Viewing file: ValueMap.h (14.22 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- ValueMap.h - Safe map from Values to data ----------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the ValueMap class. ValueMap maps Value* or any subclass // to an arbitrary other type. It provides the DenseMap interface but updates // itself to remain safe when keys are RAUWed or deleted. By default, when a // key is RAUWed from V1 to V2, the old mapping V1->target is removed, and a new // mapping V2->target is added. If V2 already existed, its old target is // overwritten. When a key is deleted, its mapping is removed. // // You can override a ValueMap's Config parameter to control exactly what // happens on RAUW and destruction and to get called back on each event. It's // legal to call back into the ValueMap from a Config's callbacks. Config // parameters should inherit from ValueMapConfig<KeyT> to get default // implementations of all the methods ValueMap uses. See ValueMapConfig for // documentation of the functions you can override. // //===----------------------------------------------------------------------===//
#ifndef LLVM_IR_VALUEMAP_H #define LLVM_IR_VALUEMAP_H
#include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseMapInfo.h" #include "llvm/IR/TrackingMDRef.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Mutex.h" #include <algorithm> #include <cassert> #include <cstddef> #include <iterator> #include <mutex> #include <optional> #include <type_traits> #include <utility>
namespace llvm {
template<typename KeyT, typename ValueT, typename Config> class ValueMapCallbackVH; template<typename DenseMapT, typename KeyT> class ValueMapIterator; template<typename DenseMapT, typename KeyT> class ValueMapConstIterator;
/// This class defines the default behavior for configurable aspects of /// ValueMap<>. User Configs should inherit from this class to be as compatible /// as possible with future versions of ValueMap. template<typename KeyT, typename MutexT = sys::Mutex> struct ValueMapConfig { using mutex_type = MutexT;
/// If FollowRAUW is true, the ValueMap will update mappings on RAUW. If it's /// false, the ValueMap will leave the original mapping in place. enum { FollowRAUW = true };
// All methods will be called with a first argument of type ExtraData. The // default implementations in this class take a templated first argument so // that users' subclasses can use any type they want without having to // override all the defaults. struct ExtraData {};
template<typename ExtraDataT> static void onRAUW(const ExtraDataT & /*Data*/, KeyT /*Old*/, KeyT /*New*/) {} template<typename ExtraDataT> static void onDelete(const ExtraDataT &/*Data*/, KeyT /*Old*/) {}
/// Returns a mutex that should be acquired around any changes to the map. /// This is only acquired from the CallbackVH (and held around calls to onRAUW /// and onDelete) and not inside other ValueMap methods. NULL means that no /// mutex is necessary. template<typename ExtraDataT> static mutex_type *getMutex(const ExtraDataT &/*Data*/) { return nullptr; } };
/// See the file comment. template<typename KeyT, typename ValueT, typename Config =ValueMapConfig<KeyT>> class ValueMap { friend class ValueMapCallbackVH<KeyT, ValueT, Config>;
using ValueMapCVH = ValueMapCallbackVH<KeyT, ValueT, Config>; using MapT = DenseMap<ValueMapCVH, ValueT, DenseMapInfo<ValueMapCVH>>; using MDMapT = DenseMap<const Metadata *, TrackingMDRef>; using ExtraData = typename Config::ExtraData;
MapT Map; std::optional<MDMapT> MDMap; ExtraData Data;
public: using key_type = KeyT; using mapped_type = ValueT; using value_type = std::pair<KeyT, ValueT>; using size_type = unsigned;
explicit ValueMap(unsigned NumInitBuckets = 64) : Map(NumInitBuckets), Data() {} explicit ValueMap(const ExtraData &Data, unsigned NumInitBuckets = 64) : Map(NumInitBuckets), Data(Data) {} // ValueMap can't be copied nor moved, because the callbacks store pointer to // it. ValueMap(const ValueMap &) = delete; ValueMap(ValueMap &&) = delete; ValueMap &operator=(const ValueMap &) = delete; ValueMap &operator=(ValueMap &&) = delete;
bool hasMD() const { return bool(MDMap); } MDMapT &MD() { if (!MDMap) MDMap.emplace(); return *MDMap; } std::optional<MDMapT> &getMDMap() { return MDMap; }
