Viewing file: Casting.h (31.95 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the isa<X>(), cast<X>(), dyn_cast<X>(), // cast_if_present<X>(), and dyn_cast_if_present<X>() templates. // //===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_CASTING_H #define LLVM_SUPPORT_CASTING_H
#include "llvm/Support/Compiler.h" #include "llvm/Support/type_traits.h" #include <cassert> #include <memory> #include <optional> #include <type_traits>
namespace llvm {
//===----------------------------------------------------------------------===// // simplify_type //===----------------------------------------------------------------------===//
/// Define a template that can be specialized by smart pointers to reflect the /// fact that they are automatically dereferenced, and are not involved with the /// template selection process... the default implementation is a noop. // TODO: rename this and/or replace it with other cast traits. template <typename From> struct simplify_type { using SimpleType = From; // The real type this represents...
// An accessor to get the real value... static SimpleType &getSimplifiedValue(From &Val) { return Val; } };
template <typename From> struct simplify_type<const From> { using NonConstSimpleType = typename simplify_type<From>::SimpleType; using SimpleType = typename add_const_past_pointer<NonConstSimpleType>::type; using RetType = typename add_lvalue_reference_if_not_pointer<SimpleType>::type;
static RetType getSimplifiedValue(const From &Val) { return simplify_type<From>::getSimplifiedValue(const_cast<From &>(Val)); } };
// TODO: add this namespace once everyone is switched to using the new // interface. // namespace detail {
//===----------------------------------------------------------------------===// // isa_impl //===----------------------------------------------------------------------===//
// The core of the implementation of isa<X> is here; To and From should be // the names of classes. This template can be specialized to customize the // implementation of isa<> without rewriting it from scratch. template <typename To, typename From, typename Enabler = void> struct isa_impl { static inline bool doit(const From &Val) { return To::classof(&Val); } };
// Always allow upcasts, and perform no dynamic check for them. template <typename To, typename From> struct isa_impl<To, From, std::enable_if_t<std::is_base_of_v<To, From>>> { static inline bool doit(const From &) { return true; } };
template <typename To, typename From> struct isa_impl_cl { static inline bool doit(const From &Val) { return isa_impl<To, From>::doit(Val); } };
template <typename To, typename From> struct isa_impl_cl<To, const From> { static inline bool doit(const From &Val) { return isa_impl<To, From>::doit(Val); } };
template <typename To, typename From> struct isa_impl_cl<To, const std::unique_ptr<From>> { static inline bool doit(const std::unique_ptr<From> &Val) { assert(Val && "isa<> used on a null pointer"); return isa_impl_cl<To, From>::doit(*Val); } };
template <typename To, typename From> struct isa_impl_cl<To, From *> { static inline bool doit(const From *Val) { assert(Val && "isa<> used on a null pointer"); return isa_impl<To, From>::doit(*Val); } };
template <typename To, typename From> struct isa_impl_cl<To, From *const> { static inline bool doit(const From *Val) { assert(Val && "isa<> used on a null pointer"); return isa_impl<To, From>::doit(*Val); } };
template <typename To, typename From> struct isa_impl_cl<To, const From *> { static inline bool doit(const From *Val) { assert(Val && "isa<> used on a null pointer"); return isa_impl<To, From>::doit(*Val); } };
template <typename To, typename From> struct isa_impl_cl<To, const From *const> { static inline bool doit(const From *Val) { assert(Val && "isa<> used on a null pointer"); return isa_impl<To, From>::doit(*Val); } };
template <typename To, typename From, typename SimpleFrom> struct isa_impl_wrap { // When From != SimplifiedType, we can simplify the type some more by using // the simplify_type template. static bool doit(const From &Val) { return isa_impl_wrap<To, SimpleFrom, typename simplify_type<SimpleFrom>::SimpleType>:: doit(simplify_type<const From>::getSimplifiedValue(Val)); } };
template <typename To, typename FromTy> struct isa_impl_wrap<To, FromTy, FromTy> { // When From == SimpleType, we are as simple as we are going to get. static bool doit(const FromTy &Val) { return isa_impl_cl<To, FromTy>::doit(Val); } };
//===----------------------------------------------------------------------===// // cast_retty + cast_retty_impl //===----------------------------------------------------------------------===//
template <class To, class From> struct cast_retty;
// Calculate what type the 'cast' function should return, based on a requested // type of To and a source type of From. template <class To, class From> struct cast_retty_impl { using ret_type = To &; // Normal case, return Ty& }; template <class To, class From> struct cast_retty_impl<To, const From> { using ret_type = const To &; // Normal case, return Ty& };
template <class To, class From> struct cast_retty_impl<To, From *> { using ret_type = To *; // Pointer arg case, return Ty* };
template <class To, class From> struct cast_retty_impl<To, const From *> { using ret_type = const To *; // Constant pointer arg case, return const Ty* };
