Viewing file: ELFYAML.h (29.5 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- ELFYAML.h - ELF YAMLIO implementation --------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file declares classes for handling the YAML representation /// of ELF. /// //===----------------------------------------------------------------------===//
#ifndef LLVM_OBJECTYAML_ELFYAML_H #define LLVM_OBJECTYAML_ELFYAML_H
#include "llvm/ADT/StringRef.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/Object/ELFTypes.h" #include "llvm/ObjectYAML/DWARFYAML.h" #include "llvm/ObjectYAML/YAML.h" #include "llvm/Support/YAMLTraits.h" #include <cstdint> #include <memory> #include <optional> #include <vector>
namespace llvm { namespace ELFYAML {
StringRef dropUniqueSuffix(StringRef S); std::string appendUniqueSuffix(StringRef Name, const Twine& Msg);
// These types are invariant across 32/64-bit ELF, so for simplicity just // directly give them their exact sizes. We don't need to worry about // endianness because these are just the types in the YAMLIO structures, // and are appropriately converted to the necessary endianness when // reading/generating binary object files. // The naming of these types is intended to be ELF_PREFIX, where PREFIX is // the common prefix of the respective constants. E.g. ELF_EM corresponds // to the `e_machine` constants, like `EM_X86_64`. // In the future, these would probably be better suited by C++11 enum // class's with appropriate fixed underlying type. LLVM_YAML_STRONG_TYPEDEF(uint16_t, ELF_ET) LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_PT) LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_EM) LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_ELFCLASS) LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_ELFDATA) LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_ELFOSABI) // Just use 64, since it can hold 32-bit values too. LLVM_YAML_STRONG_TYPEDEF(uint64_t, ELF_EF) // Just use 64, since it can hold 32-bit values too. LLVM_YAML_STRONG_TYPEDEF(uint64_t, ELF_DYNTAG) LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_PF) LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_SHT) LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_REL) LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_RSS) // Just use 64, since it can hold 32-bit values too. LLVM_YAML_STRONG_TYPEDEF(uint64_t, ELF_SHF) LLVM_YAML_STRONG_TYPEDEF(uint16_t, ELF_SHN) LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_STB) LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_STT) LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_NT)
LLVM_YAML_STRONG_TYPEDEF(uint8_t, MIPS_AFL_REG) LLVM_YAML_STRONG_TYPEDEF(uint8_t, MIPS_ABI_FP) LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_EXT) LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_ASE) LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_FLAGS1) LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_ISA)
LLVM_YAML_STRONG_TYPEDEF(StringRef, YAMLFlowString) LLVM_YAML_STRONG_TYPEDEF(int64_t, YAMLIntUInt)
template <class ELFT> unsigned getDefaultShEntSize(unsigned EMachine, ELF_SHT SecType, StringRef SecName) { if (EMachine == ELF::EM_MIPS && SecType == ELF::SHT_MIPS_ABIFLAGS) return sizeof(object::Elf_Mips_ABIFlags<ELFT>);
switch (SecType) { case ELF::SHT_SYMTAB: case ELF::SHT_DYNSYM: return sizeof(typename ELFT::Sym); case ELF::SHT_GROUP: return sizeof(typename ELFT::Word); case ELF::SHT_REL: return sizeof(typename ELFT::Rel); case ELF::SHT_RELA: return sizeof(typename ELFT::Rela); case ELF::SHT_RELR: return sizeof(typename ELFT::Relr); case ELF::SHT_DYNAMIC: return sizeof(typename ELFT::Dyn); case ELF::SHT_HASH: return sizeof(typename ELFT::Word); case ELF::SHT_SYMTAB_SHNDX: return sizeof(typename ELFT::Word); case ELF::SHT_GNU_versym: return sizeof(typename ELFT::Half); case ELF::SHT_LLVM_CALL_GRAPH_PROFILE: return sizeof(object::Elf_CGProfile_Impl<ELFT>); default: if (SecName == ".debug_str") return 1; return 0; } }
