Viewing file: GenericDomTreeConstruction.h (60.8 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// /// Generic dominator tree construction - this file provides routines to /// construct immediate dominator information for a flow-graph based on the /// Semi-NCA algorithm described in this dissertation: /// /// [1] Linear-Time Algorithms for Dominators and Related Problems /// Loukas Georgiadis, Princeton University, November 2005, pp. 21-23: /// ftp://ftp.cs.princeton.edu/reports/2005/737.pdf /// /// Semi-NCA algorithm runs in O(n^2) worst-case time but usually slightly /// faster than Simple Lengauer-Tarjan in practice. /// /// O(n^2) worst cases happen when the computation of nearest common ancestors /// requires O(n) average time, which is very unlikely in real world. If this /// ever turns out to be an issue, consider implementing a hybrid algorithm /// that uses SLT to perform full constructions and SemiNCA for incremental /// updates. /// /// The file uses the Depth Based Search algorithm to perform incremental /// updates (insertion and deletions). The implemented algorithm is based on /// this publication: /// /// [2] An Experimental Study of Dynamic Dominators /// Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10: /// https://arxiv.org/pdf/1604.02711.pdf /// //===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H #define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
#include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Support/Debug.h" #include "llvm/Support/GenericDomTree.h" #include <optional> #include <queue>
#define DEBUG_TYPE "dom-tree-builder"
namespace llvm { namespace DomTreeBuilder {
template <typename DomTreeT> struct SemiNCAInfo { using NodePtr = typename DomTreeT::NodePtr; using NodeT = typename DomTreeT::NodeType; using TreeNodePtr = DomTreeNodeBase<NodeT> *; using RootsT = decltype(DomTreeT::Roots); static constexpr bool IsPostDom = DomTreeT::IsPostDominator; using GraphDiffT = GraphDiff<NodePtr, IsPostDom>;
// Information record used by Semi-NCA during tree construction. struct InfoRec { unsigned DFSNum = 0; unsigned Parent = 0; unsigned Semi = 0; unsigned Label = 0; NodePtr IDom = nullptr; SmallVector<unsigned, 4> ReverseChildren; };
// Number to node mapping is 1-based. Initialize the mapping to start with // a dummy element. SmallVector<NodePtr, 64> NumToNode = {nullptr}; DenseMap<NodePtr, InfoRec> NodeToInfo;
using UpdateT = typename DomTreeT::UpdateType; using UpdateKind = typename DomTreeT::UpdateKind; struct BatchUpdateInfo { // Note: Updates inside PreViewCFG are already legalized. BatchUpdateInfo(GraphDiffT &PreViewCFG, GraphDiffT *PostViewCFG = nullptr) : PreViewCFG(PreViewCFG), PostViewCFG(PostViewCFG), NumLegalized(PreViewCFG.getNumLegalizedUpdates()) {}
// Remembers if the whole tree was recalculated at some point during the // current batch update. bool IsRecalculated = false; GraphDiffT &PreViewCFG; GraphDiffT *PostViewCFG; const size_t NumLegalized; };
BatchUpdateInfo *BatchUpdates; using BatchUpdatePtr = BatchUpdateInfo *;
// If BUI is a nullptr, then there's no batch update in progress. SemiNCAInfo(BatchUpdatePtr BUI) : BatchUpdates(BUI) {}
void clear() { NumToNode = {nullptr}; // Restore to initial state with a dummy start node. NodeToInfo.clear(); // Don't reset the pointer to BatchUpdateInfo here -- if there's an update // in progress, we need this information to continue it. }
template <bool Inversed> static SmallVector<NodePtr, 8> getChildren(NodePtr N, BatchUpdatePtr BUI) { if (BUI) return BUI->PreViewCFG.template getChildren<Inversed>(N); return getChildren<Inversed>(N); }
template <bool Inversed> static SmallVector<NodePtr, 8> getChildren(NodePtr N) { using DirectedNodeT = std::conditional_t<Inversed, Inverse<NodePtr>, NodePtr>; auto R = children<DirectedNodeT>(N); SmallVector<NodePtr, 8> Res(detail::reverse_if<!Inversed>(R));
// Remove nullptr children for clang. llvm::erase(Res, nullptr); return Res; }
NodePtr getIDom(NodePtr BB) const { auto InfoIt = NodeToInfo.find(BB); if (InfoIt == NodeToInfo.end()) return nullptr;
return InfoIt->second.IDom; }
TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) { if (TreeNodePtr Node = DT.getNode(BB)) return Node;
// Haven't calculated this node yet? Get or calculate the node for the // immediate dominator. NodePtr IDom = getIDom(BB);
assert(IDom || DT.DomTreeNodes[nullptr]); TreeNodePtr IDomNode = getNodeForBlock(IDom, DT);
// Add a new tree node for this NodeT, and link it as a child of // IDomNode return DT.createChild(BB, IDomNode); }
static bool AlwaysDescend(NodePtr, NodePtr) { return true; }
struct BlockNamePrinter { NodePtr N;
BlockNamePrinter(NodePtr Block) : N(Block) {} BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {}
friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) { if (!BP.N) O << "nullptr"; else BP.N->printAsOperand(O, false);
return O; } };
using NodeOrderMap = DenseMap<NodePtr, unsigned>;
// Custom DFS implementation which can skip nodes based on a provided // predicate. It also collects ReverseChildren so that we don't have to spend // time getting predecessors in SemiNCA. // // If IsReverse is set to true, the DFS walk will be performed backwards // relative to IsPostDom -- using reverse edges for dominators and forward // edges for postdominators. // // If SuccOrder is specified then in this order the DFS traverses the children // otherwise the order is implied by the results of getChildren(). template <bool IsReverse = false, typename DescendCondition> unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition, unsigned AttachToNum, const NodeOrderMap *SuccOrder = nullptr) { assert(V); SmallVector<std::pair<NodePtr, unsigned>, 64> WorkList = {{V, AttachToNum}}; NodeToInfo[V].Parent = AttachToNum;
while (!WorkList.empty()) { const auto [BB, ParentNum] = WorkList.pop_back_val(); auto &BBInfo = NodeToInfo[BB]; BBInfo.ReverseChildren.push_back(ParentNum);
// Visited nodes always have positive DFS numbers. if (BBInfo.DFSNum != 0) continue; BBInfo.Parent = ParentNum; BBInfo.DFSNum = BBInfo.Semi = BBInfo.Label = ++LastNum; NumToNode.push_back(BB);
constexpr bool Direction = IsReverse != IsPostDom; // XOR. auto Successors = getChildren<Direction>(BB, BatchUpdates); if (SuccOrder && Successors.size() > 1) llvm::sort( Successors.begin(), Successors.end(), [=](NodePtr A, NodePtr B) { return SuccOrder->find(A)->second < SuccOrder->find(B)->second; });
for (const NodePtr Succ : Successors) { if (!Condition(BB, Succ)) continue;
WorkList.push_back({Succ, LastNum}); } }
return LastNum; }
