Viewing file: LTOCodeGenerator.h (9.53 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===-LTOCodeGenerator.h - LLVM Link Time Optimizer -----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file declares the LTOCodeGenerator class. // // LTO compilation consists of three phases: Pre-IPO, IPO and Post-IPO. // // The Pre-IPO phase compiles source code into bitcode file. The resulting // bitcode files, along with object files and libraries, will be fed to the // linker to through the IPO and Post-IPO phases. By using obj-file extension, // the resulting bitcode file disguises itself as an object file, and therefore // obviates the need of writing a special set of the make-rules only for LTO // compilation. // // The IPO phase perform inter-procedural analyses and optimizations, and // the Post-IPO consists two sub-phases: intra-procedural scalar optimizations // (SOPT), and intra-procedural target-dependent code generator (CG). // // As of this writing, we don't separate IPO and the Post-IPO SOPT. They // are intermingled together, and are driven by a single pass manager (see // PassManagerBuilder::populateLTOPassManager()). // FIXME: populateLTOPassManager no longer exists. // // The "LTOCodeGenerator" is the driver for the IPO and Post-IPO stages. // The "CodeGenerator" here is bit confusing. Don't confuse the "CodeGenerator" // with the machine specific code generator. // //===----------------------------------------------------------------------===//
#ifndef LLVM_LTO_LEGACY_LTOCODEGENERATOR_H #define LLVM_LTO_LEGACY_LTOCODEGENERATOR_H
#include "llvm-c/lto.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringSet.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/Module.h" #include "llvm/LTO/Config.h" #include "llvm/LTO/LTO.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Error.h" #include "llvm/Support/ToolOutputFile.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include <string> #include <vector>
namespace llvm { template <typename T> class ArrayRef; class LLVMContext; class DiagnosticInfo; class Linker; class Mangler; class MemoryBuffer; class TargetLibraryInfo; class TargetMachine; class raw_ostream; class raw_pwrite_stream;
/// Enable global value internalization in LTO. extern cl::opt<bool> EnableLTOInternalization;
//===----------------------------------------------------------------------===// /// C++ class which implements the opaque lto_code_gen_t type. /// struct LTOCodeGenerator { static const char *getVersionString();
LTOCodeGenerator(LLVMContext &Context); ~LTOCodeGenerator();
/// Merge given module. Return true on success. /// /// Resets \a HasVerifiedInput. bool addModule(struct LTOModule *);
/// Set the destination module. /// /// Resets \a HasVerifiedInput. void setModule(std::unique_ptr<LTOModule> M);
void setAsmUndefinedRefs(struct LTOModule *); void setTargetOptions(const TargetOptions &Options); void setDebugInfo(lto_debug_model); void setCodePICModel(std::optional<Reloc::Model> Model) { Config.RelocModel = Model; }
/// Set the file type to be emitted (assembly or object code). /// The default is CodeGenFileType::ObjectFile. void setFileType(CodeGenFileType FT) { Config.CGFileType = FT; }
void setCpu(StringRef MCpu) { Config.CPU = std::string(MCpu); } void setAttrs(std::vector<std::string> MAttrs) { Config.MAttrs = std::move(MAttrs); } void setOptLevel(unsigned OptLevel);
void setShouldInternalize(bool Value) { ShouldInternalize = Value; } void setShouldEmbedUselists(bool Value) { ShouldEmbedUselists = Value; } void setSaveIRBeforeOptPath(std::string Value) { SaveIRBeforeOptPath = std::move(Value); }
/// Restore linkage of globals /// /// When set, the linkage of globals will be restored prior to code /// generation. That is, a global symbol that had external linkage prior to /// LTO will be emitted with external linkage again; and a local will remain /// local. Note that this option only affects the end result - globals may /// still be internalized in the process of LTO and may be modified and/or /// deleted where legal. /// /// The default behavior will internalize globals (unless on the preserve /// list) and, if parallel code generation is enabled, will externalize /// all locals. void setShouldRestoreGlobalsLinkage(bool Value) { ShouldRestoreGlobalsLinkage = Value; }
void addMustPreserveSymbol(StringRef Sym) { MustPreserveSymbols.insert(Sym); }
/// Pass options to the driver and optimization passes. /// /// These options are not necessarily for debugging purpose (the function /// name is misleading). This function should be called before /// LTOCodeGenerator::compilexxx(), and /// LTOCodeGenerator::writeMergedModules(). void setCodeGenDebugOptions(ArrayRef<StringRef> Opts);