// For now, hardcode 64 bits everywhere that 32 or 64 would be needed // since 64-bit can hold 32-bit values too. struct FileHeader { ELF_ELFCLASS Class; ELF_ELFDATA Data; ELF_ELFOSABI OSABI; llvm::yaml::Hex8 ABIVersion; ELF_ET Type; std::optional<ELF_EM> Machine; ELF_EF Flags; llvm::yaml::Hex64 Entry; std::optional<StringRef> SectionHeaderStringTable;
std::optional<llvm::yaml::Hex64> EPhOff; std::optional<llvm::yaml::Hex16> EPhEntSize; std::optional<llvm::yaml::Hex16> EPhNum; std::optional<llvm::yaml::Hex16> EShEntSize; std::optional<llvm::yaml::Hex64> EShOff; std::optional<llvm::yaml::Hex16> EShNum; std::optional<llvm::yaml::Hex16> EShStrNdx; };
struct SectionHeader { StringRef Name; };
struct Symbol { StringRef Name; ELF_STT Type; std::optional<StringRef> Section; std::optional<ELF_SHN> Index; ELF_STB Binding; std::optional<llvm::yaml::Hex64> Value; std::optional<llvm::yaml::Hex64> Size; std::optional<uint8_t> Other;
std::optional<uint32_t> StName; };
struct SectionOrType { StringRef sectionNameOrType; };
struct DynamicEntry { ELF_DYNTAG Tag; llvm::yaml::Hex64 Val; };
struct BBAddrMapEntry { struct BBEntry { uint32_t ID; llvm::yaml::Hex64 AddressOffset; llvm::yaml::Hex64 Size; llvm::yaml::Hex64 Metadata; }; uint8_t Version; llvm::yaml::Hex8 Feature;
struct BBRangeEntry { llvm::yaml::Hex64 BaseAddress; std::optional<uint64_t> NumBlocks; std::optional<std::vector<BBEntry>> BBEntries; };
std::optional<uint64_t> NumBBRanges; std::optional<std::vector<BBRangeEntry>> BBRanges;
llvm::yaml::Hex64 getFunctionAddress() const { if (!BBRanges || BBRanges->empty()) return 0; return BBRanges->front().BaseAddress; } };
struct PGOAnalysisMapEntry { struct PGOBBEntry { struct SuccessorEntry { uint32_t ID; llvm::yaml::Hex32 BrProb; }; std::optional<uint64_t> BBFreq; std::optional<std::vector<SuccessorEntry>> Successors; }; std::optional<uint64_t> FuncEntryCount; std::optional<std::vector<PGOBBEntry>> PGOBBEntries; };
struct StackSizeEntry { llvm::yaml::Hex64 Address; llvm::yaml::Hex64 Size; };
struct NoteEntry { StringRef Name; yaml::BinaryRef Desc; ELF_NT Type; };
struct Chunk { enum class ChunkKind { Dynamic, Group, RawContent, Relocation, Relr, NoBits, Note, Hash, GnuHash, Verdef, Verneed, StackSizes, SymtabShndxSection, Symver, ARMIndexTable, MipsABIFlags, Addrsig, LinkerOptions, DependentLibraries, CallGraphProfile, BBAddrMap,
// Special chunks. SpecialChunksStart, Fill = SpecialChunksStart, SectionHeaderTable, };
ChunkKind Kind; StringRef Name; std::optional<llvm::yaml::Hex64> Offset;
// Usually chunks are not created implicitly, but rather loaded from YAML. // This flag is used to signal whether this is the case or not. bool IsImplicit;
Chunk(ChunkKind K, bool Implicit) : Kind(K), IsImplicit(Implicit) {} virtual ~Chunk(); };
struct Section : public Chunk { ELF_SHT Type; std::optional<ELF_SHF> Flags; std::optional<llvm::yaml::Hex64> Address; std::optional<StringRef> Link; llvm::yaml::Hex64 AddressAlign; std::optional<llvm::yaml::Hex64> EntSize;
std::optional<yaml::BinaryRef> Content; std::optional<llvm::yaml::Hex64> Size;
// Holds the original section index. unsigned OriginalSecNdx;
Section(ChunkKind Kind, bool IsImplicit = false) : Chunk(Kind, IsImplicit) {}
static bool classof(const Chunk *S) { return S->Kind < ChunkKind::SpecialChunksStart; }
// Some derived sections might have their own special entries. This method // returns a vector of <entry name, is used> pairs. It is used for section // validation. virtual std::vector<std::pair<StringRef, bool>> getEntries() const { return {}; };
// The following members are used to override section fields which is // useful for creating invalid objects.
