Viewing file: MCContext.h (34.3 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- MCContext.h - Machine Code Context -----------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===//
#ifndef LLVM_MC_MCCONTEXT_H #define LLVM_MC_MCCONTEXT_H
#include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/BinaryFormat/XCOFF.h" #include "llvm/MC/MCAsmMacro.h" #include "llvm/MC/MCDwarf.h" #include "llvm/MC/MCPseudoProbe.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCSymbolTableEntry.h" #include "llvm/MC/SectionKind.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Error.h" #include "llvm/Support/MD5.h" #include "llvm/Support/StringSaver.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> #include <cassert> #include <cstddef> #include <cstdint> #include <functional> #include <map> #include <memory> #include <optional> #include <string> #include <utility> #include <vector>
namespace llvm {
class CodeViewContext; class MCAsmInfo; class MCDataFragment; class MCInst; class MCLabel; class MCObjectFileInfo; class MCRegisterInfo; class MCSection; class MCSectionCOFF; class MCSectionDXContainer; class MCSectionELF; class MCSectionGOFF; class MCSectionMachO; class MCSectionSPIRV; class MCSectionWasm; class MCSectionXCOFF; class MCStreamer; class MCSubtargetInfo; class MCSymbol; class MCSymbolELF; class MCSymbolWasm; class MCSymbolXCOFF; class MCTargetOptions; class MDNode; template <typename T> class SmallVectorImpl; class SMDiagnostic; class SMLoc; class SourceMgr; enum class EmitDwarfUnwindType;
namespace wasm { struct WasmSignature; }
/// Context object for machine code objects. This class owns all of the /// sections that it creates. /// class MCContext { public: using SymbolTable = StringMap<MCSymbolTableValue, BumpPtrAllocator &>; using DiagHandlerTy = std::function<void(const SMDiagnostic &, bool, const SourceMgr &, std::vector<const MDNode *> &)>; enum Environment { IsMachO, IsELF, IsGOFF, IsCOFF, IsSPIRV, IsWasm, IsXCOFF, IsDXContainer };
private: Environment Env;
/// The name of the Segment where Swift5 Reflection Section data will be /// outputted StringRef Swift5ReflectionSegmentName;
/// The triple for this object. Triple TT;
/// The SourceMgr for this object, if any. const SourceMgr *SrcMgr = nullptr;
/// The SourceMgr for inline assembly, if any. std::unique_ptr<SourceMgr> InlineSrcMgr; std::vector<const MDNode *> LocInfos;
DiagHandlerTy DiagHandler;
/// The MCAsmInfo for this target. const MCAsmInfo *MAI = nullptr;
/// The MCRegisterInfo for this target. const MCRegisterInfo *MRI = nullptr;
/// The MCObjectFileInfo for this target. const MCObjectFileInfo *MOFI = nullptr;
/// The MCSubtargetInfo for this target. const MCSubtargetInfo *MSTI = nullptr;
std::unique_ptr<CodeViewContext> CVContext;
/// Allocator object used for creating machine code objects. /// /// We use a bump pointer allocator to avoid the need to track all allocated /// objects. BumpPtrAllocator Allocator;
/// For MCFragment instances. BumpPtrAllocator FragmentAllocator;
SpecificBumpPtrAllocator<MCSectionCOFF> COFFAllocator; SpecificBumpPtrAllocator<MCSectionDXContainer> DXCAllocator; SpecificBumpPtrAllocator<MCSectionELF> ELFAllocator; SpecificBumpPtrAllocator<MCSectionMachO> MachOAllocator; SpecificBumpPtrAllocator<MCSectionGOFF> GOFFAllocator; SpecificBumpPtrAllocator<MCSectionSPIRV> SPIRVAllocator; SpecificBumpPtrAllocator<MCSectionWasm> WasmAllocator; SpecificBumpPtrAllocator<MCSectionXCOFF> XCOFFAllocator; SpecificBumpPtrAllocator<MCInst> MCInstAllocator;
SpecificBumpPtrAllocator<wasm::WasmSignature> WasmSignatureAllocator;
/// Bindings of names to symbol table values. SymbolTable Symbols;
/// A mapping from a local label number and an instance count to a symbol. /// For example, in the assembly /// 1: /// 2: /// 1: /// We have three labels represented by the pairs (1, 0), (2, 0) and (1, 1) DenseMap<std::pair<unsigned, unsigned>, MCSymbol *> LocalSymbols;