// V is a predecessor of W. eval() returns V if V < W, otherwise the minimum // of sdom(U), where U > W and there is a virtual forest path from U to V. The // virtual forest consists of linked edges of processed vertices. // // We can follow Parent pointers (virtual forest edges) to determine the // ancestor U with minimum sdom(U). But it is slow and thus we employ the path // compression technique to speed up to O(m*log(n)). Theoretically the virtual // forest can be organized as balanced trees to achieve almost linear // O(m*alpha(m,n)) running time. But it requires two auxiliary arrays (Size // and Child) and is unlikely to be faster than the simple implementation. // // For each vertex V, its Label points to the vertex with the minimal sdom(U) // (Semi) in its path from V (included) to NodeToInfo[V].Parent (excluded). unsigned eval(unsigned V, unsigned LastLinked, SmallVectorImpl<InfoRec *> &Stack, ArrayRef<InfoRec *> NumToInfo) { InfoRec *VInfo = NumToInfo[V]; if (VInfo->Parent < LastLinked) return VInfo->Label;
// Store ancestors except the last (root of a virtual tree) into a stack. assert(Stack.empty()); do { Stack.push_back(VInfo); VInfo = NumToInfo[VInfo->Parent]; } while (VInfo->Parent >= LastLinked);
// Path compression. Point each vertex's Parent to the root and update its // Label if any of its ancestors (PInfo->Label) has a smaller Semi. const InfoRec *PInfo = VInfo; const InfoRec *PLabelInfo = NumToInfo[PInfo->Label]; do { VInfo = Stack.pop_back_val(); VInfo->Parent = PInfo->Parent; const InfoRec *VLabelInfo = NumToInfo[VInfo->Label]; if (PLabelInfo->Semi < VLabelInfo->Semi) VInfo->Label = PInfo->Label; else PLabelInfo = VLabelInfo; PInfo = VInfo; } while (!Stack.empty()); return VInfo->Label; }
// This function requires DFS to be run before calling it. void runSemiNCA() { const unsigned NextDFSNum(NumToNode.size()); SmallVector<InfoRec *, 8> NumToInfo = {nullptr}; NumToInfo.reserve(NextDFSNum); // Initialize IDoms to spanning tree parents. for (unsigned i = 1; i < NextDFSNum; ++i) { const NodePtr V = NumToNode[i]; auto &VInfo = NodeToInfo[V]; VInfo.IDom = NumToNode[VInfo.Parent]; NumToInfo.push_back(&VInfo); }
// Step #1: Calculate the semidominators of all vertices. SmallVector<InfoRec *, 32> EvalStack; for (unsigned i = NextDFSNum - 1; i >= 2; --i) { auto &WInfo = *NumToInfo[i];
// Initialize the semi dominator to point to the parent node. WInfo.Semi = WInfo.Parent; for (unsigned N : WInfo.ReverseChildren) { unsigned SemiU = NumToInfo[eval(N, i + 1, EvalStack, NumToInfo)]->Semi; if (SemiU < WInfo.Semi) WInfo.Semi = SemiU; } }
// Step #2: Explicitly define the immediate dominator of each vertex. // IDom[i] = NCA(SDom[i], SpanningTreeParent(i)). // Note that the parents were stored in IDoms and later got invalidated // during path compression in Eval. for (unsigned i = 2; i < NextDFSNum; ++i) { auto &WInfo = *NumToInfo[i]; assert(WInfo.Semi != 0); const unsigned SDomNum = NumToInfo[WInfo.Semi]->DFSNum; NodePtr WIDomCandidate = WInfo.IDom; while (true) { auto &WIDomCandidateInfo = NodeToInfo.find(WIDomCandidate)->second; if (WIDomCandidateInfo.DFSNum <= SDomNum) break; WIDomCandidate = WIDomCandidateInfo.IDom; }
WInfo.IDom = WIDomCandidate; } }
// PostDominatorTree always has a virtual root that represents a virtual CFG // node that serves as a single exit from the function. All the other exits // (CFG nodes with terminators and nodes in infinite loops are logically // connected to this virtual CFG exit node). // This functions maps a nullptr CFG node to the virtual root tree node. void addVirtualRoot() { assert(IsPostDom && "Only postdominators have a virtual root"); assert(NumToNode.size() == 1 && "SNCAInfo must be freshly constructed");
auto &BBInfo = NodeToInfo[nullptr]; BBInfo.DFSNum = BBInfo.Semi = BBInfo.Label = 1;
NumToNode.push_back(nullptr); // NumToNode[1] = nullptr; }
// For postdominators, nodes with no forward successors are trivial roots that // are always selected as tree roots. Roots with forward successors correspond // to CFG nodes within infinite loops. static bool HasForwardSuccessors(const NodePtr N, BatchUpdatePtr BUI) { assert(N && "N must be a valid node"); return !getChildren<false>(N, BUI).empty(); }
static NodePtr GetEntryNode(const DomTreeT &DT) { assert(DT.Parent && "Parent not set"); return GraphTraits<typename DomTreeT::ParentPtr>::getEntryNode(DT.Parent); }
// Finds all roots without relaying on the set of roots already stored in the // tree. // We define roots to be some non-redundant set of the CFG nodes static RootsT FindRoots(const DomTreeT &DT, BatchUpdatePtr BUI) { assert(DT.Parent && "Parent pointer is not set"); RootsT Roots;
// For dominators, function entry CFG node is always a tree root node. if (!IsPostDom) { Roots.push_back(GetEntryNode(DT)); return Roots; }
SemiNCAInfo SNCA(BUI);
// PostDominatorTree always has a virtual root. SNCA.addVirtualRoot(); unsigned Num = 1;
LLVM_DEBUG(dbgs() << "\t\tLooking for trivial roots\n");
// Step #1: Find all the trivial roots that are going to will definitely // remain tree roots. unsigned Total = 0; // It may happen that there are some new nodes in the CFG that are result of // the ongoing batch update, but we cannot really pretend that they don't // exist -- we won't see any outgoing or incoming edges to them, so it's // fine to discover them here, as they would end up appearing in the CFG at // some point anyway. for (const NodePtr N : nodes(DT.Parent)) { ++Total; // If it has no *successors*, it is definitely a root. if (!HasForwardSuccessors(N, BUI)) { Roots.push_back(N); // Run DFS not to walk this part of CFG later. Num = SNCA.runDFS(N, Num, AlwaysDescend, 1); LLVM_DEBUG(dbgs() << "Found a new trivial root: " << BlockNamePrinter(N) << "\n"); LLVM_DEBUG(dbgs() << "Last visited node: " << BlockNamePrinter(SNCA.NumToNode[Num]) << "\n"); } }
LLVM_DEBUG(dbgs() << "\t\tLooking for non-trivial roots\n");
// Step #2: Find all non-trivial root candidates. Those are CFG nodes that // are reverse-unreachable were not visited by previous DFS walks (i.e. CFG // nodes in infinite loops). bool HasNonTrivialRoots = false; // Accounting for the virtual exit, see if we had any reverse-unreachable // nodes. if (Total + 1 != Num) { HasNonTrivialRoots = true;
// SuccOrder is the order of blocks in the function. It is needed to make // the calculation of the FurthestAway node and the whole PostDomTree // immune to swap successors transformation (e.g. canonicalizing branch // predicates). SuccOrder is initialized lazily only for successors of // reverse unreachable nodes. std::optional<NodeOrderMap> SuccOrder; auto InitSuccOrderOnce = [&]() { SuccOrder = NodeOrderMap(); for (const auto Node : nodes(DT.Parent)) if (SNCA.NodeToInfo.count(Node) == 0) for (const auto Succ : getChildren<false>(Node, SNCA.BatchUpdates)) SuccOrder->try_emplace(Succ, 0);
// Add mapping for all entries of SuccOrder. unsigned NodeNum = 0; for (const auto Node : nodes(DT.Parent)) { ++NodeNum; auto Order = SuccOrder->find(Node); if (Order != SuccOrder->end()) { assert(Order->second == 0); Order->second = NodeNum; } } };