// This can be used to override the sh_addralign field. std::optional<llvm::yaml::Hex64> ShAddrAlign;
// This can be used to override the offset stored in the sh_name field. // It does not affect the name stored in the string table. std::optional<llvm::yaml::Hex64> ShName;
// This can be used to override the sh_offset field. It does not place the // section data at the offset specified. std::optional<llvm::yaml::Hex64> ShOffset;
// This can be used to override the sh_size field. It does not affect the // content written. std::optional<llvm::yaml::Hex64> ShSize;
// This can be used to override the sh_flags field. std::optional<llvm::yaml::Hex64> ShFlags;
// This can be used to override the sh_type field. It is useful when we // want to use specific YAML keys for a section of a particular type to // describe the content, but still want to have a different final type // for the section. std::optional<ELF_SHT> ShType; };
// Fill is a block of data which is placed outside of sections. It is // not present in the sections header table, but it might affect the output file // size and program headers produced. struct Fill : Chunk { std::optional<yaml::BinaryRef> Pattern; llvm::yaml::Hex64 Size;
Fill() : Chunk(ChunkKind::Fill, /*Implicit=*/false) {}
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Fill; } };
struct SectionHeaderTable : Chunk { SectionHeaderTable(bool IsImplicit) : Chunk(ChunkKind::SectionHeaderTable, IsImplicit) {}
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::SectionHeaderTable; }
std::optional<std::vector<SectionHeader>> Sections; std::optional<std::vector<SectionHeader>> Excluded; std::optional<bool> NoHeaders;
size_t getNumHeaders(size_t SectionsNum) const { if (IsImplicit || isDefault()) return SectionsNum; if (NoHeaders) return (*NoHeaders) ? 0 : SectionsNum; return (Sections ? Sections->size() : 0) + /*Null section*/ 1; }
bool isDefault() const { return !Sections && !Excluded && !NoHeaders; }
static constexpr StringRef TypeStr = "SectionHeaderTable"; };
struct BBAddrMapSection : Section { std::optional<std::vector<BBAddrMapEntry>> Entries; std::optional<std::vector<PGOAnalysisMapEntry>> PGOAnalyses;
BBAddrMapSection() : Section(ChunkKind::BBAddrMap) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override { return {{"Entries", Entries.has_value()}}; };
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::BBAddrMap; } };
struct StackSizesSection : Section { std::optional<std::vector<StackSizeEntry>> Entries;
StackSizesSection() : Section(ChunkKind::StackSizes) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override { return {{"Entries", Entries.has_value()}}; };
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::StackSizes; }
static bool nameMatches(StringRef Name) { return Name == ".stack_sizes"; } };
struct DynamicSection : Section { std::optional<std::vector<DynamicEntry>> Entries;
DynamicSection() : Section(ChunkKind::Dynamic) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override { return {{"Entries", Entries.has_value()}}; };
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Dynamic; } };
struct RawContentSection : Section { std::optional<llvm::yaml::Hex64> Info;
RawContentSection() : Section(ChunkKind::RawContent) {}
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::RawContent; }
// Is used when a content is read as an array of bytes. std::optional<std::vector<uint8_t>> ContentBuf; };
struct NoBitsSection : Section { NoBitsSection() : Section(ChunkKind::NoBits) {}
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::NoBits; } };
struct NoteSection : Section { std::optional<std::vector<ELFYAML::NoteEntry>> Notes;
NoteSection() : Section(ChunkKind::Note) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override { return {{"Notes", Notes.has_value()}}; };
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Note; } };
struct HashSection : Section { std::optional<std::vector<uint32_t>> Bucket; std::optional<std::vector<uint32_t>> Chain;
std::vector<std::pair<StringRef, bool>> getEntries() const override { return {{"Bucket", Bucket.has_value()}, {"Chain", Chain.has_value()}}; };
