new child. void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
/// Add the specified loop to be a child of this loop. /// This updates the loop depth of the new child. void addChildLoop(LoopT *NewChild) { assert(!isInvalid() && "Loop not in a valid state!"); assert(!NewChild->ParentLoop && "NewChild already has a parent!"); NewChild->ParentLoop = static_cast<LoopT *>(this); SubLoops.push_back(NewChild); }
/// This removes the specified child from being a subloop of this loop. The /// loop is not deleted, as it will presumably be inserted into another loop. LoopT *removeChildLoop(iterator I) { assert(!isInvalid() && "Loop not in a valid state!"); assert(I != SubLoops.end() && "Cannot remove end iterator!"); LoopT *Child = *I; assert(Child->ParentLoop == this && "Child is not a child of this loop!"); SubLoops.erase(SubLoops.begin() + (I - begin())); Child->ParentLoop = nullptr; return Child; }
/// This removes the specified child from being a subloop of this loop. The /// loop is not deleted, as it will presumably be inserted into another loop. LoopT *removeChildLoop(LoopT *Child) { return removeChildLoop(llvm::find(*this, Child)); }
/// This adds a basic block directly to the basic block list. /// This should only be used by transformations that create new loops. Other /// transformations should use addBasicBlockToLoop. void addBlockEntry(BlockT *BB) { assert(!isInvalid() && "Loop not in a valid state!"); Blocks.push_back(BB); DenseBlockSet.insert(BB); }
/// interface to reverse Blocks[from, end of loop] in this loop void reverseBlock(unsigned from) { assert(!isInvalid() && "Loop not in a valid state!"); std::reverse(Blocks.begin() + from, Blocks.end()); }
/// interface to do reserve() for Blocks void reserveBlocks(unsigned size) { assert(!isInvalid() && "Loop not in a valid state!"); Blocks.reserve(size); }
/// This method is used to move BB (which must be part of this loop) to be the /// loop header of the loop (the block that dominates all others). void moveToHeader(BlockT *BB) { assert(!isInvalid() && "Loop not in a valid state!"); if (Blocks[0] == BB) return; for (unsigned i = 0;; ++i) { assert(i != Blocks.size() && "Loop does not contain BB!"); if (Blocks[i] == BB) { Blocks[i] = Blocks[0]; Blocks[0] = BB; return; } } }
/// This removes the specified basic block from the current loop, updating the /// Blocks as appropriate. This does not update the mapping in the LoopInfo /// class. void removeBlockFromLoop(BlockT *BB) { assert(!isInvalid() && "Loop not in a valid state!"); auto I = find(Blocks, BB); assert(I != Blocks.end() && "N is not in this list!"); Blocks.erase(I);
DenseBlockSet.erase(BB); }
/// Verify loop structure void verifyLoop() const;
/// Verify loop structure of this loop and all nested loops. void verifyLoopNest(DenseSet<const LoopT *> *Loops) const;
/// Returns true if the loop is annotated parallel. /// /// Derived classes can override this method using static template /// polymorphism. bool isAnnotatedParallel() const { return false; }
/// Print loop with all the BBs inside it. void print(raw_ostream &OS, bool Verbose = false, bool PrintNested = true, unsigned Depth = 0) const;
protected: friend class LoopInfoBase<BlockT, LoopT>;
/// This creates an empty loop. LoopBase() : ParentLoop(nullptr) {}
explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) { Blocks.push_back(BB); DenseBlockSet.insert(BB); }
// Since loop passes like SCEV are allowed to key analysis results off of // `Loop` pointers, we cannot re-use pointers within a loop pass manager. // This means loop passes should not be `delete` ing `Loop` objects directly // (and risk a later `Loop` allocation re-using the address of a previous one) // but should be using LoopInfo::markAsRemoved, which keeps around the `Loop` // pointer till the end of the lifetime of the `LoopInfo` object. // // To make it easier to follow this rule, we mark the destructor as // non-public. ~LoopBase() { for (auto *SubLoop : SubLoops) SubLoop->~LoopT();
#if LLVM_ENABLE_ABI_BREAKING_CHECKS IsInvalid = true; #endif SubLoops.clear(); Blocks.clear(); DenseBlockSet.clear(); ParentLoop = nullptr; } };
template <class BlockT, class LoopT> raw_ostream &operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) { Loop.print(OS); return OS; }
//===----------------------------------------------------------------------===// /// This class builds and contains all of the top-level loop /// structures in the specified function. ///
template <class BlockT, class LoopT> class LoopInfoBase { // BBMap - Mapping of basic blocks to the inner most loop they occur in DenseMap<const BlockT *, LoopT *> BBMap; std::vector<LoopT *> TopLevelLoops; BumpPtrAllocator LoopAllocator;
friend class LoopBase<BlockT, LoopT>; friend class LoopInfo;
void operator=(const LoopInfoBase &) = delete; LoopInfoBase(const LoopInfoBase &) = delete;
public: LoopInfoBase() = default; ~LoopInfoBase() { releaseMemory(); }
LoopInfoBase(LoopInfoBase &&Arg) : BBMap(std::move(Arg.BBMap)), TopLevelLoops(std::move(Arg.TopLevelLoops)), LoopAllocator(std::move(Arg.LoopAllocator)) { // We have to clear the arguments top level loops as we've taken ownership. Arg.TopLevelLoops.clear(); } LoopInfoBase &operator=(LoopInfoBase &&RHS) { BBMap = std::move(RHS.BBMap);
for (auto *L : TopLevelLoops) L->~LoopT();