/// Keeps track of labels that are used in inline assembly. StringMap<MCSymbol *, BumpPtrAllocator &> InlineAsmUsedLabelNames;
/// Instances of directional local labels. DenseMap<unsigned, MCLabel *> Instances; /// NextInstance() creates the next instance of the directional local label /// for the LocalLabelVal and adds it to the map if needed. unsigned NextInstance(unsigned LocalLabelVal); /// GetInstance() gets the current instance of the directional local label /// for the LocalLabelVal and adds it to the map if needed. unsigned GetInstance(unsigned LocalLabelVal);
/// LLVM_BB_ADDR_MAP version to emit. uint8_t BBAddrMapVersion = 2;
/// The file name of the log file from the environment variable /// AS_SECURE_LOG_FILE. Which must be set before the .secure_log_unique /// directive is used or it is an error. std::string SecureLogFile; /// The stream that gets written to for the .secure_log_unique directive. std::unique_ptr<raw_fd_ostream> SecureLog; /// Boolean toggled when .secure_log_unique / .secure_log_reset is seen to /// catch errors if .secure_log_unique appears twice without /// .secure_log_reset appearing between them. bool SecureLogUsed = false;
/// The compilation directory to use for DW_AT_comp_dir. SmallString<128> CompilationDir;
/// Prefix replacement map for source file information. SmallVector<std::pair<std::string, std::string>, 0> DebugPrefixMap;
/// The main file name if passed in explicitly. std::string MainFileName;
/// The dwarf file and directory tables from the dwarf .file directive. /// We now emit a line table for each compile unit. To reduce the prologue /// size of each line table, the files and directories used by each compile /// unit are separated. std::map<unsigned, MCDwarfLineTable> MCDwarfLineTablesCUMap;
/// The current dwarf line information from the last dwarf .loc directive. MCDwarfLoc CurrentDwarfLoc; bool DwarfLocSeen = false;
/// Generate dwarf debugging info for assembly source files. bool GenDwarfForAssembly = false;
/// The current dwarf file number when generate dwarf debugging info for /// assembly source files. unsigned GenDwarfFileNumber = 0;
/// Sections for generating the .debug_ranges and .debug_aranges sections. SetVector<MCSection *> SectionsForRanges;
/// The information gathered from labels that will have dwarf label /// entries when generating dwarf assembly source files. std::vector<MCGenDwarfLabelEntry> MCGenDwarfLabelEntries;
/// The string to embed in the debug information for the compile unit, if /// non-empty. StringRef DwarfDebugFlags;
/// The string to embed in as the dwarf AT_producer for the compile unit, if /// non-empty. StringRef DwarfDebugProducer;
/// The maximum version of dwarf that we should emit. uint16_t DwarfVersion = 4;
/// The format of dwarf that we emit. dwarf::DwarfFormat DwarfFormat = dwarf::DWARF32;
/// Honor temporary labels, this is useful for debugging semantic /// differences between temporary and non-temporary labels (primarily on /// Darwin). bool SaveTempLabels = false; bool UseNamesOnTempLabels = false;
/// The Compile Unit ID that we are currently processing. unsigned DwarfCompileUnitID = 0;
/// A collection of MCPseudoProbe in the current module MCPseudoProbeTable PseudoProbeTable;
struct COFFSectionKey { std::string SectionName; StringRef GroupName; int SelectionKey; unsigned UniqueID;
COFFSectionKey(StringRef SectionName, StringRef GroupName, int SelectionKey, unsigned UniqueID) : SectionName(SectionName), GroupName(GroupName), SelectionKey(SelectionKey), UniqueID(UniqueID) {}
bool operator<(const COFFSectionKey &Other) const { if (SectionName != Other.SectionName) return SectionName < Other.SectionName; if (GroupName != Other.GroupName) return GroupName < Other.GroupName; if (SelectionKey != Other.SelectionKey) return SelectionKey < Other.SelectionKey; return UniqueID < Other.UniqueID; } };
