Viewing file: LTO.h (19.79 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===-LTO.h - LLVM Link Time Optimizer ------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file declares functions and classes used to support LTO. It is intended // to be used both by LTO classes as well as by clients (gold-plugin) that // don't utilize the LTO code generator interfaces. // //===----------------------------------------------------------------------===//
#ifndef LLVM_LTO_LTO_H #define LLVM_LTO_LTO_H
#include "llvm/ADT/MapVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/Bitcode/BitcodeReader.h" #include "llvm/IR/ModuleSummaryIndex.h" #include "llvm/LTO/Config.h" #include "llvm/Object/IRSymtab.h" #include "llvm/Support/Caching.h" #include "llvm/Support/Error.h" #include "llvm/Support/thread.h" #include "llvm/Transforms/IPO/FunctionAttrs.h" #include "llvm/Transforms/IPO/FunctionImport.h"
namespace llvm {
class Error; class IRMover; class LLVMContext; class MemoryBufferRef; class Module; class raw_pwrite_stream; class ToolOutputFile;
/// Resolve linkage for prevailing symbols in the \p Index. Linkage changes /// recorded in the index and the ThinLTO backends must apply the changes to /// the module via thinLTOFinalizeInModule. /// /// This is done for correctness (if value exported, ensure we always /// emit a copy), and compile-time optimization (allow drop of duplicates). void thinLTOResolvePrevailingInIndex( const lto::Config &C, ModuleSummaryIndex &Index, function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> isPrevailing, function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> recordNewLinkage, const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols);
/// Update the linkages in the given \p Index to mark exported values /// as external and non-exported values as internal. The ThinLTO backends /// must apply the changes to the Module via thinLTOInternalizeModule. void thinLTOInternalizeAndPromoteInIndex( ModuleSummaryIndex &Index, function_ref<bool(StringRef, ValueInfo)> isExported, function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> isPrevailing);
/// Computes a unique hash for the Module considering the current list of /// export/import and other global analysis results. /// The hash is produced in \p Key. void computeLTOCacheKey( SmallString<40> &Key, const lto::Config &Conf, const ModuleSummaryIndex &Index, StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList, const FunctionImporter::ExportSetTy &ExportList, const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, const GVSummaryMapTy &DefinedGlobals, const std::set<GlobalValue::GUID> &CfiFunctionDefs = {}, const std::set<GlobalValue::GUID> &CfiFunctionDecls = {});
namespace lto {
StringLiteral getThinLTODefaultCPU(const Triple &TheTriple);
/// Given the original \p Path to an output file, replace any path /// prefix matching \p OldPrefix with \p NewPrefix. Also, create the /// resulting directory if it does not yet exist. std::string getThinLTOOutputFile(StringRef Path, StringRef OldPrefix, StringRef NewPrefix);
/// Setup optimization remarks. Expected<std::unique_ptr<ToolOutputFile>> setupLLVMOptimizationRemarks( LLVMContext &Context, StringRef RemarksFilename, StringRef RemarksPasses, StringRef RemarksFormat, bool RemarksWithHotness, std::optional<uint64_t> RemarksHotnessThreshold = 0, int Count = -1);
/// Setups the output file for saving statistics. Expected<std::unique_ptr<ToolOutputFile>> setupStatsFile(StringRef StatsFilename);
/// Produces a container ordering for optimal multi-threaded processing. Returns /// ordered indices to elements in the input array. std::vector<int> generateModulesOrdering(ArrayRef<BitcodeModule *> R);
/// Updates MemProf attributes (and metadata) based on whether the index /// has recorded that we are linking with allocation libraries containing /// the necessary APIs for downstream transformations. void updateMemProfAttributes(Module &Mod, const ModuleSummaryIndex &Index);
class LTO; struct SymbolResolution; class ThinBackendProc;
/// An input file. This is a symbol table wrapper that only exposes the /// information that an LTO client should need in order to do symbol resolution. class InputFile { public: class Symbol;
private: // FIXME: Remove LTO class friendship once we have bitcode symbol tables. friend LTO; InputFile() = default;
std::vector<BitcodeModule> Mods; SmallVector<char, 0> Strtab; std::vector<Symbol> Symbols;
// [begin, end) for each module std::vector<std::pair<size_t, size_t>> ModuleSymIndices;
StringRef TargetTriple, SourceFileName, COFFLinkerOpts; std::vector<StringRef> DependentLibraries; std::vector<std::pair<StringRef, Comdat::SelectionKind>> ComdatTable;
