Viewing file: Allocator.h (17.15 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- Allocator.h - Simple memory allocation abstraction -------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// /// This file defines the BumpPtrAllocator interface. BumpPtrAllocator conforms /// to the LLVM "Allocator" concept and is similar to MallocAllocator, but /// objects cannot be deallocated. Their lifetime is tied to the lifetime of the /// allocator. /// //===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_ALLOCATOR_H #define LLVM_SUPPORT_ALLOCATOR_H
#include "llvm/ADT/SmallVector.h" #include "llvm/Support/Alignment.h" #include "llvm/Support/AllocatorBase.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/MathExtras.h" #include <algorithm> #include <cassert> #include <cstddef> #include <cstdint> #include <iterator> #include <optional> #include <utility>
namespace llvm {
namespace detail {
// We call out to an external function to actually print the message as the // printing code uses Allocator.h in its implementation. void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated, size_t TotalMemory);
} // end namespace detail
/// Allocate memory in an ever growing pool, as if by bump-pointer. /// /// This isn't strictly a bump-pointer allocator as it uses backing slabs of /// memory rather than relying on a boundless contiguous heap. However, it has /// bump-pointer semantics in that it is a monotonically growing pool of memory /// where every allocation is found by merely allocating the next N bytes in /// the slab, or the next N bytes in the next slab. /// /// Note that this also has a threshold for forcing allocations above a certain /// size into their own slab. /// /// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator /// object, which wraps malloc, to allocate memory, but it can be changed to /// use a custom allocator. /// /// The GrowthDelay specifies after how many allocated slabs the allocator /// increases the size of the slabs. template <typename AllocatorT = MallocAllocator, size_t SlabSize = 4096, size_t SizeThreshold = SlabSize, size_t GrowthDelay = 128> class BumpPtrAllocatorImpl : public AllocatorBase<BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold, GrowthDelay>>, private detail::AllocatorHolder<AllocatorT> { using AllocTy = detail::AllocatorHolder<AllocatorT>;
public: static_assert(SizeThreshold <= SlabSize, "The SizeThreshold must be at most the SlabSize to ensure " "that objects larger than a slab go into their own memory " "allocation."); static_assert(GrowthDelay > 0, "GrowthDelay must be at least 1 which already increases the" "slab size after each allocated slab.");
BumpPtrAllocatorImpl() = default;
template <typename T> BumpPtrAllocatorImpl(T &&Allocator) : AllocTy(std::forward<T &&>(Allocator)) {}
// Manually implement a move constructor as we must clear the old allocator's // slabs as a matter of correctness. BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old) : AllocTy(std::move(Old.getAllocator())), CurPtr(Old.CurPtr), End(Old.End), Slabs(std::move(Old.Slabs)), CustomSizedSlabs(std::move(Old.CustomSizedSlabs)), BytesAllocated(Old.BytesAllocated), RedZoneSize(Old.RedZoneSize) { Old.CurPtr = Old.End = nullptr; Old.BytesAllocated = 0; Old.Slabs.clear(); Old.CustomSizedSlabs.clear(); }
~BumpPtrAllocatorImpl() { DeallocateSlabs(Slabs.begin(), Slabs.end()); DeallocateCustomSizedSlabs(); }
BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) { DeallocateSlabs(Slabs.begin(), Slabs.end()); DeallocateCustomSizedSlabs();
CurPtr = RHS.CurPtr; End = RHS.End; BytesAllocated = RHS.BytesAllocated; RedZoneSize = RHS.RedZoneSize; Slabs = std::move(RHS.Slabs); CustomSizedSlabs = std::move(RHS.CustomSizedSlabs); AllocTy::operator=(std::move(RHS.getAllocator()));
RHS.CurPtr = RHS.End = nullptr; RHS.BytesAllocated = 0; RHS.Slabs.clear(); RHS.CustomSizedSlabs.clear(); return *this; }