// Make another DFS pass over all other nodes to find the // reverse-unreachable blocks, and find the furthest paths we'll be able // to make. // Note that this looks N^2, but it's really 2N worst case, if every node // is unreachable. This is because we are still going to only visit each // unreachable node once, we may just visit it in two directions, // depending on how lucky we get. for (const NodePtr I : nodes(DT.Parent)) { if (SNCA.NodeToInfo.count(I) == 0) { LLVM_DEBUG(dbgs() << "\t\t\tVisiting node " << BlockNamePrinter(I) << "\n"); // Find the furthest away we can get by following successors, then // follow them in reverse. This gives us some reasonable answer about // the post-dom tree inside any infinite loop. In particular, it // guarantees we get to the farthest away point along *some* // path. This also matches the GCC's behavior. // If we really wanted a totally complete picture of dominance inside // this infinite loop, we could do it with SCC-like algorithms to find // the lowest and highest points in the infinite loop. In theory, it // would be nice to give the canonical backedge for the loop, but it's // expensive and does not always lead to a minimal set of roots. LLVM_DEBUG(dbgs() << "\t\t\tRunning forward DFS\n");
if (!SuccOrder) InitSuccOrderOnce(); assert(SuccOrder);
const unsigned NewNum = SNCA.runDFS<true>(I, Num, AlwaysDescend, Num, &*SuccOrder); const NodePtr FurthestAway = SNCA.NumToNode[NewNum]; LLVM_DEBUG(dbgs() << "\t\t\tFound a new furthest away node " << "(non-trivial root): " << BlockNamePrinter(FurthestAway) << "\n"); Roots.push_back(FurthestAway); LLVM_DEBUG(dbgs() << "\t\t\tPrev DFSNum: " << Num << ", new DFSNum: " << NewNum << "\n\t\t\tRemoving DFS info\n"); for (unsigned i = NewNum; i > Num; --i) { const NodePtr N = SNCA.NumToNode[i]; LLVM_DEBUG(dbgs() << "\t\t\t\tRemoving DFS info for " << BlockNamePrinter(N) << "\n"); SNCA.NodeToInfo.erase(N); SNCA.NumToNode.pop_back(); } const unsigned PrevNum = Num; LLVM_DEBUG(dbgs() << "\t\t\tRunning reverse DFS\n"); Num = SNCA.runDFS(FurthestAway, Num, AlwaysDescend, 1); for (unsigned i = PrevNum + 1; i <= Num; ++i) LLVM_DEBUG(dbgs() << "\t\t\t\tfound node " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n"); } } }
LLVM_DEBUG(dbgs() << "Total: " << Total << ", Num: " << Num << "\n"); LLVM_DEBUG(dbgs() << "Discovered CFG nodes:\n"); LLVM_DEBUG(for (size_t i = 0; i <= Num; ++i) dbgs() << i << ": " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
assert((Total + 1 == Num) && "Everything should have been visited");
// Step #3: If we found some non-trivial roots, make them non-redundant. if (HasNonTrivialRoots) RemoveRedundantRoots(DT, BUI, Roots);
LLVM_DEBUG(dbgs() << "Found roots: "); LLVM_DEBUG(for (auto *Root : Roots) dbgs() << BlockNamePrinter(Root) << " "); LLVM_DEBUG(dbgs() << "\n");
return Roots; }
// This function only makes sense for postdominators. // We define roots to be some set of CFG nodes where (reverse) DFS walks have // to start in order to visit all the CFG nodes (including the // reverse-unreachable ones). // When the search for non-trivial roots is done it may happen that some of // the non-trivial roots are reverse-reachable from other non-trivial roots, // which makes them redundant. This function removes them from the set of // input roots. static void RemoveRedundantRoots(const DomTreeT &DT, BatchUpdatePtr BUI, RootsT &Roots) { assert(IsPostDom && "This function is for postdominators only"); LLVM_DEBUG(dbgs() << "Removing redundant roots\n");
SemiNCAInfo SNCA(BUI);
for (unsigned i = 0; i < Roots.size(); ++i) { auto &Root = Roots[i]; // Trivial roots are always non-redundant. if (!HasForwardSuccessors(Root, BUI)) continue; LLVM_DEBUG(dbgs() << "\tChecking if " << BlockNamePrinter(Root) << " remains a root\n"); SNCA.clear(); // Do a forward walk looking for the other roots. const unsigned Num = SNCA.runDFS<true>(Root, 0, AlwaysDescend, 0); // Skip the start node and begin from the second one (note that DFS uses // 1-based indexing). for (unsigned x = 2; x <= Num; ++x) { const NodePtr N = SNCA.NumToNode[x]; // If we wound another root in a (forward) DFS walk, remove the current // root from the set of roots, as it is reverse-reachable from the other // one. if (llvm::is_contained(Roots, N)) { LLVM_DEBUG(dbgs() << "\tForward DFS walk found another root " << BlockNamePrinter(N) << "\n\tRemoving root " << BlockNamePrinter(Root) << "\n"); std::swap(Root, Roots.back()); Roots.pop_back();
// Root at the back takes the current root's place. // Start the next loop iteration with the same index. --i; break; } } } }
template <typename DescendCondition> void doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) { if (!IsPostDom) { assert(DT.Roots.size() == 1 && "Dominators should have a singe root"); runDFS(DT.Roots[0], 0, DC, 0); return; }
addVirtualRoot(); unsigned Num = 1; for (const NodePtr Root : DT.Roots) Num = runDFS(Root, Num, DC, 1); }
static void CalculateFromScratch(DomTreeT &DT, BatchUpdatePtr BUI) { auto *Parent = DT.Parent; DT.reset(); DT.Parent = Parent; // If the update is using the actual CFG, BUI is null. If it's using a view, // BUI is non-null and the PreCFGView is used. When calculating from // scratch, make the PreViewCFG equal to the PostCFGView, so Post is used. BatchUpdatePtr PostViewBUI = nullptr; if (BUI && BUI->PostViewCFG) { BUI->PreViewCFG = *BUI->PostViewCFG; PostViewBUI = BUI; } // This is rebuilding the whole tree, not incrementally, but PostViewBUI is // used in case the caller needs a DT update with a CFGView. SemiNCAInfo SNCA(PostViewBUI);
// Step #0: Number blocks in depth-first order and initialize variables used // in later stages of the algorithm. DT.Roots = FindRoots(DT, PostViewBUI); SNCA.doFullDFSWalk(DT, AlwaysDescend);
SNCA.runSemiNCA(); if (BUI) { BUI->IsRecalculated = true; LLVM_DEBUG( dbgs() << "DomTree recalculated, skipping future batch updates\n"); }
if (DT.Roots.empty()) return;
// Add a node for the root. If the tree is a PostDominatorTree it will be // the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates // all real exits (including multiple exit blocks, infinite loops). NodePtr Root = IsPostDom ? nullptr : DT.Roots[0];
DT.RootNode = DT.createNode(Root); SNCA.attachNewSubtree(DT, DT.RootNode); }
void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) { // Attach the first unreachable block to AttachTo. NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock(); // Loop over all of the discovered blocks in the function... for (NodePtr W : llvm::drop_begin(NumToNode)) { // Don't replace this with 'count', the insertion side effect is important if (DT.DomTreeNodes[W]) continue; // Haven't calculated this node yet?