public: ~InputFile();
/// Create an InputFile. static Expected<std::unique_ptr<InputFile>> create(MemoryBufferRef Object);
/// The purpose of this class is to only expose the symbol information that an /// LTO client should need in order to do symbol resolution. class Symbol : irsymtab::Symbol { friend LTO;
public: Symbol(const irsymtab::Symbol &S) : irsymtab::Symbol(S) {}
using irsymtab::Symbol::isUndefined; using irsymtab::Symbol::isCommon; using irsymtab::Symbol::isWeak; using irsymtab::Symbol::isIndirect; using irsymtab::Symbol::getName; using irsymtab::Symbol::getIRName; using irsymtab::Symbol::getVisibility; using irsymtab::Symbol::canBeOmittedFromSymbolTable; using irsymtab::Symbol::isTLS; using irsymtab::Symbol::getComdatIndex; using irsymtab::Symbol::getCommonSize; using irsymtab::Symbol::getCommonAlignment; using irsymtab::Symbol::getCOFFWeakExternalFallback; using irsymtab::Symbol::getSectionName; using irsymtab::Symbol::isExecutable; using irsymtab::Symbol::isUsed; };
/// A range over the symbols in this InputFile. ArrayRef<Symbol> symbols() const { return Symbols; }
/// Returns linker options specified in the input file. StringRef getCOFFLinkerOpts() const { return COFFLinkerOpts; }
/// Returns dependent library specifiers from the input file. ArrayRef<StringRef> getDependentLibraries() const { return DependentLibraries; }
/// Returns the path to the InputFile. StringRef getName() const;
/// Returns the input file's target triple. StringRef getTargetTriple() const { return TargetTriple; }
/// Returns the source file path specified at compile time. StringRef getSourceFileName() const { return SourceFileName; }
// Returns a table with all the comdats used by this file. ArrayRef<std::pair<StringRef, Comdat::SelectionKind>> getComdatTable() const { return ComdatTable; }
// Returns the only BitcodeModule from InputFile. BitcodeModule &getSingleBitcodeModule();
private: ArrayRef<Symbol> module_symbols(unsigned I) const { const auto &Indices = ModuleSymIndices[I]; return {Symbols.data() + Indices.first, Symbols.data() + Indices.second}; } };
/// A ThinBackend defines what happens after the thin-link phase during ThinLTO. /// The details of this type definition aren't important; clients can only /// create a ThinBackend using one of the create*ThinBackend() functions below. using ThinBackend = std::function<std::unique_ptr<ThinBackendProc>( const Config &C, ModuleSummaryIndex &CombinedIndex, DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, AddStreamFn AddStream, FileCache Cache)>;
/// This ThinBackend runs the individual backend jobs in-process. /// The default value means to use one job per hardware core (not hyper-thread). /// OnWrite is callback which receives module identifier and notifies LTO user /// that index file for the module (and optionally imports file) was created. /// ShouldEmitIndexFiles being true will write sharded ThinLTO index files /// to the same path as the input module, with suffix ".thinlto.bc" /// ShouldEmitImportsFiles is true it also writes a list of imported files to a /// similar path with ".imports" appended instead. using IndexWriteCallback = std::function<void(const std::string &)>; ThinBackend createInProcessThinBackend(ThreadPoolStrategy Parallelism, IndexWriteCallback OnWrite = nullptr, bool ShouldEmitIndexFiles = false, bool ShouldEmitImportsFiles = false);
/// This ThinBackend writes individual module indexes to files, instead of /// running the individual backend jobs. This backend is for distributed builds /// where separate processes will invoke the real backends. /// /// To find the path to write the index to, the backend checks if the path has a /// prefix of OldPrefix; if so, it replaces that prefix with NewPrefix. It then /// appends ".thinlto.bc" and writes the index to that path. If /// ShouldEmitImportsFiles is true it also writes a list of imported files to a /// similar path with ".imports" appended instead. /// LinkedObjectsFile is an output stream to write the list of object files for /// the final ThinLTO linking. Can be nullptr. If LinkedObjectsFile is not /// nullptr and NativeObjectPrefix is not empty then it replaces the prefix of /// the objects with NativeObjectPrefix instead of NewPrefix. OnWrite is /// callback which receives module identifier and notifies LTO user that index /// file for the module (and optionally imports file) was created. ThinBackend createWriteIndexesThinBackend(std::string OldPrefix, std::string NewPrefix, std::string NativeObjectPrefix, bool ShouldEmitImportsFiles, raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite);