template <class To, class From> struct cast_retty_impl<To, const From *const> { using ret_type = const To *; // Constant pointer arg case, return const Ty* };
template <class To, class From> struct cast_retty_impl<To, std::unique_ptr<From>> { private: using PointerType = typename cast_retty_impl<To, From *>::ret_type; using ResultType = std::remove_pointer_t<PointerType>;
public: using ret_type = std::unique_ptr<ResultType>; };
template <class To, class From, class SimpleFrom> struct cast_retty_wrap { // When the simplified type and the from type are not the same, use the type // simplifier to reduce the type, then reuse cast_retty_impl to get the // resultant type. using ret_type = typename cast_retty<To, SimpleFrom>::ret_type; };
template <class To, class FromTy> struct cast_retty_wrap<To, FromTy, FromTy> { // When the simplified type is equal to the from type, use it directly. using ret_type = typename cast_retty_impl<To, FromTy>::ret_type; };
template <class To, class From> struct cast_retty { using ret_type = typename cast_retty_wrap< To, From, typename simplify_type<From>::SimpleType>::ret_type; };
//===----------------------------------------------------------------------===// // cast_convert_val //===----------------------------------------------------------------------===//
// Ensure the non-simple values are converted using the simplify_type template // that may be specialized by smart pointers... // template <class To, class From, class SimpleFrom> struct cast_convert_val { // This is not a simple type, use the template to simplify it... static typename cast_retty<To, From>::ret_type doit(const From &Val) { return cast_convert_val<To, SimpleFrom, typename simplify_type<SimpleFrom>::SimpleType>:: doit(simplify_type<From>::getSimplifiedValue(const_cast<From &>(Val))); } };
template <class To, class FromTy> struct cast_convert_val<To, FromTy, FromTy> { // If it's a reference, switch to a pointer to do the cast and then deref it. static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) { return *(std::remove_reference_t<typename cast_retty<To, FromTy>::ret_type> *)&const_cast<FromTy &>(Val); } };
template <class To, class FromTy> struct cast_convert_val<To, FromTy *, FromTy *> { // If it's a pointer, we can use c-style casting directly. static typename cast_retty<To, FromTy *>::ret_type doit(const FromTy *Val) { return (typename cast_retty<To, FromTy *>::ret_type) const_cast<FromTy *>( Val); } };
//===----------------------------------------------------------------------===// // is_simple_type //===----------------------------------------------------------------------===//
template <class X> struct is_simple_type { static const bool value = std::is_same_v<X, typename simplify_type<X>::SimpleType>; };
// } // namespace detail
//===----------------------------------------------------------------------===// // CastIsPossible //===----------------------------------------------------------------------===//
/// This struct provides a way to check if a given cast is possible. It provides /// a static function called isPossible that is used to check if a cast can be /// performed. It should be overridden like this: /// /// template<> struct CastIsPossible<foo, bar> { /// static inline bool isPossible(const bar &b) { /// return bar.isFoo(); /// } /// }; template <typename To, typename From, typename Enable = void> struct CastIsPossible { static inline bool isPossible(const From &f) { return isa_impl_wrap< To, const From, typename simplify_type<const From>::SimpleType>::doit(f); } };
// Needed for optional unwrapping. This could be implemented with isa_impl, but // we want to implement things in the new method and move old implementations // over. In fact, some of the isa_impl templates should be moved over to // CastIsPossible. template <typename To, typename From> struct CastIsPossible<To, std::optional<From>> { static inline bool isPossible(const std::optional<From> &f) { assert(f && "CastIsPossible::isPossible called on a nullopt!"); return isa_impl_wrap< To, const From, typename simplify_type<const From>::SimpleType>::doit(*f); } };
/// Upcasting (from derived to base) and casting from a type to itself should /// always be possible. template <typename To, typename From> struct CastIsPossible<To, From, std::enable_if_t<std::is_base_of_v<To, From>>> { static inline bool isPossible(const From &f) { return true; } };
//===----------------------------------------------------------------------===// // Cast traits //===----------------------------------------------------------------------===//
/// All of these cast traits are meant to be implementations for useful casts /// that users may want to use that are outside the standard behavior. An /// example of how to use a special cast called `CastTrait` is: /// /// template<> struct CastInfo<foo, bar> : public CastTrait<foo, bar> {}; /// /// Essentially, if your use case falls directly into one of the use cases /// supported by a given cast trait, simply inherit your special CastInfo /// directly from one of these to avoid having to reimplement the boilerplate /// `isPossible/castFailed/doCast/doCastIfPossible`. A cast trait can also /// provide a subset of those functions.