NodePtr ImmDom = getIDom(W);
// Get or calculate the node for the immediate dominator. TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT);
// Add a new tree node for this BasicBlock, and link it as a child of // IDomNode. DT.createChild(W, IDomNode); } }
void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) { NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock(); for (const NodePtr N : llvm::drop_begin(NumToNode)) { const TreeNodePtr TN = DT.getNode(N); assert(TN); const TreeNodePtr NewIDom = DT.getNode(NodeToInfo[N].IDom); TN->setIDom(NewIDom); } }
// Helper struct used during edge insertions. struct InsertionInfo { struct Compare { bool operator()(TreeNodePtr LHS, TreeNodePtr RHS) const { return LHS->getLevel() < RHS->getLevel(); } };
// Bucket queue of tree nodes ordered by descending level. For simplicity, // we use a priority_queue here. std::priority_queue<TreeNodePtr, SmallVector<TreeNodePtr, 8>, Compare> Bucket; SmallDenseSet<TreeNodePtr, 8> Visited; SmallVector<TreeNodePtr, 8> Affected; #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS SmallVector<TreeNodePtr, 8> VisitedUnaffected; #endif };
static void InsertEdge(DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr From, const NodePtr To) { assert((From || IsPostDom) && "From has to be a valid CFG node or a virtual root"); assert(To && "Cannot be a nullptr"); LLVM_DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> " << BlockNamePrinter(To) << "\n"); TreeNodePtr FromTN = DT.getNode(From);
if (!FromTN) { // Ignore edges from unreachable nodes for (forward) dominators. if (!IsPostDom) return;
// The unreachable node becomes a new root -- a tree node for it. TreeNodePtr VirtualRoot = DT.getNode(nullptr); FromTN = DT.createChild(From, VirtualRoot); DT.Roots.push_back(From); }
DT.DFSInfoValid = false;
const TreeNodePtr ToTN = DT.getNode(To); if (!ToTN) InsertUnreachable(DT, BUI, FromTN, To); else InsertReachable(DT, BUI, FromTN, ToTN); }
// Determines if some existing root becomes reverse-reachable after the // insertion. Rebuilds the whole tree if that situation happens. static bool UpdateRootsBeforeInsertion(DomTreeT &DT, const BatchUpdatePtr BUI, const TreeNodePtr From, const TreeNodePtr To) { assert(IsPostDom && "This function is only for postdominators"); // Destination node is not attached to the virtual root, so it cannot be a // root. if (!DT.isVirtualRoot(To->getIDom())) return false;
if (!llvm::is_contained(DT.Roots, To->getBlock())) return false; // To is not a root, nothing to update.
LLVM_DEBUG(dbgs() << "\t\tAfter the insertion, " << BlockNamePrinter(To) << " is no longer a root\n\t\tRebuilding the tree!!!\n");
CalculateFromScratch(DT, BUI); return true; }
static bool isPermutation(const SmallVectorImpl<NodePtr> &A, const SmallVectorImpl<NodePtr> &B) { if (A.size() != B.size()) return false; SmallPtrSet<NodePtr, 4> Set(A.begin(), A.end()); for (NodePtr N : B) if (Set.count(N) == 0) return false; return true; }
// Updates the set of roots after insertion or deletion. This ensures that // roots are the same when after a series of updates and when the tree would // be built from scratch. static void UpdateRootsAfterUpdate(DomTreeT &DT, const BatchUpdatePtr BUI) { assert(IsPostDom && "This function is only for postdominators");
// The tree has only trivial roots -- nothing to update. if (llvm::none_of(DT.Roots, [BUI](const NodePtr N) { return HasForwardSuccessors(N, BUI); })) return;
// Recalculate the set of roots. RootsT Roots = FindRoots(DT, BUI); if (!isPermutation(DT.Roots, Roots)) { // The roots chosen in the CFG have changed. This is because the // incremental algorithm does not really know or use the set of roots and // can make a different (implicit) decision about which node within an // infinite loop becomes a root.
LLVM_DEBUG(dbgs() << "Roots are different in updated trees\n" << "The entire tree needs to be rebuilt\n"); // It may be possible to update the tree without recalculating it, but // we do not know yet how to do it, and it happens rarely in practice. CalculateFromScratch(DT, BUI); } }
// Handles insertion to a node already in the dominator tree. static void InsertReachable(DomTreeT &DT, const BatchUpdatePtr BUI, const TreeNodePtr From, const TreeNodePtr To) { LLVM_DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock()) << " -> " << BlockNamePrinter(To->getBlock()) << "\n"); if (IsPostDom && UpdateRootsBeforeInsertion(DT, BUI, From, To)) return; // DT.findNCD expects both pointers to be valid. When From is a virtual // root, then its CFG block pointer is a nullptr, so we have to 'compute' // the NCD manually. const NodePtr NCDBlock = (From->getBlock() && To->getBlock()) ? DT.findNearestCommonDominator(From->getBlock(), To->getBlock()) : nullptr; assert(NCDBlock || DT.isPostDominator()); const TreeNodePtr NCD = DT.getNode(NCDBlock); assert(NCD);
LLVM_DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n"); const unsigned NCDLevel = NCD->getLevel();
// Based on Lemma 2.5 from [2], after insertion of (From,To), v is affected // iff depth(NCD)+1 < depth(v) && a path P from To to v exists where every // w on P s.t. depth(v) <= depth(w) // // This reduces to a widest path problem (maximizing the depth of the // minimum vertex in the path) which can be solved by a modified version of // Dijkstra with a bucket queue (named depth-based search in [2]).