/// This class implements a resolution-based interface to LLVM's LTO /// functionality. It supports regular LTO, parallel LTO code generation and /// ThinLTO. You can use it from a linker in the following way: /// - Set hooks and code generation options (see lto::Config struct defined in /// Config.h), and use the lto::Config object to create an lto::LTO object. /// - Create lto::InputFile objects using lto::InputFile::create(), then use /// the symbols() function to enumerate its symbols and compute a resolution /// for each symbol (see SymbolResolution below). /// - After the linker has visited each input file (and each regular object /// file) and computed a resolution for each symbol, take each lto::InputFile /// and pass it and an array of symbol resolutions to the add() function. /// - Call the getMaxTasks() function to get an upper bound on the number of /// native object files that LTO may add to the link. /// - Call the run() function. This function will use the supplied AddStream /// and Cache functions to add up to getMaxTasks() native object files to /// the link. class LTO { friend InputFile;
public: /// Unified LTO modes enum LTOKind { /// Any LTO mode without Unified LTO. The default mode. LTOK_Default,
/// Regular LTO, with Unified LTO enabled. LTOK_UnifiedRegular,
/// ThinLTO, with Unified LTO enabled. LTOK_UnifiedThin, };
/// Create an LTO object. A default constructed LTO object has a reasonable /// production configuration, but you can customize it by passing arguments to /// this constructor. /// FIXME: We do currently require the DiagHandler field to be set in Conf. /// Until that is fixed, a Config argument is required. LTO(Config Conf, ThinBackend Backend = nullptr, unsigned ParallelCodeGenParallelismLevel = 1, LTOKind LTOMode = LTOK_Default); ~LTO();
/// Add an input file to the LTO link, using the provided symbol resolutions. /// The symbol resolutions must appear in the enumeration order given by /// InputFile::symbols(). Error add(std::unique_ptr<InputFile> Obj, ArrayRef<SymbolResolution> Res);
/// Returns an upper bound on the number of tasks that the client may expect. /// This may only be called after all IR object files have been added. For a /// full description of tasks see LTOBackend.h. unsigned getMaxTasks() const;
/// Runs the LTO pipeline. This function calls the supplied AddStream /// function to add native object files to the link. /// /// The Cache parameter is optional. If supplied, it will be used to cache /// native object files and add them to the link. /// /// The client will receive at most one callback (via either AddStream or /// Cache) for each task identifier. Error run(AddStreamFn AddStream, FileCache Cache = nullptr);
/// Static method that returns a list of libcall symbols that can be generated /// by LTO but might not be visible from bitcode symbol table. static SmallVector<const char *> getRuntimeLibcallSymbols(const Triple &TT);
private: Config Conf;
struct RegularLTOState { RegularLTOState(unsigned ParallelCodeGenParallelismLevel, const Config &Conf); struct CommonResolution { uint64_t Size = 0; Align Alignment; /// Record if at least one instance of the common was marked as prevailing bool Prevailing = false; }; std::map<std::string, CommonResolution> Commons;
unsigned ParallelCodeGenParallelismLevel; LTOLLVMContext Ctx; std::unique_ptr<Module> CombinedModule; std::unique_ptr<IRMover> Mover;
// This stores the information about a regular LTO module that we have added // to the link. It will either be linked immediately (for modules without // summaries) or after summary-based dead stripping (for modules with // summaries). struct AddedModule { std::unique_ptr<Module> M; std::vector<GlobalValue *> Keep; }; std::vector<AddedModule> ModsWithSummaries; bool EmptyCombinedModule = true; } RegularLTO;
using ModuleMapType = MapVector<StringRef, BitcodeModule>;
struct ThinLTOState { ThinLTOState(ThinBackend Backend);
ThinBackend Backend; ModuleSummaryIndex CombinedIndex; // The full set of bitcode modules in input order. ModuleMapType ModuleMap; // The bitcode modules to compile, if specified by the LTO Config. std::optional<ModuleMapType> ModulesToCompile; DenseMap<GlobalValue::GUID, StringRef> PrevailingModuleForGUID; } ThinLTO;
// The global resolution for a particular (mangled) symbol name. This is in // particular necessary to track whether each symbol can be internalized. // Because any input file may introduce a new cross-partition reference, we // cannot make any final internalization decisions until all input files have // been added and the client has called run(). During run() we apply // internalization decisions either directly to the module (for regular LTO) // or to the combined index (for ThinLTO). struct GlobalResolution { /// The unmangled name of the global. std::string IRName;