/// Deallocate all but the current slab and reset the current pointer /// to the beginning of it, freeing all memory allocated so far. void Reset() { // Deallocate all but the first slab, and deallocate all custom-sized slabs. DeallocateCustomSizedSlabs(); CustomSizedSlabs.clear();
if (Slabs.empty()) return;
// Reset the state. BytesAllocated = 0; CurPtr = (char *)Slabs.front(); End = CurPtr + SlabSize;
__asan_poison_memory_region(*Slabs.begin(), computeSlabSize(0)); DeallocateSlabs(std::next(Slabs.begin()), Slabs.end()); Slabs.erase(std::next(Slabs.begin()), Slabs.end()); }
/// Allocate space at the specified alignment. // This method is *not* marked noalias, because // SpecificBumpPtrAllocator::DestroyAll() loops over all allocations, and // that loop is not based on the Allocate() return value. // // Allocate(0, N) is valid, it returns a non-null pointer (which should not // be dereferenced). LLVM_ATTRIBUTE_RETURNS_NONNULL void *Allocate(size_t Size, Align Alignment) { // Keep track of how many bytes we've allocated. BytesAllocated += Size;
size_t Adjustment = offsetToAlignedAddr(CurPtr, Alignment); assert(Adjustment + Size >= Size && "Adjustment + Size must not overflow");
size_t SizeToAllocate = Size; #if LLVM_ADDRESS_SANITIZER_BUILD // Add trailing bytes as a "red zone" under ASan. SizeToAllocate += RedZoneSize; #endif
// Check if we have enough space. if (LLVM_LIKELY(Adjustment + SizeToAllocate <= size_t(End - CurPtr) // We can't return nullptr even for a zero-sized allocation! && CurPtr != nullptr)) { char *AlignedPtr = CurPtr + Adjustment; CurPtr = AlignedPtr + SizeToAllocate; // Update the allocation point of this memory block in MemorySanitizer. // Without this, MemorySanitizer messages for values originated from here // will point to the allocation of the entire slab. __msan_allocated_memory(AlignedPtr, Size); // Similarly, tell ASan about this space. __asan_unpoison_memory_region(AlignedPtr, Size); return AlignedPtr; }
return AllocateSlow(Size, SizeToAllocate, Alignment); }
LLVM_ATTRIBUTE_RETURNS_NONNULL LLVM_ATTRIBUTE_NOINLINE void * AllocateSlow(size_t Size, size_t SizeToAllocate, Align Alignment) { // If Size is really big, allocate a separate slab for it. size_t PaddedSize = SizeToAllocate + Alignment.value() - 1; if (PaddedSize > SizeThreshold) { void *NewSlab = this->getAllocator().Allocate(PaddedSize, alignof(std::max_align_t)); // We own the new slab and don't want anyone reading anyting other than // pieces returned from this method. So poison the whole slab. __asan_poison_memory_region(NewSlab, PaddedSize); CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize));
uintptr_t AlignedAddr = alignAddr(NewSlab, Alignment); assert(AlignedAddr + Size <= (uintptr_t)NewSlab + PaddedSize); char *AlignedPtr = (char*)AlignedAddr; __msan_allocated_memory(AlignedPtr, Size); __asan_unpoison_memory_region(AlignedPtr, Size); return AlignedPtr; }
// Otherwise, start a new slab and try again. StartNewSlab(); uintptr_t AlignedAddr = alignAddr(CurPtr, Alignment); assert(AlignedAddr + SizeToAllocate <= (uintptr_t)End && "Unable to allocate memory!"); char *AlignedPtr = (char*)AlignedAddr; CurPtr = AlignedPtr + SizeToAllocate; __msan_allocated_memory(AlignedPtr, Size); __asan_unpoison_memory_region(AlignedPtr, Size); return AlignedPtr; }
inline LLVM_ATTRIBUTE_RETURNS_NONNULL void * Allocate(size_t Size, size_t Alignment) { assert(Alignment > 0 && "0-byte alignment is not allowed. Use 1 instead."); return Allocate(Size, Align(Alignment)); }
// Pull in base class overloads. using AllocatorBase<BumpPtrAllocatorImpl>::Allocate;
// Bump pointer allocators are expected to never free their storage; and // clients expect pointers to remain valid for non-dereferencing uses even // after deallocation. void Deallocate(const void *Ptr, size_t Size, size_t /*Alignment*/) { __asan_poison_memory_region(Ptr, Size); }