// To is in the path, so depth(NCD)+1 < depth(v) <= depth(To). Nothing // affected if this does not hold. if (NCDLevel + 1 >= To->getLevel()) return;
InsertionInfo II; SmallVector<TreeNodePtr, 8> UnaffectedOnCurrentLevel; II.Bucket.push(To); II.Visited.insert(To);
while (!II.Bucket.empty()) { TreeNodePtr TN = II.Bucket.top(); II.Bucket.pop(); II.Affected.push_back(TN);
const unsigned CurrentLevel = TN->getLevel(); LLVM_DEBUG(dbgs() << "Mark " << BlockNamePrinter(TN) << "as affected, CurrentLevel " << CurrentLevel << "\n");
assert(TN->getBlock() && II.Visited.count(TN) && "Preconditions!");
while (true) { // Unlike regular Dijkstra, we have an inner loop to expand more // vertices. The first iteration is for the (affected) vertex popped // from II.Bucket and the rest are for vertices in // UnaffectedOnCurrentLevel, which may eventually expand to affected // vertices. // // Invariant: there is an optimal path from `To` to TN with the minimum // depth being CurrentLevel. for (const NodePtr Succ : getChildren<IsPostDom>(TN->getBlock(), BUI)) { const TreeNodePtr SuccTN = DT.getNode(Succ); assert(SuccTN && "Unreachable successor found at reachable insertion"); const unsigned SuccLevel = SuccTN->getLevel();
LLVM_DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ) << ", level = " << SuccLevel << "\n");
// There is an optimal path from `To` to Succ with the minimum depth // being min(CurrentLevel, SuccLevel). // // If depth(NCD)+1 < depth(Succ) is not satisfied, Succ is unaffected // and no affected vertex may be reached by a path passing through it. // Stop here. Also, Succ may be visited by other predecessors but the // first visit has the optimal path. Stop if Succ has been visited. if (SuccLevel <= NCDLevel + 1 || !II.Visited.insert(SuccTN).second) continue;
if (SuccLevel > CurrentLevel) { // Succ is unaffected but it may (transitively) expand to affected // vertices. Store it in UnaffectedOnCurrentLevel. LLVM_DEBUG(dbgs() << "\t\tMarking visited not affected " << BlockNamePrinter(Succ) << "\n"); UnaffectedOnCurrentLevel.push_back(SuccTN); #ifndef NDEBUG II.VisitedUnaffected.push_back(SuccTN); #endif } else { // The condition is satisfied (Succ is affected). Add Succ to the // bucket queue. LLVM_DEBUG(dbgs() << "\t\tAdd " << BlockNamePrinter(Succ) << " to a Bucket\n"); II.Bucket.push(SuccTN); } }
if (UnaffectedOnCurrentLevel.empty()) break; TN = UnaffectedOnCurrentLevel.pop_back_val(); LLVM_DEBUG(dbgs() << " Next: " << BlockNamePrinter(TN) << "\n"); } }
// Finish by updating immediate dominators and levels. UpdateInsertion(DT, BUI, NCD, II); }
// Updates immediate dominators and levels after insertion. static void UpdateInsertion(DomTreeT &DT, const BatchUpdatePtr BUI, const TreeNodePtr NCD, InsertionInfo &II) { LLVM_DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n");
for (const TreeNodePtr TN : II.Affected) { LLVM_DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN) << ") = " << BlockNamePrinter(NCD) << "\n"); TN->setIDom(NCD); }
#if defined(LLVM_ENABLE_ABI_BREAKING_CHECKS) && !defined(NDEBUG) for (const TreeNodePtr TN : II.VisitedUnaffected) assert(TN->getLevel() == TN->getIDom()->getLevel() + 1 && "TN should have been updated by an affected ancestor"); #endif
if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI); }
// Handles insertion to previously unreachable nodes. static void InsertUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI, const TreeNodePtr From, const NodePtr To) { LLVM_DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From) << " -> (unreachable) " << BlockNamePrinter(To) << "\n");
// Collect discovered edges to already reachable nodes. SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable; // Discover and connect nodes that became reachable with the insertion. ComputeUnreachableDominators(DT, BUI, To, From, DiscoveredEdgesToReachable);
LLVM_DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From) << " -> (prev unreachable) " << BlockNamePrinter(To) << "\n");
// Used the discovered edges and inset discovered connecting (incoming) // edges. for (const auto &Edge : DiscoveredEdgesToReachable) { LLVM_DEBUG(dbgs() << "\tInserting discovered connecting edge " << BlockNamePrinter(Edge.first) << " -> " << BlockNamePrinter(Edge.second) << "\n"); InsertReachable(DT, BUI, DT.getNode(Edge.first), Edge.second); } }
// Connects nodes that become reachable with an insertion. static void ComputeUnreachableDominators( DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr Root, const TreeNodePtr Incoming, SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>> &DiscoveredConnectingEdges) { assert(!DT.getNode(Root) && "Root must not be reachable");
// Visit only previously unreachable nodes. auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From, NodePtr To) { const TreeNodePtr ToTN = DT.getNode(To); if (!ToTN) return true;
DiscoveredConnectingEdges.push_back({From, ToTN}); return false; };
SemiNCAInfo SNCA(BUI); SNCA.runDFS(Root, 0, UnreachableDescender, 0); SNCA.runSemiNCA(); SNCA.attachNewSubtree(DT, Incoming);
LLVM_DEBUG(dbgs() << "After adding unreachable nodes\n"); }
static void DeleteEdge(DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr From, const NodePtr To) { assert(From && To && "Cannot disconnect nullptrs"); LLVM_DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> " << BlockNamePrinter(To) << "\n");
#ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS // Ensure that the edge was in fact deleted from the CFG before informing // the DomTree about it. // The check is O(N), so run it only in debug configuration. auto IsSuccessor = [BUI](const NodePtr SuccCandidate, const NodePtr Of) { auto Successors = getChildren<IsPostDom>(Of, BUI); return llvm::is_contained(Successors, SuccCandidate); }; (void)IsSuccessor; assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!"); #endif
const TreeNodePtr FromTN = DT.getNode(From); // Deletion in an unreachable subtree -- nothing to do. if (!FromTN) return;
const TreeNodePtr ToTN = DT.getNode(To); if (!ToTN) { LLVM_DEBUG( dbgs() << "\tTo (" << BlockNamePrinter(To) << ") already unreachable -- there is no edge to delete\n"); return; }
const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To); const TreeNodePtr NCD = DT.getNode(NCDBlock);
// If To dominates From -- nothing to do. if (ToTN != NCD) { DT.DFSInfoValid = false;
const TreeNodePtr ToIDom = ToTN->getIDom(); LLVM_DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom " << BlockNamePrinter(ToIDom) << "\n");
// To remains reachable after deletion. // (Based on the caption under Figure 4. from [2].) if (FromTN != ToIDom || HasProperSupport(DT, BUI, ToTN)) DeleteReachable(DT, BUI, FromTN, ToTN); else DeleteUnreachable(DT, BUI, ToTN); }
if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI); }
// Handles deletions that leave destination nodes reachable. static void DeleteReachable(DomTreeT &DT, const BatchUpdatePtr BUI, const TreeNodePtr FromTN, const TreeNodePtr ToTN) { LLVM_DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN) << " -> " << BlockNamePrinter(ToTN) << "\n"); LLVM_DEBUG(dbgs() << "\tRebuilding subtree\n");