/// Parse the options set in setCodeGenDebugOptions. /// /// Like \a setCodeGenDebugOptions(), this must be called before /// LTOCodeGenerator::compilexxx() and /// LTOCodeGenerator::writeMergedModules(). void parseCodeGenDebugOptions();
/// Write the merged module to the file specified by the given path. Return /// true on success. /// /// Calls \a verifyMergedModuleOnce(). bool writeMergedModules(StringRef Path);
/// Compile the merged module into a *single* output file; the path to output /// file is returned to the caller via argument "name". Return true on /// success. /// /// \note It is up to the linker to remove the intermediate output file. Do /// not try to remove the object file in LTOCodeGenerator's destructor as we /// don't who (LTOCodeGenerator or the output file) will last longer. bool compile_to_file(const char **Name);
/// As with compile_to_file(), this function compiles the merged module into /// single output file. Instead of returning the output file path to the /// caller (linker), it brings the output to a buffer, and returns the buffer /// to the caller. This function should delete the intermediate file once /// its content is brought to memory. Return NULL if the compilation was not /// successful. std::unique_ptr<MemoryBuffer> compile();
/// Optimizes the merged module. Returns true on success. /// /// Calls \a verifyMergedModuleOnce(). bool optimize();
/// Compiles the merged optimized module into a single output file. It brings /// the output to a buffer, and returns the buffer to the caller. Return NULL /// if the compilation was not successful. std::unique_ptr<MemoryBuffer> compileOptimized();
/// Compile the merged optimized module \p ParallelismLevel output files each /// representing a linkable partition of the module. If out contains more /// than one element, code generation is done in parallel with \p /// ParallelismLevel threads. Output files will be written to the streams /// created using the \p AddStream callback. Returns true on success. /// /// Calls \a verifyMergedModuleOnce(). bool compileOptimized(AddStreamFn AddStream, unsigned ParallelismLevel);
/// Enable the Freestanding mode: indicate that the optimizer should not /// assume builtins are present on the target. void setFreestanding(bool Enabled) { Config.Freestanding = Enabled; }
void setDisableVerify(bool Value) { Config.DisableVerify = Value; }
void setDebugPassManager(bool Enabled) { Config.DebugPassManager = Enabled; }
void setDiagnosticHandler(lto_diagnostic_handler_t, void *);
LLVMContext &getContext() { return Context; }
void resetMergedModule() { MergedModule.reset(); } void DiagnosticHandler(const DiagnosticInfo &DI);
private: /// Verify the merged module on first call. /// /// Sets \a HasVerifiedInput on first call and doesn't run again on the same /// input. void verifyMergedModuleOnce();
bool compileOptimizedToFile(const char **Name); void restoreLinkageForExternals(); void applyScopeRestrictions(); void preserveDiscardableGVs( Module &TheModule, llvm::function_ref<bool(const GlobalValue &)> mustPreserveGV);
bool determineTarget(); std::unique_ptr<TargetMachine> createTargetMachine();
bool useAIXSystemAssembler(); bool runAIXSystemAssembler(SmallString<128> &AssemblyFile);
void emitError(const std::string &ErrMsg); void emitWarning(const std::string &ErrMsg);
void finishOptimizationRemarks();
LLVMContext &Context; std::unique_ptr<Module> MergedModule; std::unique_ptr<Linker> TheLinker; std::unique_ptr<TargetMachine> TargetMach; bool EmitDwarfDebugInfo = false; bool ScopeRestrictionsDone = false; bool HasVerifiedInput = false; StringSet<> MustPreserveSymbols; StringSet<> AsmUndefinedRefs; StringMap<GlobalValue::LinkageTypes> ExternalSymbols; std::vector<std::string> CodegenOptions; std::string FeatureStr; std::string NativeObjectPath; const Target *MArch = nullptr; std::string TripleStr; lto_diagnostic_handler_t DiagHandler = nullptr; void *DiagContext = nullptr; bool ShouldInternalize = EnableLTOInternalization; bool ShouldEmbedUselists = false; bool ShouldRestoreGlobalsLinkage = false; std::unique_ptr<ToolOutputFile> DiagnosticOutputFile; std::unique_ptr<ToolOutputFile> StatsFile = nullptr; std::string SaveIRBeforeOptPath;
lto::Config Config; };
/// A convenience function that calls cl::ParseCommandLineOptions on the given /// set of options. void parseCommandLineOptions(std::vector<std::string> &Options); } #endif
|