struct WasmSectionKey { std::string SectionName; StringRef GroupName; unsigned UniqueID;
WasmSectionKey(StringRef SectionName, StringRef GroupName, unsigned UniqueID) : SectionName(SectionName), GroupName(GroupName), UniqueID(UniqueID) {}
bool operator<(const WasmSectionKey &Other) const { if (SectionName != Other.SectionName) return SectionName < Other.SectionName; if (GroupName != Other.GroupName) return GroupName < Other.GroupName; return UniqueID < Other.UniqueID; } };
struct XCOFFSectionKey { // Section name. std::string SectionName; // Section property. // For csect section, it is storage mapping class. // For debug section, it is section type flags. union { XCOFF::StorageMappingClass MappingClass; XCOFF::DwarfSectionSubtypeFlags DwarfSubtypeFlags; }; bool IsCsect;
XCOFFSectionKey(StringRef SectionName, XCOFF::StorageMappingClass MappingClass) : SectionName(SectionName), MappingClass(MappingClass), IsCsect(true) {}
XCOFFSectionKey(StringRef SectionName, XCOFF::DwarfSectionSubtypeFlags DwarfSubtypeFlags) : SectionName(SectionName), DwarfSubtypeFlags(DwarfSubtypeFlags), IsCsect(false) {}
bool operator<(const XCOFFSectionKey &Other) const { if (IsCsect && Other.IsCsect) return std::tie(SectionName, MappingClass) < std::tie(Other.SectionName, Other.MappingClass); if (IsCsect != Other.IsCsect) return IsCsect; return std::tie(SectionName, DwarfSubtypeFlags) < std::tie(Other.SectionName, Other.DwarfSubtypeFlags); } };
StringMap<MCSectionMachO *> MachOUniquingMap; std::map<COFFSectionKey, MCSectionCOFF *> COFFUniquingMap; StringMap<MCSectionELF *> ELFUniquingMap; std::map<std::string, MCSectionGOFF *> GOFFUniquingMap; std::map<WasmSectionKey, MCSectionWasm *> WasmUniquingMap; std::map<XCOFFSectionKey, MCSectionXCOFF *> XCOFFUniquingMap; StringMap<MCSectionDXContainer *> DXCUniquingMap; StringMap<bool> RelSecNames;
SpecificBumpPtrAllocator<MCSubtargetInfo> MCSubtargetAllocator;
/// Do automatic reset in destructor bool AutoReset;
MCTargetOptions const *TargetOptions;
bool HadError = false;
void reportCommon(SMLoc Loc, std::function<void(SMDiagnostic &, const SourceMgr *)>);
MCDataFragment *allocInitialFragment(MCSection &Sec);
MCSymbolTableEntry &getSymbolTableEntry(StringRef Name);
MCSymbol *createSymbolImpl(const MCSymbolTableEntry *Name, bool IsTemporary); MCSymbol *createRenamableSymbol(const Twine &Name, bool AlwaysAddSuffix, bool IsTemporary);
MCSymbol *getOrCreateDirectionalLocalSymbol(unsigned LocalLabelVal, unsigned Instance);
template <typename Symbol> Symbol *getOrCreateSectionSymbol(StringRef Section);
MCSectionELF *createELFSectionImpl(StringRef Section, unsigned Type, unsigned Flags, unsigned EntrySize, const MCSymbolELF *Group, bool IsComdat, unsigned UniqueID, const MCSymbolELF *LinkedToSym);
MCSymbolXCOFF *createXCOFFSymbolImpl(const MCSymbolTableEntry *Name, bool IsTemporary);
/// Map of currently defined macros. StringMap<MCAsmMacro> MacroMap;
// Symbols must be assigned to a section with a compatible entry size and // flags. This map is used to assign unique IDs to sections to distinguish // between sections with identical names but incompatible entry sizes and/or // flags. This can occur when a symbol is explicitly assigned to a section, // e.g. via __attribute__((section("myname"))). The map key is the tuple // (section name, flags, entry size). DenseMap<std::tuple<StringRef, unsigned, unsigned>, unsigned> ELFEntrySizeMap;
// This set is used to record the generic mergeable section names seen. // These are sections that are created as mergeable e.g. .debug_str. We need // to avoid assigning non-mergeable symbols to these sections. It is used // to prevent non-mergeable symbols being explicitly assigned to mergeable // sections (e.g. via _attribute_((section("myname")))). DenseSet<StringRef> ELFSeenGenericMergeableSections;