// Find the top of the subtree that needs to be rebuilt. // (Based on the lemma 2.6 from [2].) const NodePtr ToIDom = DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock()); assert(ToIDom || DT.isPostDominator()); const TreeNodePtr ToIDomTN = DT.getNode(ToIDom); assert(ToIDomTN); const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom(); // Top of the subtree to rebuild is the root node. Rebuild the tree from // scratch. if (!PrevIDomSubTree) { LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n"); CalculateFromScratch(DT, BUI); return; }
// Only visit nodes in the subtree starting at To. const unsigned Level = ToIDomTN->getLevel(); auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) { return DT.getNode(To)->getLevel() > Level; };
LLVM_DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN) << "\n");
SemiNCAInfo SNCA(BUI); SNCA.runDFS(ToIDom, 0, DescendBelow, 0); LLVM_DEBUG(dbgs() << "\tRunning Semi-NCA\n"); SNCA.runSemiNCA(); SNCA.reattachExistingSubtree(DT, PrevIDomSubTree); }
// Checks if a node has proper support, as defined on the page 3 and later // explained on the page 7 of [2]. static bool HasProperSupport(DomTreeT &DT, const BatchUpdatePtr BUI, const TreeNodePtr TN) { LLVM_DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN) << "\n"); auto TNB = TN->getBlock(); for (const NodePtr Pred : getChildren<!IsPostDom>(TNB, BUI)) { LLVM_DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n"); if (!DT.getNode(Pred)) continue;
const NodePtr Support = DT.findNearestCommonDominator(TNB, Pred); LLVM_DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n"); if (Support != TNB) { LLVM_DEBUG(dbgs() << "\t" << BlockNamePrinter(TN) << " is reachable from support " << BlockNamePrinter(Support) << "\n"); return true; } }
return false; }
// Handle deletions that make destination node unreachable. // (Based on the lemma 2.7 from the [2].) static void DeleteUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI, const TreeNodePtr ToTN) { LLVM_DEBUG(dbgs() << "Deleting unreachable subtree " << BlockNamePrinter(ToTN) << "\n"); assert(ToTN); assert(ToTN->getBlock());
if (IsPostDom) { // Deletion makes a region reverse-unreachable and creates a new root. // Simulate that by inserting an edge from the virtual root to ToTN and // adding it as a new root. LLVM_DEBUG(dbgs() << "\tDeletion made a region reverse-unreachable\n"); LLVM_DEBUG(dbgs() << "\tAdding new root " << BlockNamePrinter(ToTN) << "\n"); DT.Roots.push_back(ToTN->getBlock()); InsertReachable(DT, BUI, DT.getNode(nullptr), ToTN); return; }
SmallVector<NodePtr, 16> AffectedQueue; const unsigned Level = ToTN->getLevel();
// Traverse destination node's descendants with greater level in the tree // and collect visited nodes. auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) { const TreeNodePtr TN = DT.getNode(To); assert(TN); if (TN->getLevel() > Level) return true; if (!llvm::is_contained(AffectedQueue, To)) AffectedQueue.push_back(To);
return false; };
SemiNCAInfo SNCA(BUI); unsigned LastDFSNum = SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0);
TreeNodePtr MinNode = ToTN;
// Identify the top of the subtree to rebuild by finding the NCD of all // the affected nodes. for (const NodePtr N : AffectedQueue) { const TreeNodePtr TN = DT.getNode(N); const NodePtr NCDBlock = DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock()); assert(NCDBlock || DT.isPostDominator()); const TreeNodePtr NCD = DT.getNode(NCDBlock); assert(NCD);
LLVM_DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN) << " with NCD = " << BlockNamePrinter(NCD) << ", MinNode =" << BlockNamePrinter(MinNode) << "\n"); if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD; }
// Root reached, rebuild the whole tree from scratch. if (!MinNode->getIDom()) { LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n"); CalculateFromScratch(DT, BUI); return; }
// Erase the unreachable subtree in reverse preorder to process all children // before deleting their parent. for (unsigned i = LastDFSNum; i > 0; --i) { const NodePtr N = SNCA.NumToNode[i]; const TreeNodePtr TN = DT.getNode(N); LLVM_DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(TN) << "\n");
EraseNode(DT, TN); }
// The affected subtree start at the To node -- there's no extra work to do. if (MinNode == ToTN) return;
LLVM_DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = " << BlockNamePrinter(MinNode) << "\n"); const unsigned MinLevel = MinNode->getLevel(); const TreeNodePtr PrevIDom = MinNode->getIDom(); assert(PrevIDom); SNCA.clear();
// Identify nodes that remain in the affected subtree. auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) { const TreeNodePtr ToTN = DT.getNode(To); return ToTN && ToTN->getLevel() > MinLevel; }; SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0);
LLVM_DEBUG(dbgs() << "Previous IDom(MinNode) = " << BlockNamePrinter(PrevIDom) << "\nRunning Semi-NCA\n");
// Rebuild the remaining part of affected subtree. SNCA.runSemiNCA(); SNCA.reattachExistingSubtree(DT, PrevIDom); }
// Removes leaf tree nodes from the dominator tree. static void EraseNode(DomTreeT &DT, const TreeNodePtr TN) { assert(TN); assert(TN->getNumChildren() == 0 && "Not a tree leaf");
const TreeNodePtr IDom = TN->getIDom(); assert(IDom);
auto ChIt = llvm::find(IDom->Children, TN); assert(ChIt != IDom->Children.end()); std::swap(*ChIt, IDom->Children.back()); IDom->Children.pop_back();
DT.DomTreeNodes.erase(TN->getBlock()); }
//~~ //===--------------------- DomTree Batch Updater --------------------------=== //~~
static void ApplyUpdates(DomTreeT &DT, GraphDiffT &PreViewCFG, GraphDiffT *PostViewCFG) { // Note: the PostViewCFG is only used when computing from scratch. It's data // should already included in the PreViewCFG for incremental updates. const size_t NumUpdates = PreViewCFG.getNumLegalizedUpdates(); if (NumUpdates == 0) return;
// Take the fast path for a single update and avoid running the batch update // machinery. if (NumUpdates == 1) { UpdateT Update = PreViewCFG.popUpdateForIncrementalUpdates(); if (!PostViewCFG) { if (Update.getKind() == UpdateKind::Insert) InsertEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo()); else DeleteEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo()); } else { BatchUpdateInfo BUI(*PostViewCFG, PostViewCFG); if (Update.getKind() == UpdateKind::Insert) InsertEdge(DT, &BUI, Update.getFrom(), Update.getTo()); else DeleteEdge(DT, &BUI, Update.getFrom(), Update.getTo()); } return; }
BatchUpdateInfo BUI(PreViewCFG, PostViewCFG); // Recalculate the DominatorTree when the number of updates // exceeds a threshold, which usually makes direct updating slower than // recalculation. We select this threshold proportional to the // size of the DominatorTree. The constant is selected // by choosing the one with an acceptable performance on some real-world // inputs.