// The following members are used to override section fields. // This is useful for creating invalid objects. std::optional<llvm::yaml::Hex64> NBucket; std::optional<llvm::yaml::Hex64> NChain;
HashSection() : Section(ChunkKind::Hash) {}
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Hash; } };
struct GnuHashHeader { // The number of hash buckets. // Not used when dumping the object, but can be used to override // the real number of buckets when emiting an object from a YAML document. std::optional<llvm::yaml::Hex32> NBuckets;
// Index of the first symbol in the dynamic symbol table // included in the hash table. llvm::yaml::Hex32 SymNdx;
// The number of words in the Bloom filter. // Not used when dumping the object, but can be used to override the real // number of words in the Bloom filter when emiting an object from a YAML // document. std::optional<llvm::yaml::Hex32> MaskWords;
// A shift constant used by the Bloom filter. llvm::yaml::Hex32 Shift2; };
struct GnuHashSection : Section { std::optional<GnuHashHeader> Header; std::optional<std::vector<llvm::yaml::Hex64>> BloomFilter; std::optional<std::vector<llvm::yaml::Hex32>> HashBuckets; std::optional<std::vector<llvm::yaml::Hex32>> HashValues;
GnuHashSection() : Section(ChunkKind::GnuHash) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override { return {{"Header", Header.has_value()}, {"BloomFilter", BloomFilter.has_value()}, {"HashBuckets", HashBuckets.has_value()}, {"HashValues", HashValues.has_value()}}; };
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::GnuHash; } };
struct VernauxEntry { uint32_t Hash; uint16_t Flags; uint16_t Other; StringRef Name; };
struct VerneedEntry { uint16_t Version; StringRef File; std::vector<VernauxEntry> AuxV; };
struct VerneedSection : Section { std::optional<std::vector<VerneedEntry>> VerneedV; std::optional<llvm::yaml::Hex64> Info;
VerneedSection() : Section(ChunkKind::Verneed) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override { return {{"Dependencies", VerneedV.has_value()}}; };
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Verneed; } };
struct AddrsigSection : Section { std::optional<std::vector<YAMLFlowString>> Symbols;
AddrsigSection() : Section(ChunkKind::Addrsig) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override { return {{"Symbols", Symbols.has_value()}}; };
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Addrsig; } };
struct LinkerOption { StringRef Key; StringRef Value; };
struct LinkerOptionsSection : Section { std::optional<std::vector<LinkerOption>> Options;
LinkerOptionsSection() : Section(ChunkKind::LinkerOptions) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override { return {{"Options", Options.has_value()}}; };
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::LinkerOptions; } };
struct DependentLibrariesSection : Section { std::optional<std::vector<YAMLFlowString>> Libs;
DependentLibrariesSection() : Section(ChunkKind::DependentLibraries) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override { return {{"Libraries", Libs.has_value()}}; };
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::DependentLibraries; } };
// Represents the call graph profile section entry. struct CallGraphEntryWeight { // The weight of the edge. uint64_t Weight; };
struct CallGraphProfileSection : Section { std::optional<std::vector<CallGraphEntryWeight>> Entries;
CallGraphProfileSection() : Section(ChunkKind::CallGraphProfile) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override { return {{"Entries", Entries.has_value()}}; };
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::CallGraphProfile; } };
struct SymverSection : Section { std::optional<std::vector<uint16_t>> Entries;
SymverSection() : Section(ChunkKind::Symver) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override { return {{"Entries", Entries.has_value()}}; };
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Symver; } };
struct VerdefEntry { std::optional<uint16_t> Version; std::optional<uint16_t> Flags; std::optional<uint16_t> VersionNdx; std::optional<uint32_t> Hash; std::vector<StringRef> VerNames; };