/// This cast trait just provides castFailed for the specified `To` type to make /// CastInfo specializations more declarative. In order to use this, the target /// result type must be `To` and `To` must be constructible from `nullptr`. template <typename To> struct NullableValueCastFailed { static To castFailed() { return To(nullptr); } };
/// This cast trait just provides the default implementation of doCastIfPossible /// to make CastInfo specializations more declarative. The `Derived` template /// parameter *must* be provided for forwarding castFailed and doCast. template <typename To, typename From, typename Derived> struct DefaultDoCastIfPossible { static To doCastIfPossible(From f) { if (!Derived::isPossible(f)) return Derived::castFailed(); return Derived::doCast(f); } };
namespace detail { /// A helper to derive the type to use with `Self` for cast traits, when the /// provided CRTP derived type is allowed to be void. template <typename OptionalDerived, typename Default> using SelfType = std::conditional_t<std::is_same_v<OptionalDerived, void>, Default, OptionalDerived>; } // namespace detail
/// This cast trait provides casting for the specific case of casting to a /// value-typed object from a pointer-typed object. Note that `To` must be /// nullable/constructible from a pointer to `From` to use this cast. template <typename To, typename From, typename Derived = void> struct ValueFromPointerCast : public CastIsPossible<To, From *>, public NullableValueCastFailed<To>, public DefaultDoCastIfPossible< To, From *, detail::SelfType<Derived, ValueFromPointerCast<To, From>>> { static inline To doCast(From *f) { return To(f); } };
/// This cast trait provides std::unique_ptr casting. It has the semantics of /// moving the contents of the input unique_ptr into the output unique_ptr /// during the cast. It's also a good example of how to implement a move-only /// cast. template <typename To, typename From, typename Derived = void> struct UniquePtrCast : public CastIsPossible<To, From *> { using Self = detail::SelfType<Derived, UniquePtrCast<To, From>>; using CastResultType = std::unique_ptr< std::remove_reference_t<typename cast_retty<To, From>::ret_type>>;
static inline CastResultType doCast(std::unique_ptr<From> &&f) { return CastResultType((typename CastResultType::element_type *)f.release()); }
static inline CastResultType castFailed() { return CastResultType(nullptr); }
static inline CastResultType doCastIfPossible(std::unique_ptr<From> &f) { if (!Self::isPossible(f.get())) return castFailed(); return doCast(std::move(f)); } };
/// This cast trait provides std::optional<T> casting. This means that if you /// have a value type, you can cast it to another value type and have dyn_cast /// return an std::optional<T>. template <typename To, typename From, typename Derived = void> struct OptionalValueCast : public CastIsPossible<To, From>, public DefaultDoCastIfPossible< std::optional<To>, From, detail::SelfType<Derived, OptionalValueCast<To, From>>> { static inline std::optional<To> castFailed() { return std::optional<To>{}; }
static inline std::optional<To> doCast(const From &f) { return To(f); } };