public: explicit MCContext(const Triple &TheTriple, const MCAsmInfo *MAI, const MCRegisterInfo *MRI, const MCSubtargetInfo *MSTI, const SourceMgr *Mgr = nullptr, MCTargetOptions const *TargetOpts = nullptr, bool DoAutoReset = true, StringRef Swift5ReflSegmentName = {}); MCContext(const MCContext &) = delete; MCContext &operator=(const MCContext &) = delete; ~MCContext();
Environment getObjectFileType() const { return Env; }
const StringRef &getSwift5ReflectionSegmentName() const { return Swift5ReflectionSegmentName; } const Triple &getTargetTriple() const { return TT; } const SourceMgr *getSourceManager() const { return SrcMgr; }
void initInlineSourceManager(); SourceMgr *getInlineSourceManager() { return InlineSrcMgr.get(); } std::vector<const MDNode *> &getLocInfos() { return LocInfos; } void setDiagnosticHandler(DiagHandlerTy DiagHandler) { this->DiagHandler = DiagHandler; }
void setObjectFileInfo(const MCObjectFileInfo *Mofi) { MOFI = Mofi; }
const MCAsmInfo *getAsmInfo() const { return MAI; }
const MCRegisterInfo *getRegisterInfo() const { return MRI; }
const MCObjectFileInfo *getObjectFileInfo() const { return MOFI; }
const MCSubtargetInfo *getSubtargetInfo() const { return MSTI; }
const MCTargetOptions *getTargetOptions() const { return TargetOptions; }
CodeViewContext &getCVContext();
void setUseNamesOnTempLabels(bool Value) { UseNamesOnTempLabels = Value; }
/// \name Module Lifetime Management /// @{
/// reset - return object to right after construction state to prepare /// to process a new module void reset();
/// @}
/// \name McInst Management
/// Create and return a new MC instruction. MCInst *createMCInst();
template <typename F, typename... Args> F *allocFragment(Args &&...args) { return new (FragmentAllocator.Allocate(sizeof(F), alignof(F))) F(std::forward<Args>(args)...); }
/// \name Symbol Management /// @{
/// Create a new linker temporary symbol with the specified prefix (Name) or /// "tmp". This creates a "l"-prefixed symbol for Mach-O and is identical to /// createNamedTempSymbol for other object file formats. MCSymbol *createLinkerPrivateTempSymbol(); MCSymbol *createLinkerPrivateSymbol(const Twine &Name);
/// Create a temporary symbol with a unique name. The name will be omitted /// in the symbol table if UseNamesOnTempLabels is false (default except /// MCAsmStreamer). The overload without Name uses an unspecified name. MCSymbol *createTempSymbol(); MCSymbol *createTempSymbol(const Twine &Name, bool AlwaysAddSuffix = true);
/// Create a temporary symbol with a unique name whose name cannot be /// omitted in the symbol table. This is rarely used. MCSymbol *createNamedTempSymbol(); MCSymbol *createNamedTempSymbol(const Twine &Name);
/// Get or create a symbol for a basic block. For non-always-emit symbols, /// this behaves like createTempSymbol, except that it uses the /// PrivateLabelPrefix instead of the PrivateGlobalPrefix. When AlwaysEmit is /// true, behaves like getOrCreateSymbol, prefixed with PrivateLabelPrefix. MCSymbol *createBlockSymbol(const Twine &Name, bool AlwaysEmit = false);
/// Create a local, non-temporary symbol like an ELF mapping symbol. Calling /// the function with the same name will generate new, unique instances. MCSymbol *createLocalSymbol(StringRef Name);
/// Create the definition of a directional local symbol for numbered label /// (used for "1:" definitions). MCSymbol *createDirectionalLocalSymbol(unsigned LocalLabelVal);
/// Create and return a directional local symbol for numbered label (used /// for "1b" or 1f" references). MCSymbol *getDirectionalLocalSymbol(unsigned LocalLabelVal, bool Before);
/// Lookup the symbol inside with the specified \p Name. If it exists, /// return it. If not, create a forward reference and return it. /// /// \param Name - The symbol name, which must be unique across all symbols. MCSymbol *getOrCreateSymbol(const Twine &Name);