TopLevelLoops = std::move(RHS.TopLevelLoops); LoopAllocator = std::move(RHS.LoopAllocator); RHS.TopLevelLoops.clear(); return *this; }
void releaseMemory() { BBMap.clear();
for (auto *L : TopLevelLoops) L->~LoopT(); TopLevelLoops.clear(); LoopAllocator.Reset(); }
template <typename... ArgsTy> LoopT *AllocateLoop(ArgsTy &&...Args) { LoopT *Storage = LoopAllocator.Allocate<LoopT>(); return new (Storage) LoopT(std::forward<ArgsTy>(Args)...); }
/// iterator/begin/end - The interface to the top-level loops in the current /// function. /// typedef typename std::vector<LoopT *>::const_iterator iterator; typedef typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator; iterator begin() const { return TopLevelLoops.begin(); } iterator end() const { return TopLevelLoops.end(); } reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); } reverse_iterator rend() const { return TopLevelLoops.rend(); } bool empty() const { return TopLevelLoops.empty(); }
/// Return all of the loops in the function in preorder across the loop /// nests, with siblings in forward program order. /// /// Note that because loops form a forest of trees, preorder is equivalent to /// reverse postorder. SmallVector<LoopT *, 4> getLoopsInPreorder() const;
/// Return all of the loops in the function in preorder across the loop /// nests, with siblings in *reverse* program order. /// /// Note that because loops form a forest of trees, preorder is equivalent to /// reverse postorder. /// /// Also note that this is *not* a reverse preorder. Only the siblings are in /// reverse program order. SmallVector<LoopT *, 4> getLoopsInReverseSiblingPreorder() const;
/// Return the inner most loop that BB lives in. If a basic block is in no /// loop (for example the entry node), null is returned. LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); }
/// Same as getLoopFor. const LoopT *operator[](const BlockT *BB) const { return getLoopFor(BB); }
/// Return the loop nesting level of the specified block. A depth of 0 means /// the block is not inside any loop. unsigned getLoopDepth(const BlockT *BB) const { const LoopT *L = getLoopFor(BB); return L ? L->getLoopDepth() : 0; }
// True if the block is a loop header node bool isLoopHeader(const BlockT *BB) const { const LoopT *L = getLoopFor(BB); return L && L->getHeader() == BB; }
/// Return the top-level loops. const std::vector<LoopT *> &getTopLevelLoops() const { return TopLevelLoops; }
/// Return the top-level loops. std::vector<LoopT *> &getTopLevelLoopsVector() { return TopLevelLoops; }
/// This removes the specified top-level loop from this loop info object. /// The loop is not deleted, as it will presumably be inserted into /// another loop. LoopT *removeLoop(iterator I) { assert(I != end() && "Cannot remove end iterator!"); LoopT *L = *I; assert(L->isOutermost() && "Not a top-level loop!"); TopLevelLoops.erase(TopLevelLoops.begin() + (I - begin())); return L; }
/// Change the top-level loop that contains BB to the specified loop. /// This should be used by transformations that restructure the loop hierarchy /// tree. void changeLoopFor(BlockT *BB, LoopT *L) { if (!L) { BBMap.erase(BB); return; } BBMap[BB] = L; }
/// Replace the specified loop in the top-level loops list with the indicated /// loop. void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop) { auto I = find(TopLevelLoops, OldLoop); assert(I != TopLevelLoops.end() && "Old loop not at top level!"); *I = NewLoop; assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop && "Loops already embedded into a subloop!"); }
/// This adds the specified loop to the collection of top-level loops. void addTopLevelLoop(LoopT *New) { assert(New->isOutermost() && "Loop already in subloop!"); TopLevelLoops.push_back(New); }
/// This method completely removes BB from all data structures, /// including all of the Loop objects it is nested in and our mapping from /// BasicBlocks to loops. void removeBlock(BlockT *BB) { auto I = BBMap.find(BB); if (I != BBMap.end()) { for (LoopT *L = I->second; L; L = L->getParentLoop()) L->removeBlockFromLoop(BB);
BBMap.erase(I); } }
// Internals
static bool isNotAlreadyContainedIn(const LoopT *SubLoop, const LoopT *ParentLoop) { if (!SubLoop) return true; if (SubLoop == ParentLoop) return false; return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop); }
/// Create the loop forest using a stable algorithm. void analyze(const DominatorTreeBase<BlockT, false> &DomTree);
// Debugging void print(raw_ostream &OS) const;
void verify(const DominatorTreeBase<BlockT, false> &DomTree) const;
/// Destroy a loop that has been removed from the `LoopInfo` nest. /// /// This runs the destructor of the loop object making it invalid to /// reference afterward. The memory is retained so that the *pointer* to the /// loop remains valid. /// /// The caller is responsible for removing this loop from the loop nest and /// otherwise disconnecting it from the broader `LoopInfo` data structures. /// Callers that don't naturally handle this themselves should probably call /// `erase' instead. void destroy(LoopT *L) { L->~LoopT();
// Since LoopAllocator is a BumpPtrAllocator, this Deallocate only poisons // \c L, but the pointer remains valid for non-dereferencing uses. LoopAllocator.Deallocate(L); } };
} // namespace llvm
#endif // LLVM_SUPPORT_GENERICLOOPINFO_H
|