/// Provides a cast trait that strips `const` from types to make it easier to /// implement a const-version of a non-const cast. It just removes boilerplate /// and reduces the amount of code you as the user need to implement. You can /// use it like this: /// /// template<> struct CastInfo<foo, bar> { /// ...verbose implementation... /// }; /// /// template<> struct CastInfo<foo, const bar> : public /// ConstStrippingForwardingCast<foo, const bar, CastInfo<foo, bar>> {}; /// template <typename To, typename From, typename ForwardTo> struct ConstStrippingForwardingCast { // Remove the pointer if it exists, then we can get rid of consts/volatiles. using DecayedFrom = std::remove_cv_t<std::remove_pointer_t<From>>; // Now if it's a pointer, add it back. Otherwise, we want a ref. using NonConstFrom = std::conditional_t<std::is_pointer_v<From>, DecayedFrom *, DecayedFrom &>;
static inline bool isPossible(const From &f) { return ForwardTo::isPossible(const_cast<NonConstFrom>(f)); }
static inline decltype(auto) castFailed() { return ForwardTo::castFailed(); }
static inline decltype(auto) doCast(const From &f) { return ForwardTo::doCast(const_cast<NonConstFrom>(f)); }
static inline decltype(auto) doCastIfPossible(const From &f) { return ForwardTo::doCastIfPossible(const_cast<NonConstFrom>(f)); } };
/// Provides a cast trait that uses a defined pointer to pointer cast as a base /// for reference-to-reference casts. Note that it does not provide castFailed /// and doCastIfPossible because a pointer-to-pointer cast would likely just /// return `nullptr` which could cause nullptr dereference. You can use it like /// this: /// /// template <> struct CastInfo<foo, bar *> { ... verbose implementation... }; /// /// template <> /// struct CastInfo<foo, bar> /// : public ForwardToPointerCast<foo, bar, CastInfo<foo, bar *>> {}; /// template <typename To, typename From, typename ForwardTo> struct ForwardToPointerCast { static inline bool isPossible(const From &f) { return ForwardTo::isPossible(&f); }
static inline decltype(auto) doCast(const From &f) { return *ForwardTo::doCast(&f); } };
//===----------------------------------------------------------------------===// // CastInfo //===----------------------------------------------------------------------===//
/// This struct provides a method for customizing the way a cast is performed. /// It inherits from CastIsPossible, to support the case of declaring many /// CastIsPossible specializations without having to specialize the full /// CastInfo. /// /// In order to specialize different behaviors, specify different functions in /// your CastInfo specialization. /// For isa<> customization, provide: /// /// `static bool isPossible(const From &f)` /// /// For cast<> customization, provide: /// /// `static To doCast(const From &f)` /// /// For dyn_cast<> and the *_if_present<> variants' customization, provide: /// /// `static To castFailed()` and `static To doCastIfPossible(const From &f)` /// /// Your specialization might look something like this: /// /// template<> struct CastInfo<foo, bar> : public CastIsPossible<foo, bar> { /// static inline foo doCast(const bar &b) { /// return foo(const_cast<bar &>(b)); /// } /// static inline foo castFailed() { return foo(); } /// static inline foo doCastIfPossible(const bar &b) { /// if (!CastInfo<foo, bar>::isPossible(b)) /// return castFailed(); /// return doCast(b); /// } /// };
// The default implementations of CastInfo don't use cast traits for now because // we need to specify types all over the place due to the current expected // casting behavior and the way cast_retty works. New use cases can and should // take advantage of the cast traits whenever possible!