/// Gets a symbol that will be defined to the final stack offset of a local /// variable after codegen. /// /// \param Idx - The index of a local variable passed to \@llvm.localescape. MCSymbol *getOrCreateFrameAllocSymbol(const Twine &FuncName, unsigned Idx);
MCSymbol *getOrCreateParentFrameOffsetSymbol(const Twine &FuncName);
MCSymbol *getOrCreateLSDASymbol(const Twine &FuncName);
/// Get the symbol for \p Name, or null. MCSymbol *lookupSymbol(const Twine &Name) const;
/// Set value for a symbol. void setSymbolValue(MCStreamer &Streamer, const Twine &Sym, uint64_t Val);
/// getSymbols - Get a reference for the symbol table for clients that /// want to, for example, iterate over all symbols. 'const' because we /// still want any modifications to the table itself to use the MCContext /// APIs. const SymbolTable &getSymbols() const { return Symbols; }
/// isInlineAsmLabel - Return true if the name is a label referenced in /// inline assembly. MCSymbol *getInlineAsmLabel(StringRef Name) const { return InlineAsmUsedLabelNames.lookup(Name); }
/// registerInlineAsmLabel - Records that the name is a label referenced in /// inline assembly. void registerInlineAsmLabel(MCSymbol *Sym);
/// Allocates and returns a new `WasmSignature` instance (with empty parameter /// and return type lists). wasm::WasmSignature *createWasmSignature();
/// @}
/// \name Section Management /// @{
enum : unsigned { /// Pass this value as the UniqueID during section creation to get the /// generic section with the given name and characteristics. The usual /// sections such as .text use this ID. GenericSectionID = ~0U };
/// Return the MCSection for the specified mach-o section. This requires /// the operands to be valid. MCSectionMachO *getMachOSection(StringRef Segment, StringRef Section, unsigned TypeAndAttributes, unsigned Reserved2, SectionKind K, const char *BeginSymName = nullptr);
MCSectionMachO *getMachOSection(StringRef Segment, StringRef Section, unsigned TypeAndAttributes, SectionKind K, const char *BeginSymName = nullptr) { return getMachOSection(Segment, Section, TypeAndAttributes, 0, K, BeginSymName); }
MCSectionELF *getELFSection(const Twine &Section, unsigned Type, unsigned Flags) { return getELFSection(Section, Type, Flags, 0, "", false); }
MCSectionELF *getELFSection(const Twine &Section, unsigned Type, unsigned Flags, unsigned EntrySize) { return getELFSection(Section, Type, Flags, EntrySize, "", false, MCSection::NonUniqueID, nullptr); }
MCSectionELF *getELFSection(const Twine &Section, unsigned Type, unsigned Flags, unsigned EntrySize, const Twine &Group, bool IsComdat) { return getELFSection(Section, Type, Flags, EntrySize, Group, IsComdat, MCSection::NonUniqueID, nullptr); }
MCSectionELF *getELFSection(const Twine &Section, unsigned Type, unsigned Flags, unsigned EntrySize, const Twine &Group, bool IsComdat, unsigned UniqueID, const MCSymbolELF *LinkedToSym);
MCSectionELF *getELFSection(const Twine &Section, unsigned Type, unsigned Flags, unsigned EntrySize, const MCSymbolELF *Group, bool IsComdat, unsigned UniqueID, const MCSymbolELF *LinkedToSym);
/// Get a section with the provided group identifier. This section is /// named by concatenating \p Prefix with '.' then \p Suffix. The \p Type /// describes the type of the section and \p Flags are used to further /// configure this named section. MCSectionELF *getELFNamedSection(const Twine &Prefix, const Twine &Suffix, unsigned Type, unsigned Flags, unsigned EntrySize = 0);
MCSectionELF *createELFRelSection(const Twine &Name, unsigned Type, unsigned Flags, unsigned EntrySize, const MCSymbolELF *Group, const MCSectionELF *RelInfoSection);
MCSectionELF *createELFGroupSection(const MCSymbolELF *Group, bool IsComdat);
void recordELFMergeableSectionInfo(StringRef SectionName, unsigned Flags, unsigned UniqueID, unsigned EntrySize);
bool isELFImplicitMergeableSectionNamePrefix(StringRef Name);