struct VerdefSection : Section { std::optional<std::vector<VerdefEntry>> Entries; std::optional<llvm::yaml::Hex64> Info;
VerdefSection() : Section(ChunkKind::Verdef) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override { return {{"Entries", Entries.has_value()}}; };
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Verdef; } };
struct GroupSection : Section { // Members of a group contain a flag and a list of section indices // that are part of the group. std::optional<std::vector<SectionOrType>> Members; std::optional<StringRef> Signature; /* Info */
GroupSection() : Section(ChunkKind::Group) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override { return {{"Members", Members.has_value()}}; };
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Group; } };
struct Relocation { llvm::yaml::Hex64 Offset; YAMLIntUInt Addend; ELF_REL Type; std::optional<StringRef> Symbol; };
struct RelocationSection : Section { std::optional<std::vector<Relocation>> Relocations; StringRef RelocatableSec; /* Info */
RelocationSection() : Section(ChunkKind::Relocation) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override { return {{"Relocations", Relocations.has_value()}}; };
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Relocation; } };
struct RelrSection : Section { std::optional<std::vector<llvm::yaml::Hex64>> Entries;
RelrSection() : Section(ChunkKind::Relr) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override { return {{"Entries", Entries.has_value()}}; };
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Relr; } };
struct SymtabShndxSection : Section { std::optional<std::vector<uint32_t>> Entries;
SymtabShndxSection() : Section(ChunkKind::SymtabShndxSection) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override { return {{"Entries", Entries.has_value()}}; };
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::SymtabShndxSection; } };
struct ARMIndexTableEntry { llvm::yaml::Hex32 Offset; llvm::yaml::Hex32 Value; };
struct ARMIndexTableSection : Section { std::optional<std::vector<ARMIndexTableEntry>> Entries;
ARMIndexTableSection() : Section(ChunkKind::ARMIndexTable) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override { return {{"Entries", Entries.has_value()}}; };
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::ARMIndexTable; } };
// Represents .MIPS.abiflags section struct MipsABIFlags : Section { llvm::yaml::Hex16 Version; MIPS_ISA ISALevel; llvm::yaml::Hex8 ISARevision; MIPS_AFL_REG GPRSize; MIPS_AFL_REG CPR1Size; MIPS_AFL_REG CPR2Size; MIPS_ABI_FP FpABI; MIPS_AFL_EXT ISAExtension; MIPS_AFL_ASE ASEs; MIPS_AFL_FLAGS1 Flags1; llvm::yaml::Hex32 Flags2;
MipsABIFlags() : Section(ChunkKind::MipsABIFlags) {}
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::MipsABIFlags; } };
struct ProgramHeader { ELF_PT Type; ELF_PF Flags; llvm::yaml::Hex64 VAddr; llvm::yaml::Hex64 PAddr; std::optional<llvm::yaml::Hex64> Align; std::optional<llvm::yaml::Hex64> FileSize; std::optional<llvm::yaml::Hex64> MemSize; std::optional<llvm::yaml::Hex64> Offset; std::optional<StringRef> FirstSec; std::optional<StringRef> LastSec;
// This vector contains all chunks from [FirstSec, LastSec]. std::vector<Chunk *> Chunks; };
struct Object { FileHeader Header; std::vector<ProgramHeader> ProgramHeaders;
// An object might contain output section descriptions as well as // custom data that does not belong to any section. std::vector<std::unique_ptr<Chunk>> Chunks;
// Although in reality the symbols reside in a section, it is a lot // cleaner and nicer if we read them from the YAML as a separate // top-level key, which automatically ensures that invariants like there // being a single SHT_SYMTAB section are upheld. std::optional<std::vector<Symbol>> Symbols; std::optional<std::vector<Symbol>> DynamicSymbols; std::optional<DWARFYAML::Data> DWARF;
std::vector<Section *> getSections() { std::vector<Section *> Ret; for (const std::unique_ptr<Chunk> &Sec : Chunks) if (auto S = dyn_cast<ELFYAML::Section>(Sec.get())) Ret.push_back(S); return Ret; }
const SectionHeaderTable &getSectionHeaderTable() const { for (const std::unique_ptr<Chunk> &C : Chunks) if (auto *S = dyn_cast<ELFYAML::SectionHeaderTable>(C.get())) return *S; llvm_unreachable("the section header table chunk must always be present"); }