template <typename To, typename From, typename Enable = void> struct CastInfo : public CastIsPossible<To, From> { using Self = CastInfo<To, From, Enable>;
using CastReturnType = typename cast_retty<To, From>::ret_type;
static inline CastReturnType doCast(const From &f) { return cast_convert_val< To, From, typename simplify_type<From>::SimpleType>::doit(const_cast<From &>(f)); }
// This assumes that you can construct the cast return type from `nullptr`. // This is largely to support legacy use cases - if you don't want this // behavior you should specialize CastInfo for your use case. static inline CastReturnType castFailed() { return CastReturnType(nullptr); }
static inline CastReturnType doCastIfPossible(const From &f) { if (!Self::isPossible(f)) return castFailed(); return doCast(f); } };
/// This struct provides an overload for CastInfo where From has simplify_type /// defined. This simply forwards to the appropriate CastInfo with the /// simplified type/value, so you don't have to implement both. template <typename To, typename From> struct CastInfo<To, From, std::enable_if_t<!is_simple_type<From>::value>> { using Self = CastInfo<To, From>; using SimpleFrom = typename simplify_type<From>::SimpleType; using SimplifiedSelf = CastInfo<To, SimpleFrom>;
static inline bool isPossible(From &f) { return SimplifiedSelf::isPossible( simplify_type<From>::getSimplifiedValue(f)); }
static inline decltype(auto) doCast(From &f) { return SimplifiedSelf::doCast(simplify_type<From>::getSimplifiedValue(f)); }
static inline decltype(auto) castFailed() { return SimplifiedSelf::castFailed(); }
static inline decltype(auto) doCastIfPossible(From &f) { return SimplifiedSelf::doCastIfPossible( simplify_type<From>::getSimplifiedValue(f)); } };
//===----------------------------------------------------------------------===// // Pre-specialized CastInfo //===----------------------------------------------------------------------===//
/// Provide a CastInfo specialized for std::unique_ptr. template <typename To, typename From> struct CastInfo<To, std::unique_ptr<From>> : public UniquePtrCast<To, From> {};
/// Provide a CastInfo specialized for std::optional<From>. It's assumed that if /// the input is std::optional<From> that the output can be std::optional<To>. /// If that's not the case, specialize CastInfo for your use case. template <typename To, typename From> struct CastInfo<To, std::optional<From>> : public OptionalValueCast<To, From> { };
/// isa<X> - Return true if the parameter to the template is an instance of one /// of the template type arguments. Used like this: /// /// if (isa<Type>(myVal)) { ... } /// if (isa<Type0, Type1, Type2>(myVal)) { ... } template <typename To, typename From> [[nodiscard]] inline bool isa(const From &Val) { return CastInfo<To, const From>::isPossible(Val); }
template <typename First, typename Second, typename... Rest, typename From> [[nodiscard]] inline bool isa(const From &Val) { return isa<First>(Val) || isa<Second, Rest...>(Val); }
/// cast<X> - Return the argument parameter cast to the specified type. This /// casting operator asserts that the type is correct, so it does not return /// null on failure. It does not allow a null argument (use cast_if_present for /// that). It is typically used like this: /// /// cast<Instruction>(myVal)->getParent()
template <typename To, typename From> [[nodiscard]] inline decltype(auto) cast(const From &Val) { assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!"); return CastInfo<To, const From>::doCast(Val); }
template <typename To, typename From> [[nodiscard]] inline decltype(auto) cast(From &Val) { assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!"); return CastInfo<To, From>::doCast(Val); }
template <typename To, typename From> [[nodiscard]] inline decltype(auto) cast(From *Val) { assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!"); return CastInfo<To, From *>::doCast(Val); }
template <typename To, typename From> [[nodiscard]] inline decltype(auto) cast(std::unique_ptr<From> &&Val) { assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!"); return CastInfo<To, std::unique_ptr<From>>::doCast(std::move(Val)); }
//===----------------------------------------------------------------------===// // ValueIsPresent //===----------------------------------------------------------------------===//
template <typename T> constexpr bool IsNullable = std::is_pointer_v<T> || std::is_constructible_v<T, std::nullptr_t>;
/// ValueIsPresent provides a way to check if a value is, well, present. For /// pointers, this is the equivalent of checking against nullptr, for Optionals /// this is the equivalent of checking hasValue(). It also provides a method for /// unwrapping a value (think calling .value() on an optional).