bool isELFGenericMergeableSection(StringRef Name);
/// Return the unique ID of the section with the given name, flags and entry /// size, if it exists. std::optional<unsigned> getELFUniqueIDForEntsize(StringRef SectionName, unsigned Flags, unsigned EntrySize);
MCSectionGOFF *getGOFFSection(StringRef Section, SectionKind Kind, MCSection *Parent, uint32_t Subsection = 0);
MCSectionCOFF *getCOFFSection(StringRef Section, unsigned Characteristics, StringRef COMDATSymName, int Selection, unsigned UniqueID = GenericSectionID);
MCSectionCOFF *getCOFFSection(StringRef Section, unsigned Characteristics);
/// Gets or creates a section equivalent to Sec that is associated with the /// section containing KeySym. For example, to create a debug info section /// associated with an inline function, pass the normal debug info section /// as Sec and the function symbol as KeySym. MCSectionCOFF * getAssociativeCOFFSection(MCSectionCOFF *Sec, const MCSymbol *KeySym, unsigned UniqueID = GenericSectionID);
MCSectionSPIRV *getSPIRVSection();
MCSectionWasm *getWasmSection(const Twine &Section, SectionKind K, unsigned Flags = 0) { return getWasmSection(Section, K, Flags, "", ~0); }
MCSectionWasm *getWasmSection(const Twine &Section, SectionKind K, unsigned Flags, const Twine &Group, unsigned UniqueID);
MCSectionWasm *getWasmSection(const Twine &Section, SectionKind K, unsigned Flags, const MCSymbolWasm *Group, unsigned UniqueID);
/// Get the section for the provided Section name MCSectionDXContainer *getDXContainerSection(StringRef Section, SectionKind K);
bool hasXCOFFSection(StringRef Section, XCOFF::CsectProperties CsectProp) const;
MCSectionXCOFF *getXCOFFSection( StringRef Section, SectionKind K, std::optional<XCOFF::CsectProperties> CsectProp = std::nullopt, bool MultiSymbolsAllowed = false, std::optional<XCOFF::DwarfSectionSubtypeFlags> DwarfSubtypeFlags = std::nullopt);
// Create and save a copy of STI and return a reference to the copy. MCSubtargetInfo &getSubtargetCopy(const MCSubtargetInfo &STI);
uint8_t getBBAddrMapVersion() const { return BBAddrMapVersion; }
/// @}
/// \name Dwarf Management /// @{
/// Get the compilation directory for DW_AT_comp_dir /// The compilation directory should be set with \c setCompilationDir before /// calling this function. If it is unset, an empty string will be returned. StringRef getCompilationDir() const { return CompilationDir; }
/// Set the compilation directory for DW_AT_comp_dir void setCompilationDir(StringRef S) { CompilationDir = S.str(); }
/// Add an entry to the debug prefix map. void addDebugPrefixMapEntry(const std::string &From, const std::string &To);
/// Remap one path in-place as per the debug prefix map. void remapDebugPath(SmallVectorImpl<char> &Path);
// Remaps all debug directory paths in-place as per the debug prefix map. void RemapDebugPaths();
/// Get the main file name for use in error messages and debug /// info. This can be set to ensure we've got the correct file name /// after preprocessing or for -save-temps. const std::string &getMainFileName() const { return MainFileName; }
/// Set the main file name and override the default. void setMainFileName(StringRef S) { MainFileName = std::string(S); }
/// Creates an entry in the dwarf file and directory tables. Expected<unsigned> getDwarfFile(StringRef Directory, StringRef FileName, unsigned FileNumber, std::optional<MD5::MD5Result> Checksum, std::optional<StringRef> Source, unsigned CUID);
bool isValidDwarfFileNumber(unsigned FileNumber, unsigned CUID = 0);
const std::map<unsigned, MCDwarfLineTable> &getMCDwarfLineTables() const { return MCDwarfLineTablesCUMap; }
MCDwarfLineTable &getMCDwarfLineTable(unsigned CUID) { return MCDwarfLineTablesCUMap[CUID]; }
const MCDwarfLineTable &getMCDwarfLineTable(unsigned CUID) const { auto I = MCDwarfLineTablesCUMap.find(CUID); assert(I != MCDwarfLineTablesCUMap.end()); return I->second; }