ELF_ELFOSABI getOSAbi() const; unsigned getMachine() const; };
bool shouldAllocateFileSpace(ArrayRef<ProgramHeader> Phdrs, const NoBitsSection &S);
} // end namespace ELFYAML } // end namespace llvm
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::StackSizeEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::BBAddrMapEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::BBAddrMapEntry::BBEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::BBAddrMapEntry::BBRangeEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::PGOAnalysisMapEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::PGOAnalysisMapEntry::PGOBBEntry) LLVM_YAML_IS_SEQUENCE_VECTOR( llvm::ELFYAML::PGOAnalysisMapEntry::PGOBBEntry::SuccessorEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::DynamicEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::LinkerOption) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::CallGraphEntryWeight) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::NoteEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::ProgramHeader) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::SectionHeader) LLVM_YAML_IS_SEQUENCE_VECTOR(std::unique_ptr<llvm::ELFYAML::Chunk>) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::Symbol) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::VerdefEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::VernauxEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::VerneedEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::Relocation) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::SectionOrType) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::ARMIndexTableEntry)
namespace llvm { namespace yaml {
template <> struct ScalarTraits<ELFYAML::YAMLIntUInt> { static void output(const ELFYAML::YAMLIntUInt &Val, void *Ctx, raw_ostream &Out); static StringRef input(StringRef Scalar, void *Ctx, ELFYAML::YAMLIntUInt &Val); static QuotingType mustQuote(StringRef) { return QuotingType::None; } };
template <> struct ScalarEnumerationTraits<ELFYAML::ELF_ET> { static void enumeration(IO &IO, ELFYAML::ELF_ET &Value); };
template <> struct ScalarEnumerationTraits<ELFYAML::ELF_PT> { static void enumeration(IO &IO, ELFYAML::ELF_PT &Value); };
template <> struct ScalarEnumerationTraits<ELFYAML::ELF_NT> { static void enumeration(IO &IO, ELFYAML::ELF_NT &Value); };
template <> struct ScalarEnumerationTraits<ELFYAML::ELF_EM> { static void enumeration(IO &IO, ELFYAML::ELF_EM &Value); };
template <> struct ScalarEnumerationTraits<ELFYAML::ELF_ELFCLASS> { static void enumeration(IO &IO, ELFYAML::ELF_ELFCLASS &Value); };
template <> struct ScalarEnumerationTraits<ELFYAML::ELF_ELFDATA> { static void enumeration(IO &IO, ELFYAML::ELF_ELFDATA &Value); };
template <> struct ScalarEnumerationTraits<ELFYAML::ELF_ELFOSABI> { static void enumeration(IO &IO, ELFYAML::ELF_ELFOSABI &Value); };
template <> struct ScalarBitSetTraits<ELFYAML::ELF_EF> { static void bitset(IO &IO, ELFYAML::ELF_EF &Value); };
template <> struct ScalarBitSetTraits<ELFYAML::ELF_PF> { static void bitset(IO &IO, ELFYAML::ELF_PF &Value); };
template <> struct ScalarEnumerationTraits<ELFYAML::ELF_SHT> { static void enumeration(IO &IO, ELFYAML::ELF_SHT &Value); };
template <> struct ScalarBitSetTraits<ELFYAML::ELF_SHF> { static void bitset(IO &IO, ELFYAML::ELF_SHF &Value); };
template <> struct ScalarEnumerationTraits<ELFYAML::ELF_SHN> { static void enumeration(IO &IO, ELFYAML::ELF_SHN &Value); };
template <> struct ScalarEnumerationTraits<ELFYAML::ELF_STB> { static void enumeration(IO &IO, ELFYAML::ELF_STB &Value); };
template <> struct ScalarEnumerationTraits<ELFYAML::ELF_STT> { static void enumeration(IO &IO, ELFYAML::ELF_STT &Value); };
template <> struct ScalarEnumerationTraits<ELFYAML::ELF_REL> { static void enumeration(IO &IO, ELFYAML::ELF_REL &Value); };
template <> struct ScalarEnumerationTraits<ELFYAML::ELF_DYNTAG> { static void enumeration(IO &IO, ELFYAML::ELF_DYNTAG &Value); };
template <> struct ScalarEnumerationTraits<ELFYAML::ELF_RSS> { static void enumeration(IO &IO, ELFYAML::ELF_RSS &Value); };