// Generic values can't *not* be present. template <typename T, typename Enable = void> struct ValueIsPresent { using UnwrappedType = T; static inline bool isPresent(const T &t) { return true; } static inline decltype(auto) unwrapValue(T &t) { return t; } };
// Optional provides its own way to check if something is present. template <typename T> struct ValueIsPresent<std::optional<T>> { using UnwrappedType = T; static inline bool isPresent(const std::optional<T> &t) { return t.has_value(); } static inline decltype(auto) unwrapValue(std::optional<T> &t) { return *t; } };
// If something is "nullable" then we just compare it to nullptr to see if it // exists. template <typename T> struct ValueIsPresent<T, std::enable_if_t<IsNullable<T>>> { using UnwrappedType = T; static inline bool isPresent(const T &t) { return t != T(nullptr); } static inline decltype(auto) unwrapValue(T &t) { return t; } };
namespace detail { // Convenience function we can use to check if a value is present. Because of // simplify_type, we have to call it on the simplified type for now. template <typename T> inline bool isPresent(const T &t) { return ValueIsPresent<typename simplify_type<T>::SimpleType>::isPresent( simplify_type<T>::getSimplifiedValue(const_cast<T &>(t))); }
// Convenience function we can use to unwrap a value. template <typename T> inline decltype(auto) unwrapValue(T &t) { return ValueIsPresent<T>::unwrapValue(t); } } // namespace detail
/// dyn_cast<X> - Return the argument parameter cast to the specified type. This /// casting operator returns null if the argument is of the wrong type, so it /// can be used to test for a type as well as cast if successful. The value /// passed in must be present, if not, use dyn_cast_if_present. This should be /// used in the context of an if statement like this: /// /// if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... }
template <typename To, typename From> [[nodiscard]] inline decltype(auto) dyn_cast(const From &Val) { assert(detail::isPresent(Val) && "dyn_cast on a non-existent value"); return CastInfo<To, const From>::doCastIfPossible(Val); }
template <typename To, typename From> [[nodiscard]] inline decltype(auto) dyn_cast(From &Val) { assert(detail::isPresent(Val) && "dyn_cast on a non-existent value"); return CastInfo<To, From>::doCastIfPossible(Val); }
template <typename To, typename From> [[nodiscard]] inline decltype(auto) dyn_cast(From *Val) { assert(detail::isPresent(Val) && "dyn_cast on a non-existent value"); return CastInfo<To, From *>::doCastIfPossible(Val); }
template <typename To, typename From> [[nodiscard]] inline decltype(auto) dyn_cast(std::unique_ptr<From> &Val) { assert(detail::isPresent(Val) && "dyn_cast on a non-existent value"); return CastInfo<To, std::unique_ptr<From>>::doCastIfPossible(Val); }
/// isa_and_present<X> - Functionally identical to isa, except that a null value /// is accepted. template <typename... X, class Y> [[nodiscard]] inline bool isa_and_present(const Y &Val) { if (!detail::isPresent(Val)) return false; return isa<X...>(Val); }
template <typename... X, class Y> [[nodiscard]] inline bool isa_and_nonnull(const Y &Val) { return isa_and_present<X...>(Val); }
/// cast_if_present<X> - Functionally identical to cast, except that a null /// value is accepted. template <class X, class Y> [[nodiscard]] inline auto cast_if_present(const Y &Val) { if (!detail::isPresent(Val)) return CastInfo<X, const Y>::castFailed(); assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!"); return cast<X>(detail::unwrapValue(Val)); }
template <class X, class Y> [[nodiscard]] inline auto cast_if_present(Y &Val) { if (!detail::isPresent(Val)) return CastInfo<X, Y>::castFailed(); assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!"); return cast<X>(detail::unwrapValue(Val)); }
template <class X, class Y> [[nodiscard]] inline auto cast_if_present(Y *Val) { if (!detail::isPresent(Val)) return CastInfo<X, Y *>::castFailed(); assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!"); return cast<X>(detail::unwrapValue(Val)); }
template <class X, class Y> [[nodiscard]] inline auto cast_if_present(std::unique_ptr<Y> &&Val) { if (!detail::isPresent(Val)) return UniquePtrCast<X, Y>::castFailed(); return UniquePtrCast<X, Y>::doCast(std::move(Val)); }
// Provide a forwarding from cast_or_null to cast_if_present for current // users. This is deprecated and will be removed in a future patch, use // cast_if_present instead. template <class X, class Y> auto cast_or_null(const Y &Val) { return cast_if_present<X>(Val); }