// Make unittests of the incremental algorithm work if (DT.DomTreeNodes.size() <= 100) { if (BUI.NumLegalized > DT.DomTreeNodes.size()) CalculateFromScratch(DT, &BUI); } else if (BUI.NumLegalized > DT.DomTreeNodes.size() / 40) CalculateFromScratch(DT, &BUI);
// If the DominatorTree was recalculated at some point, stop the batch // updates. Full recalculations ignore batch updates and look at the actual // CFG. for (size_t i = 0; i < BUI.NumLegalized && !BUI.IsRecalculated; ++i) ApplyNextUpdate(DT, BUI); }
static void ApplyNextUpdate(DomTreeT &DT, BatchUpdateInfo &BUI) { // Popping the next update, will move the PreViewCFG to the next snapshot. UpdateT CurrentUpdate = BUI.PreViewCFG.popUpdateForIncrementalUpdates(); #if 0 // FIXME: The LLVM_DEBUG macro only plays well with a modular // build of LLVM when the header is marked as textual, but doing // so causes redefinition errors. LLVM_DEBUG(dbgs() << "Applying update: "); LLVM_DEBUG(CurrentUpdate.dump(); dbgs() << "\n"); #endif
if (CurrentUpdate.getKind() == UpdateKind::Insert) InsertEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo()); else DeleteEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo()); }
//~~ //===--------------- DomTree correctness verification ---------------------=== //~~
// Check if the tree has correct roots. A DominatorTree always has a single // root which is the function's entry node. A PostDominatorTree can have // multiple roots - one for each node with no successors and for infinite // loops. // Running time: O(N). bool verifyRoots(const DomTreeT &DT) { if (!DT.Parent && !DT.Roots.empty()) { errs() << "Tree has no parent but has roots!\n"; errs().flush(); return false; }
if (!IsPostDom) { if (DT.Roots.empty()) { errs() << "Tree doesn't have a root!\n"; errs().flush(); return false; }
if (DT.getRoot() != GetEntryNode(DT)) { errs() << "Tree's root is not its parent's entry node!\n"; errs().flush(); return false; } }
RootsT ComputedRoots = FindRoots(DT, nullptr); if (!isPermutation(DT.Roots, ComputedRoots)) { errs() << "Tree has different roots than freshly computed ones!\n"; errs() << "\tPDT roots: "; for (const NodePtr N : DT.Roots) errs() << BlockNamePrinter(N) << ", "; errs() << "\n\tComputed roots: "; for (const NodePtr N : ComputedRoots) errs() << BlockNamePrinter(N) << ", "; errs() << "\n"; errs().flush(); return false; }
return true; }
// Checks if the tree contains all reachable nodes in the input graph. // Running time: O(N). bool verifyReachability(const DomTreeT &DT) { clear(); doFullDFSWalk(DT, AlwaysDescend);
for (auto &NodeToTN : DT.DomTreeNodes) { const TreeNodePtr TN = NodeToTN.second.get(); const NodePtr BB = TN->getBlock();
// Virtual root has a corresponding virtual CFG node. if (DT.isVirtualRoot(TN)) continue;
if (NodeToInfo.count(BB) == 0) { errs() << "DomTree node " << BlockNamePrinter(BB) << " not found by DFS walk!\n"; errs().flush();
return false; } }
for (const NodePtr N : NumToNode) { if (N && !DT.getNode(N)) { errs() << "CFG node " << BlockNamePrinter(N) << " not found in the DomTree!\n"; errs().flush();
return false; } }
return true; }
// Check if for every parent with a level L in the tree all of its children // have level L + 1. // Running time: O(N). static bool VerifyLevels(const DomTreeT &DT) { for (auto &NodeToTN : DT.DomTreeNodes) { const TreeNodePtr TN = NodeToTN.second.get(); const NodePtr BB = TN->getBlock(); if (!BB) continue;
const TreeNodePtr IDom = TN->getIDom(); if (!IDom && TN->getLevel() != 0) { errs() << "Node without an IDom " << BlockNamePrinter(BB) << " has a nonzero level " << TN->getLevel() << "!\n"; errs().flush();
return false; }
if (IDom && TN->getLevel() != IDom->getLevel() + 1) { errs() << "Node " << BlockNamePrinter(BB) << " has level " << TN->getLevel() << " while its IDom " << BlockNamePrinter(IDom->getBlock()) << " has level " << IDom->getLevel() << "!\n"; errs().flush();
return false; } }
return true; }
// Check if the computed DFS numbers are correct. Note that DFS info may not // be valid, and when that is the case, we don't verify the numbers. // Running time: O(N log(N)). static bool VerifyDFSNumbers(const DomTreeT &DT) { if (!DT.DFSInfoValid || !DT.Parent) return true;
const NodePtr RootBB = IsPostDom ? nullptr : *DT.root_begin(); const TreeNodePtr Root = DT.getNode(RootBB);
auto PrintNodeAndDFSNums = [](const TreeNodePtr TN) { errs() << BlockNamePrinter(TN) << " {" << TN->getDFSNumIn() << ", " << TN->getDFSNumOut() << '}'; };
// Verify the root's DFS In number. Although DFS numbering would also work // if we started from some other value, we assume 0-based numbering. if (Root->getDFSNumIn() != 0) { errs() << "DFSIn number for the tree root is not:\n\t"; PrintNodeAndDFSNums(Root); errs() << '\n'; errs().flush(); return false; }
// For each tree node verify if children's DFS numbers cover their parent's // DFS numbers with no gaps. for (const auto &NodeToTN : DT.DomTreeNodes) { const TreeNodePtr Node = NodeToTN.second.get();
// Handle tree leaves. if (Node->isLeaf()) { if (Node->getDFSNumIn() + 1 != Node->getDFSNumOut()) { errs() << "Tree leaf should have DFSOut = DFSIn + 1:\n\t"; PrintNodeAndDFSNums(Node); errs() << '\n'; errs().flush(); return false; }
continue; }
// Make a copy and sort it such that it is possible to check if there are // no gaps between DFS numbers of adjacent children. SmallVector<TreeNodePtr, 8> Children(Node->begin(), Node->end()); llvm::sort(Children, [](const TreeNodePtr Ch1, const TreeNodePtr Ch2) { return Ch1->getDFSNumIn() < Ch2->getDFSNumIn(); });
auto PrintChildrenError = [Node, &Children, PrintNodeAndDFSNums]( const TreeNodePtr FirstCh, const TreeNodePtr SecondCh) { assert(FirstCh);
errs() << "Incorrect DFS numbers for:\n\tParent "; PrintNodeAndDFSNums(Node);
errs() << "\n\tChild "; PrintNodeAndDFSNums(FirstCh);
if (SecondCh) { errs() << "\n\tSecond child "; PrintNodeAndDFSNums(SecondCh); }
errs() << "\nAll children: "; for (const TreeNodePtr Ch : Children) { PrintNodeAndDFSNums(Ch); errs() << ", "; }
errs() << '\n'; errs().flush(); };
if (Children.front()->getDFSNumIn() != Node->getDFSNumIn() + 1) { PrintChildrenError(Children.front(), nullptr); return false; }
if (Children.back()->getDFSNumOut() + 1 != Node->getDFSNumOut()) { PrintChildrenError(Children.back(), nullptr); return false; }
for (size_t i = 0, e = Children.size() - 1; i != e; ++i) { if (Children[i]->getDFSNumOut() + 1 != Children[i + 1]->getDFSNumIn()) { PrintChildrenError(Children[i], Children[i + 1]); return false; } } }
return true; }
// The below routines verify the correctness of the dominator tree relative to // the CFG it's coming from. A tree is a dominator tree iff it has two // properties, called the parent property and the sibling property. Tarjan // and Lengauer prove (but don't explicitly name) the properties as part of // the proofs in their 1972 paper, but the proofs are mostly part of proving // things about semidominators and idoms, and some of them are simply asserted // based on even earlier papers (see, e.g., lemma 2). Some papers refer to // these properties as "valid" and "co-valid". See, e.g., "Dominators, // directed bipolar orders, and independent spanning trees" by Loukas // Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification // and Vertex-Disjoint Paths " by the same authors.