template <> struct ScalarEnumerationTraits<ELFYAML::MIPS_AFL_REG> { static void enumeration(IO &IO, ELFYAML::MIPS_AFL_REG &Value); };
template <> struct ScalarEnumerationTraits<ELFYAML::MIPS_ABI_FP> { static void enumeration(IO &IO, ELFYAML::MIPS_ABI_FP &Value); };
template <> struct ScalarEnumerationTraits<ELFYAML::MIPS_AFL_EXT> { static void enumeration(IO &IO, ELFYAML::MIPS_AFL_EXT &Value); };
template <> struct ScalarEnumerationTraits<ELFYAML::MIPS_ISA> { static void enumeration(IO &IO, ELFYAML::MIPS_ISA &Value); };
template <> struct ScalarBitSetTraits<ELFYAML::MIPS_AFL_ASE> { static void bitset(IO &IO, ELFYAML::MIPS_AFL_ASE &Value); };
template <> struct ScalarBitSetTraits<ELFYAML::MIPS_AFL_FLAGS1> { static void bitset(IO &IO, ELFYAML::MIPS_AFL_FLAGS1 &Value); };
template <> struct MappingTraits<ELFYAML::FileHeader> { static void mapping(IO &IO, ELFYAML::FileHeader &FileHdr); };
template <> struct MappingTraits<ELFYAML::SectionHeader> { static void mapping(IO &IO, ELFYAML::SectionHeader &SHdr); };
template <> struct MappingTraits<ELFYAML::ProgramHeader> { static void mapping(IO &IO, ELFYAML::ProgramHeader &FileHdr); static std::string validate(IO &IO, ELFYAML::ProgramHeader &FileHdr); };
template <> struct MappingTraits<ELFYAML::Symbol> { static void mapping(IO &IO, ELFYAML::Symbol &Symbol); static std::string validate(IO &IO, ELFYAML::Symbol &Symbol); };
template <> struct MappingTraits<ELFYAML::StackSizeEntry> { static void mapping(IO &IO, ELFYAML::StackSizeEntry &Rel); };
template <> struct MappingTraits<ELFYAML::BBAddrMapEntry> { static void mapping(IO &IO, ELFYAML::BBAddrMapEntry &E); };
template <> struct MappingTraits<ELFYAML::BBAddrMapEntry::BBRangeEntry> { static void mapping(IO &IO, ELFYAML::BBAddrMapEntry::BBRangeEntry &E); };
template <> struct MappingTraits<ELFYAML::BBAddrMapEntry::BBEntry> { static void mapping(IO &IO, ELFYAML::BBAddrMapEntry::BBEntry &E); };
template <> struct MappingTraits<ELFYAML::PGOAnalysisMapEntry> { static void mapping(IO &IO, ELFYAML::PGOAnalysisMapEntry &Rel); };
template <> struct MappingTraits<ELFYAML::PGOAnalysisMapEntry::PGOBBEntry> { static void mapping(IO &IO, ELFYAML::PGOAnalysisMapEntry::PGOBBEntry &Rel); };
template <> struct MappingTraits<ELFYAML::PGOAnalysisMapEntry::PGOBBEntry::SuccessorEntry> { static void mapping(IO &IO, ELFYAML::PGOAnalysisMapEntry::PGOBBEntry::SuccessorEntry &Rel); };
template <> struct MappingTraits<ELFYAML::GnuHashHeader> { static void mapping(IO &IO, ELFYAML::GnuHashHeader &Rel); };
template <> struct MappingTraits<ELFYAML::DynamicEntry> { static void mapping(IO &IO, ELFYAML::DynamicEntry &Rel); };
template <> struct MappingTraits<ELFYAML::NoteEntry> { static void mapping(IO &IO, ELFYAML::NoteEntry &N); };
template <> struct MappingTraits<ELFYAML::VerdefEntry> { static void mapping(IO &IO, ELFYAML::VerdefEntry &E); };
template <> struct MappingTraits<ELFYAML::VerneedEntry> { static void mapping(IO &IO, ELFYAML::VerneedEntry &E); };
template <> struct MappingTraits<ELFYAML::VernauxEntry> { static void mapping(IO &IO, ELFYAML::VernauxEntry &E); };
template <> struct MappingTraits<ELFYAML::LinkerOption> { static void mapping(IO &IO, ELFYAML::LinkerOption &Sym); };
template <> struct MappingTraits<ELFYAML::CallGraphEntryWeight> { static void mapping(IO &IO, ELFYAML::CallGraphEntryWeight &E); };
template <> struct MappingTraits<ELFYAML::Relocation> { static void mapping(IO &IO, ELFYAML::Relocation &Rel); };
template <> struct MappingTraits<ELFYAML::ARMIndexTableEntry> { static void mapping(IO &IO, ELFYAML::ARMIndexTableEntry &E); };
template <> struct MappingTraits<std::unique_ptr<ELFYAML::Chunk>> { static void mapping(IO &IO, std::unique_ptr<ELFYAML::Chunk> &C); static std::string validate(IO &io, std::unique_ptr<ELFYAML::Chunk> &C); };
template <> struct MappingTraits<ELFYAML::Object> { static void mapping(IO &IO, ELFYAML::Object &Object); };
template <> struct MappingTraits<ELFYAML::SectionOrType> { static void mapping(IO &IO, ELFYAML::SectionOrType §ionOrType); };
} // end namespace yaml } // end namespace llvm
#endif // LLVM_OBJECTYAML_ELFYAML_H
|