template <class X, class Y> auto cast_or_null(Y &Val) { return cast_if_present<X>(Val); }
template <class X, class Y> auto cast_or_null(Y *Val) { return cast_if_present<X>(Val); }
template <class X, class Y> auto cast_or_null(std::unique_ptr<Y> &&Val) { return cast_if_present<X>(std::move(Val)); }
/// dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a /// null (or none in the case of optionals) value is accepted. template <class X, class Y> auto dyn_cast_if_present(const Y &Val) { if (!detail::isPresent(Val)) return CastInfo<X, const Y>::castFailed(); return CastInfo<X, const Y>::doCastIfPossible(detail::unwrapValue(Val)); }
template <class X, class Y> auto dyn_cast_if_present(Y &Val) { if (!detail::isPresent(Val)) return CastInfo<X, Y>::castFailed(); return CastInfo<X, Y>::doCastIfPossible(detail::unwrapValue(Val)); }
template <class X, class Y> auto dyn_cast_if_present(Y *Val) { if (!detail::isPresent(Val)) return CastInfo<X, Y *>::castFailed(); return CastInfo<X, Y *>::doCastIfPossible(detail::unwrapValue(Val)); }
// Forwards to dyn_cast_if_present to avoid breaking current users. This is // deprecated and will be removed in a future patch, use // cast_if_present instead. template <class X, class Y> auto dyn_cast_or_null(const Y &Val) { return dyn_cast_if_present<X>(Val); }
template <class X, class Y> auto dyn_cast_or_null(Y &Val) { return dyn_cast_if_present<X>(Val); }
template <class X, class Y> auto dyn_cast_or_null(Y *Val) { return dyn_cast_if_present<X>(Val); }
/// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>, /// taking ownership of the input pointer iff isa<X>(Val) is true. If the /// cast is successful, From refers to nullptr on exit and the casted value /// is returned. If the cast is unsuccessful, the function returns nullptr /// and From is unchanged. template <class X, class Y> [[nodiscard]] inline typename CastInfo<X, std::unique_ptr<Y>>::CastResultType unique_dyn_cast(std::unique_ptr<Y> &Val) { if (!isa<X>(Val)) return nullptr; return cast<X>(std::move(Val)); }
template <class X, class Y> [[nodiscard]] inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val) { return unique_dyn_cast<X, Y>(Val); }
// unique_dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast, // except that a null value is accepted. template <class X, class Y> [[nodiscard]] inline typename CastInfo<X, std::unique_ptr<Y>>::CastResultType unique_dyn_cast_or_null(std::unique_ptr<Y> &Val) { if (!Val) return nullptr; return unique_dyn_cast<X, Y>(Val); }
template <class X, class Y> [[nodiscard]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val) { return unique_dyn_cast_or_null<X, Y>(Val); }
//===----------------------------------------------------------------------===// // Isa Predicates //===----------------------------------------------------------------------===//
/// These are wrappers over isa* function that allow them to be used in generic /// algorithms such as `llvm:all_of`, `llvm::none_of`, etc. This is accomplished /// by exposing the isa* functions through function objects with a generic /// function call operator.
namespace detail { template <typename... Types> struct IsaCheckPredicate { template <typename T> [[nodiscard]] bool operator()(const T &Val) const { return isa<Types...>(Val); } };
template <typename... Types> struct IsaAndPresentCheckPredicate { template <typename T> [[nodiscard]] bool operator()(const T &Val) const { return isa_and_present<Types...>(Val); } }; } // namespace detail
/// Function object wrapper for the `llvm::isa` type check. The function call /// operator returns true when the value can be cast to any type in `Types`. /// Example: /// ``` /// SmallVector<Type> myTypes = ...; /// if (llvm::all_of(myTypes, llvm::IsaPred<VectorType>)) /// ... /// ``` template <typename... Types> inline constexpr detail::IsaCheckPredicate<Types...> IsaPred{};
/// Function object wrapper for the `llvm::isa_and_present` type check. The /// function call operator returns true when the value can be cast to any type /// in `Types`, or if the value is not present (e.g., nullptr). Example: /// ``` /// SmallVector<Type> myTypes = ...; /// if (llvm::all_of(myTypes, llvm::IsaAndPresentPred<VectorType>)) /// ... /// ``` template <typename... Types> inline constexpr detail::IsaAndPresentCheckPredicate<Types...> IsaAndPresentPred{};
} // end namespace llvm
#endif // LLVM_SUPPORT_CASTING_H
|