// Pull in base class overloads. using AllocatorBase<BumpPtrAllocatorImpl>::Deallocate;
size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); }
/// \return An index uniquely and reproducibly identifying /// an input pointer \p Ptr in the given allocator. /// The returned value is negative iff the object is inside a custom-size /// slab. /// Returns an empty optional if the pointer is not found in the allocator. std::optional<int64_t> identifyObject(const void *Ptr) { const char *P = static_cast<const char *>(Ptr); int64_t InSlabIdx = 0; for (size_t Idx = 0, E = Slabs.size(); Idx < E; Idx++) { const char *S = static_cast<const char *>(Slabs[Idx]); if (P >= S && P < S + computeSlabSize(Idx)) return InSlabIdx + static_cast<int64_t>(P - S); InSlabIdx += static_cast<int64_t>(computeSlabSize(Idx)); }
// Use negative index to denote custom sized slabs. int64_t InCustomSizedSlabIdx = -1; for (size_t Idx = 0, E = CustomSizedSlabs.size(); Idx < E; Idx++) { const char *S = static_cast<const char *>(CustomSizedSlabs[Idx].first); size_t Size = CustomSizedSlabs[Idx].second; if (P >= S && P < S + Size) return InCustomSizedSlabIdx - static_cast<int64_t>(P - S); InCustomSizedSlabIdx -= static_cast<int64_t>(Size); } return std::nullopt; }
/// A wrapper around identifyObject that additionally asserts that /// the object is indeed within the allocator. /// \return An index uniquely and reproducibly identifying /// an input pointer \p Ptr in the given allocator. int64_t identifyKnownObject(const void *Ptr) { std::optional<int64_t> Out = identifyObject(Ptr); assert(Out && "Wrong allocator used"); return *Out; }
/// A wrapper around identifyKnownObject. Accepts type information /// about the object and produces a smaller identifier by relying on /// the alignment information. Note that sub-classes may have different /// alignment, so the most base class should be passed as template parameter /// in order to obtain correct results. For that reason automatic template /// parameter deduction is disabled. /// \return An index uniquely and reproducibly identifying /// an input pointer \p Ptr in the given allocator. This identifier is /// different from the ones produced by identifyObject and /// identifyAlignedObject. template <typename T> int64_t identifyKnownAlignedObject(const void *Ptr) { int64_t Out = identifyKnownObject(Ptr); assert(Out % alignof(T) == 0 && "Wrong alignment information"); return Out / alignof(T); }
size_t getTotalMemory() const { size_t TotalMemory = 0; for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I) TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I)); for (const auto &PtrAndSize : CustomSizedSlabs) TotalMemory += PtrAndSize.second; return TotalMemory; }
size_t getBytesAllocated() const { return BytesAllocated; }
void setRedZoneSize(size_t NewSize) { RedZoneSize = NewSize; }
void PrintStats() const { detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated, getTotalMemory()); }
private: /// The current pointer into the current slab. /// /// This points to the next free byte in the slab. char *CurPtr = nullptr;
/// The end of the current slab. char *End = nullptr;
/// The slabs allocated so far. SmallVector<void *, 4> Slabs;
/// Custom-sized slabs allocated for too-large allocation requests. SmallVector<std::pair<void *, size_t>, 0> CustomSizedSlabs;
/// How many bytes we've allocated. /// /// Used so that we can compute how much space was wasted. size_t BytesAllocated = 0;
/// The number of bytes to put between allocations when running under /// a sanitizer. size_t RedZoneSize = 1;
static size_t computeSlabSize(unsigned SlabIdx) { // Scale the actual allocated slab size based on the number of slabs // allocated. Every GrowthDelay slabs allocated, we double // the allocated size to reduce allocation frequency, but saturate at // multiplying the slab size by 2^30. return SlabSize * ((size_t)1 << std::min<size_t>(30, SlabIdx / GrowthDelay)); }