const SmallVectorImpl<MCDwarfFile> &getMCDwarfFiles(unsigned CUID = 0) { return getMCDwarfLineTable(CUID).getMCDwarfFiles(); }
const SmallVectorImpl<std::string> &getMCDwarfDirs(unsigned CUID = 0) { return getMCDwarfLineTable(CUID).getMCDwarfDirs(); }
unsigned getDwarfCompileUnitID() { return DwarfCompileUnitID; }
void setDwarfCompileUnitID(unsigned CUIndex) { DwarfCompileUnitID = CUIndex; }
/// Specifies the "root" file and directory of the compilation unit. /// These are "file 0" and "directory 0" in DWARF v5. void setMCLineTableRootFile(unsigned CUID, StringRef CompilationDir, StringRef Filename, std::optional<MD5::MD5Result> Checksum, std::optional<StringRef> Source) { getMCDwarfLineTable(CUID).setRootFile(CompilationDir, Filename, Checksum, Source); }
/// Reports whether MD5 checksum usage is consistent (all-or-none). bool isDwarfMD5UsageConsistent(unsigned CUID) const { return getMCDwarfLineTable(CUID).isMD5UsageConsistent(); }
/// Saves the information from the currently parsed dwarf .loc directive /// and sets DwarfLocSeen. When the next instruction is assembled an entry /// in the line number table with this information and the address of the /// instruction will be created. void setCurrentDwarfLoc(unsigned FileNum, unsigned Line, unsigned Column, unsigned Flags, unsigned Isa, unsigned Discriminator) { CurrentDwarfLoc.setFileNum(FileNum); CurrentDwarfLoc.setLine(Line); CurrentDwarfLoc.setColumn(Column); CurrentDwarfLoc.setFlags(Flags); CurrentDwarfLoc.setIsa(Isa); CurrentDwarfLoc.setDiscriminator(Discriminator); DwarfLocSeen = true; }
void clearDwarfLocSeen() { DwarfLocSeen = false; }
bool getDwarfLocSeen() { return DwarfLocSeen; } const MCDwarfLoc &getCurrentDwarfLoc() { return CurrentDwarfLoc; }
bool getGenDwarfForAssembly() { return GenDwarfForAssembly; } void setGenDwarfForAssembly(bool Value) { GenDwarfForAssembly = Value; } unsigned getGenDwarfFileNumber() { return GenDwarfFileNumber; } EmitDwarfUnwindType emitDwarfUnwindInfo() const; bool emitCompactUnwindNonCanonical() const;
void setGenDwarfFileNumber(unsigned FileNumber) { GenDwarfFileNumber = FileNumber; }
/// Specifies information about the "root file" for assembler clients /// (e.g., llvm-mc). Assumes compilation dir etc. have been set up. void setGenDwarfRootFile(StringRef FileName, StringRef Buffer);
const SetVector<MCSection *> &getGenDwarfSectionSyms() { return SectionsForRanges; }
bool addGenDwarfSection(MCSection *Sec) { return SectionsForRanges.insert(Sec); }
void finalizeDwarfSections(MCStreamer &MCOS);
const std::vector<MCGenDwarfLabelEntry> &getMCGenDwarfLabelEntries() const { return MCGenDwarfLabelEntries; }
void addMCGenDwarfLabelEntry(const MCGenDwarfLabelEntry &E) { MCGenDwarfLabelEntries.push_back(E); }
void setDwarfDebugFlags(StringRef S) { DwarfDebugFlags = S; } StringRef getDwarfDebugFlags() { return DwarfDebugFlags; }
void setDwarfDebugProducer(StringRef S) { DwarfDebugProducer = S; } StringRef getDwarfDebugProducer() { return DwarfDebugProducer; }
void setDwarfFormat(dwarf::DwarfFormat f) { DwarfFormat = f; } dwarf::DwarfFormat getDwarfFormat() const { return DwarfFormat; }
void setDwarfVersion(uint16_t v) { DwarfVersion = v; } uint16_t getDwarfVersion() const { return DwarfVersion; }
/// @}
StringRef getSecureLogFile() { return SecureLogFile; } raw_fd_ostream *getSecureLog() { return SecureLog.get(); }
void setSecureLog(std::unique_ptr<raw_fd_ostream> Value) { SecureLog = std::move(Value); }
bool getSecureLogUsed() { return SecureLogUsed; } void setSecureLogUsed(bool Value) { SecureLogUsed = Value; }
void *allocate(unsigned Size, unsigned Align = 8) { return Allocator.Allocate(Size, Align); }
void deallocate(void *Ptr) {}
/// Allocates a copy of the given string on the allocator managed by this /// context and returns the result. StringRef allocateString(StringRef s) { return StringSaver(Allocator).save(s); }