/// Keep track if the symbol is visible outside of a module with a summary /// (i.e. in either a regular object or a regular LTO module without a /// summary). bool VisibleOutsideSummary = false;
/// The symbol was exported dynamically, and therefore could be referenced /// by a shared library not visible to the linker. bool ExportDynamic = false;
bool UnnamedAddr = true;
/// True if module contains the prevailing definition. bool Prevailing = false;
/// Returns true if module contains the prevailing definition and symbol is /// an IR symbol. For example when module-level inline asm block is used, /// symbol can be prevailing in module but have no IR name. bool isPrevailingIRSymbol() const { return Prevailing && !IRName.empty(); }
/// This field keeps track of the partition number of this global. The /// regular LTO object is partition 0, while each ThinLTO object has its own /// partition number from 1 onwards. /// /// Any global that is defined or used by more than one partition, or that /// is referenced externally, may not be internalized. /// /// Partitions generally have a one-to-one correspondence with tasks, except /// that we use partition 0 for all parallel LTO code generation partitions. /// Any partitioning of the combined LTO object is done internally by the /// LTO backend. unsigned Partition = Unknown;
/// Special partition numbers. enum : unsigned { /// A partition number has not yet been assigned to this global. Unknown = -1u,
/// This global is either used by more than one partition or has an /// external reference, and therefore cannot be internalized. External = -2u,
/// The RegularLTO partition RegularLTO = 0, }; };
// Global mapping from mangled symbol names to resolutions. // Make this an optional to guard against accessing after it has been reset // (to reduce memory after we're done with it). std::optional<StringMap<GlobalResolution>> GlobalResolutions;
void addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms, ArrayRef<SymbolResolution> Res, unsigned Partition, bool InSummary);
// These functions take a range of symbol resolutions [ResI, ResE) and consume // the resolutions used by a single input module by incrementing ResI. After // these functions return, [ResI, ResE) will refer to the resolution range for // the remaining modules in the InputFile. Error addModule(InputFile &Input, unsigned ModI, const SymbolResolution *&ResI, const SymbolResolution *ResE);
Expected<RegularLTOState::AddedModule> addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, const SymbolResolution *&ResI, const SymbolResolution *ResE); Error linkRegularLTO(RegularLTOState::AddedModule Mod, bool LivenessFromIndex);
Error addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, const SymbolResolution *&ResI, const SymbolResolution *ResE);
Error runRegularLTO(AddStreamFn AddStream); Error runThinLTO(AddStreamFn AddStream, FileCache Cache, const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols);
Error checkPartiallySplit();
mutable bool CalledGetMaxTasks = false;
// LTO mode when using Unified LTO. LTOKind LTOMode;
// Use Optional to distinguish false from not yet initialized. std::optional<bool> EnableSplitLTOUnit;
// Identify symbols exported dynamically, and that therefore could be // referenced by a shared library not visible to the linker. DenseSet<GlobalValue::GUID> DynamicExportSymbols;
// Diagnostic optimization remarks file std::unique_ptr<ToolOutputFile> DiagnosticOutputFile; };
/// The resolution for a symbol. The linker must provide a SymbolResolution for /// each global symbol based on its internal resolution of that symbol. struct SymbolResolution { SymbolResolution() : Prevailing(0), FinalDefinitionInLinkageUnit(0), VisibleToRegularObj(0), ExportDynamic(0), LinkerRedefined(0) {}
/// The linker has chosen this definition of the symbol. unsigned Prevailing : 1;
/// The definition of this symbol is unpreemptable at runtime and is known to /// be in this linkage unit. unsigned FinalDefinitionInLinkageUnit : 1;
/// The definition of this symbol is visible outside of the LTO unit. unsigned VisibleToRegularObj : 1;
/// The symbol was exported dynamically, and therefore could be referenced /// by a shared library not visible to the linker. unsigned ExportDynamic : 1;
/// Linker redefined version of the symbol which appeared in -wrap or -defsym /// linker option. unsigned LinkerRedefined : 1; };
} // namespace lto } // namespace llvm
#endif
|