// A very simple and direct explanation of these properties can be found in // "An Experimental Study of Dynamic Dominators", found at // https://arxiv.org/abs/1604.02711
// The easiest way to think of the parent property is that it's a requirement // of being a dominator. Let's just take immediate dominators. For PARENT to // be an immediate dominator of CHILD, all paths in the CFG must go through // PARENT before they hit CHILD. This implies that if you were to cut PARENT // out of the CFG, there should be no paths to CHILD that are reachable. If // there are, then you now have a path from PARENT to CHILD that goes around // PARENT and still reaches CHILD, which by definition, means PARENT can't be // a dominator of CHILD (let alone an immediate one).
// The sibling property is similar. It says that for each pair of sibling // nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each // other. If sibling LEFT dominated sibling RIGHT, it means there are no // paths in the CFG from sibling LEFT to sibling RIGHT that do not go through // LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of // RIGHT, not a sibling.
// It is possible to verify the parent and sibling properties in linear time, // but the algorithms are complex. Instead, we do it in a straightforward // N^2 and N^3 way below, using direct path reachability.
// Checks if the tree has the parent property: if for all edges from V to W in // the input graph, such that V is reachable, the parent of W in the tree is // an ancestor of V in the tree. // Running time: O(N^2). // // This means that if a node gets disconnected from the graph, then all of // the nodes it dominated previously will now become unreachable. bool verifyParentProperty(const DomTreeT &DT) { for (auto &NodeToTN : DT.DomTreeNodes) { const TreeNodePtr TN = NodeToTN.second.get(); const NodePtr BB = TN->getBlock(); if (!BB || TN->isLeaf()) continue;
LLVM_DEBUG(dbgs() << "Verifying parent property of node " << BlockNamePrinter(TN) << "\n"); clear(); doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) { return From != BB && To != BB; });
for (TreeNodePtr Child : TN->children()) if (NodeToInfo.count(Child->getBlock()) != 0) { errs() << "Child " << BlockNamePrinter(Child) << " reachable after its parent " << BlockNamePrinter(BB) << " is removed!\n"; errs().flush();
return false; } }
return true; }
// Check if the tree has sibling property: if a node V does not dominate a // node W for all siblings V and W in the tree. // Running time: O(N^3). // // This means that if a node gets disconnected from the graph, then all of its // siblings will now still be reachable. bool verifySiblingProperty(const DomTreeT &DT) { for (auto &NodeToTN : DT.DomTreeNodes) { const TreeNodePtr TN = NodeToTN.second.get(); const NodePtr BB = TN->getBlock(); if (!BB || TN->isLeaf()) continue;
for (const TreeNodePtr N : TN->children()) { clear(); NodePtr BBN = N->getBlock(); doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) { return From != BBN && To != BBN; });
for (const TreeNodePtr S : TN->children()) { if (S == N) continue;
if (NodeToInfo.count(S->getBlock()) == 0) { errs() << "Node " << BlockNamePrinter(S) << " not reachable when its sibling " << BlockNamePrinter(N) << " is removed!\n"; errs().flush();
return false; } } } }
return true; }
// Check if the given tree is the same as a freshly computed one for the same // Parent. // Running time: O(N^2), but faster in practice (same as tree construction). // // Note that this does not check if that the tree construction algorithm is // correct and should be only used for fast (but possibly unsound) // verification. static bool IsSameAsFreshTree(const DomTreeT &DT) { DomTreeT FreshTree; FreshTree.recalculate(*DT.Parent); const bool Different = DT.compare(FreshTree);
if (Different) { errs() << (DT.isPostDominator() ? "Post" : "") << "DominatorTree is different than a freshly computed one!\n" << "\tCurrent:\n"; DT.print(errs()); errs() << "\n\tFreshly computed tree:\n"; FreshTree.print(errs()); errs().flush(); }
return !Different; } };
template <class DomTreeT> void Calculate(DomTreeT &DT) { SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, nullptr); }
template <typename DomTreeT> void CalculateWithUpdates(DomTreeT &DT, ArrayRef<typename DomTreeT::UpdateType> Updates) { // FIXME: Updated to use the PreViewCFG and behave the same as until now. // This behavior is however incorrect; this actually needs the PostViewCFG. GraphDiff<typename DomTreeT::NodePtr, DomTreeT::IsPostDominator> PreViewCFG( Updates, /*ReverseApplyUpdates=*/true); typename SemiNCAInfo<DomTreeT>::BatchUpdateInfo BUI(PreViewCFG); SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, &BUI); }
template <class DomTreeT> void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, typename DomTreeT::NodePtr To) { if (DT.isPostDominator()) std::swap(From, To); SemiNCAInfo<DomTreeT>::InsertEdge(DT, nullptr, From, To); }
template <class DomTreeT> void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, typename DomTreeT::NodePtr To) { if (DT.isPostDominator()) std::swap(From, To); SemiNCAInfo<DomTreeT>::DeleteEdge(DT, nullptr, From, To); }
template <class DomTreeT> void ApplyUpdates(DomTreeT &DT, GraphDiff<typename DomTreeT::NodePtr, DomTreeT::IsPostDominator> &PreViewCFG, GraphDiff<typename DomTreeT::NodePtr, DomTreeT::IsPostDominator> *PostViewCFG) { SemiNCAInfo<DomTreeT>::ApplyUpdates(DT, PreViewCFG, PostViewCFG); }
template <class DomTreeT> bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL) { SemiNCAInfo<DomTreeT> SNCA(nullptr);
// Simplist check is to compare against a new tree. This will also // usefully print the old and new trees, if they are different. if (!SNCA.IsSameAsFreshTree(DT)) return false;
// Common checks to verify the properties of the tree. O(N log N) at worst. if (!SNCA.verifyRoots(DT) || !SNCA.verifyReachability(DT) || !SNCA.VerifyLevels(DT) || !SNCA.VerifyDFSNumbers(DT)) return false;
// Extra checks depending on VerificationLevel. Up to O(N^3). if (VL == DomTreeT::VerificationLevel::Basic || VL == DomTreeT::VerificationLevel::Full) if (!SNCA.verifyParentProperty(DT)) return false; if (VL == DomTreeT::VerificationLevel::Full) if (!SNCA.verifySiblingProperty(DT)) return false;
return true; }
} // namespace DomTreeBuilder } // namespace llvm
#undef DEBUG_TYPE
#endif
|