/// Allocate a new slab and move the bump pointers over into the new /// slab, modifying CurPtr and End. void StartNewSlab() { size_t AllocatedSlabSize = computeSlabSize(Slabs.size());
void *NewSlab = this->getAllocator().Allocate(AllocatedSlabSize, alignof(std::max_align_t)); // We own the new slab and don't want anyone reading anything other than // pieces returned from this method. So poison the whole slab. __asan_poison_memory_region(NewSlab, AllocatedSlabSize);
Slabs.push_back(NewSlab); CurPtr = (char *)(NewSlab); End = ((char *)NewSlab) + AllocatedSlabSize; }
/// Deallocate a sequence of slabs. void DeallocateSlabs(SmallVectorImpl<void *>::iterator I, SmallVectorImpl<void *>::iterator E) { for (; I != E; ++I) { size_t AllocatedSlabSize = computeSlabSize(std::distance(Slabs.begin(), I)); this->getAllocator().Deallocate(*I, AllocatedSlabSize, alignof(std::max_align_t)); } }
/// Deallocate all memory for custom sized slabs. void DeallocateCustomSizedSlabs() { for (auto &PtrAndSize : CustomSizedSlabs) { void *Ptr = PtrAndSize.first; size_t Size = PtrAndSize.second; this->getAllocator().Deallocate(Ptr, Size, alignof(std::max_align_t)); } }
template <typename T> friend class SpecificBumpPtrAllocator; };
/// The standard BumpPtrAllocator which just uses the default template /// parameters. typedef BumpPtrAllocatorImpl<> BumpPtrAllocator;
/// A BumpPtrAllocator that allows only elements of a specific type to be /// allocated. /// /// This allows calling the destructor in DestroyAll() and when the allocator is /// destroyed. template <typename T> class SpecificBumpPtrAllocator { BumpPtrAllocator Allocator;
public: SpecificBumpPtrAllocator() { // Because SpecificBumpPtrAllocator walks the memory to call destructors, // it can't have red zones between allocations. Allocator.setRedZoneSize(0); } SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old) : Allocator(std::move(Old.Allocator)) {} ~SpecificBumpPtrAllocator() { DestroyAll(); }
SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) { Allocator = std::move(RHS.Allocator); return *this; }
/// Call the destructor of each allocated object and deallocate all but the /// current slab and reset the current pointer to the beginning of it, freeing /// all memory allocated so far. void DestroyAll() { auto DestroyElements = [](char *Begin, char *End) { assert(Begin == (char *)alignAddr(Begin, Align::Of<T>())); for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T)) reinterpret_cast<T *>(Ptr)->~T(); };
for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E; ++I) { size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize( std::distance(Allocator.Slabs.begin(), I)); char *Begin = (char *)alignAddr(*I, Align::Of<T>()); char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr : (char *)*I + AllocatedSlabSize;
DestroyElements(Begin, End); }
for (auto &PtrAndSize : Allocator.CustomSizedSlabs) { void *Ptr = PtrAndSize.first; size_t Size = PtrAndSize.second; DestroyElements((char *)alignAddr(Ptr, Align::Of<T>()), (char *)Ptr + Size); }
Allocator.Reset(); }
/// Allocate space for an array of objects without constructing them. T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); } };
} // end namespace llvm
template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold, size_t GrowthDelay> void * operator new(size_t Size, llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold, GrowthDelay> &Allocator) { return Allocator.Allocate(Size, std::min((size_t)llvm::NextPowerOf2(Size), alignof(std::max_align_t))); }
template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold, size_t GrowthDelay> void operator delete(void *, llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold, GrowthDelay> &) { }
#endif // LLVM_SUPPORT_ALLOCATOR_H
|