bool hadError() { return HadError; } void diagnose(const SMDiagnostic &SMD); void reportError(SMLoc L, const Twine &Msg); void reportWarning(SMLoc L, const Twine &Msg);
MCAsmMacro *lookupMacro(StringRef Name) { StringMap<MCAsmMacro>::iterator I = MacroMap.find(Name); return (I == MacroMap.end()) ? nullptr : &I->getValue(); }
void defineMacro(StringRef Name, MCAsmMacro Macro) { MacroMap.insert(std::make_pair(Name, std::move(Macro))); }
void undefineMacro(StringRef Name) { MacroMap.erase(Name); }
MCPseudoProbeTable &getMCPseudoProbeTable() { return PseudoProbeTable; } };
} // end namespace llvm
// operator new and delete aren't allowed inside namespaces. // The throw specifications are mandated by the standard. /// Placement new for using the MCContext's allocator. /// /// This placement form of operator new uses the MCContext's allocator for /// obtaining memory. It is a non-throwing new, which means that it returns /// null on error. (If that is what the allocator does. The current does, so if /// this ever changes, this operator will have to be changed, too.) /// Usage looks like this (assuming there's an MCContext 'Context' in scope): /// \code /// // Default alignment (8) /// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments); /// // Specific alignment /// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments); /// \endcode /// Please note that you cannot use delete on the pointer; it must be /// deallocated using an explicit destructor call followed by /// \c Context.Deallocate(Ptr). /// /// \param Bytes The number of bytes to allocate. Calculated by the compiler. /// \param C The MCContext that provides the allocator. /// \param Alignment The alignment of the allocated memory (if the underlying /// allocator supports it). /// \return The allocated memory. Could be NULL. inline void *operator new(size_t Bytes, llvm::MCContext &C, size_t Alignment = 8) noexcept { return C.allocate(Bytes, Alignment); } /// Placement delete companion to the new above. /// /// This operator is just a companion to the new above. There is no way of /// invoking it directly; see the new operator for more details. This operator /// is called implicitly by the compiler if a placement new expression using /// the MCContext throws in the object constructor. inline void operator delete(void *Ptr, llvm::MCContext &C, size_t) noexcept { C.deallocate(Ptr); }
/// This placement form of operator new[] uses the MCContext's allocator for /// obtaining memory. It is a non-throwing new[], which means that it returns /// null on error. /// Usage looks like this (assuming there's an MCContext 'Context' in scope): /// \code /// // Default alignment (8) /// char *data = new (Context) char[10]; /// // Specific alignment /// char *data = new (Context, 4) char[10]; /// \endcode /// Please note that you cannot use delete on the pointer; it must be /// deallocated using an explicit destructor call followed by /// \c Context.Deallocate(Ptr). /// /// \param Bytes The number of bytes to allocate. Calculated by the compiler. /// \param C The MCContext that provides the allocator. /// \param Alignment The alignment of the allocated memory (if the underlying /// allocator supports it). /// \return The allocated memory. Could be NULL. inline void *operator new[](size_t Bytes, llvm::MCContext &C, size_t Alignment = 8) noexcept { return C.allocate(Bytes, Alignment); }
/// Placement delete[] companion to the new[] above. /// /// This operator is just a companion to the new[] above. There is no way of /// invoking it directly; see the new[] operator for more details. This operator /// is called implicitly by the compiler if a placement new[] expression using /// the MCContext throws in the object constructor. inline void operator delete[](void *Ptr, llvm::MCContext &C) noexcept { C.deallocate(Ptr); }
#endif // LLVM_MC_MCCONTEXT_H
|