/// Get the mapped metadata, if it's in the map. std::optional<Metadata *> getMappedMD(const Metadata *MD) const { if (!MDMap) return std::nullopt; auto Where = MDMap->find(MD); if (Where == MDMap->end()) return std::nullopt; return Where->second.get(); }
using iterator = ValueMapIterator<MapT, KeyT>; using const_iterator = ValueMapConstIterator<MapT, KeyT>;
inline iterator begin() { return iterator(Map.begin()); } inline iterator end() { return iterator(Map.end()); } inline const_iterator begin() const { return const_iterator(Map.begin()); } inline const_iterator end() const { return const_iterator(Map.end()); }
bool empty() const { return Map.empty(); } size_type size() const { return Map.size(); }
/// Grow the map so that it has at least Size buckets. Does not shrink void reserve(size_t Size) { Map.reserve(Size); }
void clear() { Map.clear(); MDMap.reset(); }
/// Return 1 if the specified key is in the map, 0 otherwise. size_type count(const KeyT &Val) const { return Map.find_as(Val) == Map.end() ? 0 : 1; }
iterator find(const KeyT &Val) { return iterator(Map.find_as(Val)); } const_iterator find(const KeyT &Val) const { return const_iterator(Map.find_as(Val)); }
/// lookup - Return the entry for the specified key, or a default /// constructed value if no such entry exists. ValueT lookup(const KeyT &Val) const { typename MapT::const_iterator I = Map.find_as(Val); return I != Map.end() ? I->second : ValueT(); }
// Inserts key,value pair into the map if the key isn't already in the map. // If the key is already in the map, it returns false and doesn't update the // value. std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) { auto MapResult = Map.insert(std::make_pair(Wrap(KV.first), KV.second)); return std::make_pair(iterator(MapResult.first), MapResult.second); }
std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) { auto MapResult = Map.insert(std::make_pair(Wrap(KV.first), std::move(KV.second))); return std::make_pair(iterator(MapResult.first), MapResult.second); }
/// insert - Range insertion of pairs. template<typename InputIt> void insert(InputIt I, InputIt E) { for (; I != E; ++I) insert(*I); }
bool erase(const KeyT &Val) { typename MapT::iterator I = Map.find_as(Val); if (I == Map.end()) return false;
Map.erase(I); return true; } void erase(iterator I) { return Map.erase(I.base()); }
value_type& FindAndConstruct(const KeyT &Key) { return Map.FindAndConstruct(Wrap(Key)); }
ValueT &operator[](const KeyT &Key) { return Map[Wrap(Key)]; }
/// isPointerIntoBucketsArray - Return true if the specified pointer points /// somewhere into the ValueMap's array of buckets (i.e. either to a key or /// value in the ValueMap). bool isPointerIntoBucketsArray(const void *Ptr) const { return Map.isPointerIntoBucketsArray(Ptr); }
/// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets /// array. In conjunction with the previous method, this can be used to /// determine whether an insertion caused the ValueMap to reallocate. const void *getPointerIntoBucketsArray() const { return Map.getPointerIntoBucketsArray(); }
private: // Takes a key being looked up in the map and wraps it into a // ValueMapCallbackVH, the actual key type of the map. We use a helper // function because ValueMapCVH is constructed with a second parameter. ValueMapCVH Wrap(KeyT key) const { // The only way the resulting CallbackVH could try to modify *this (making // the const_cast incorrect) is if it gets inserted into the map. But then // this function must have been called from a non-const method, making the // const_cast ok. return ValueMapCVH(key, const_cast<ValueMap*>(this)); } };
// This CallbackVH updates its ValueMap when the contained Value changes, // according to the user's preferences expressed through the Config object. template <typename KeyT, typename ValueT, typename Config> class ValueMapCallbackVH final : public CallbackVH { friend class ValueMap<KeyT, ValueT, Config>; friend struct DenseMapInfo<ValueMapCallbackVH>;
using ValueMapT = ValueMap<KeyT, ValueT, Config>; using KeySansPointerT = std::remove_pointer_t<KeyT>;
ValueMapT *Map;
ValueMapCallbackVH(KeyT Key, ValueMapT *Map) : CallbackVH(const_cast<Value*>(static_cast<const Value*>(Key))), Map(Map) {}
// Private constructor used to create empty/tombstone DenseMap keys. ValueMapCallbackVH(Value *V) : CallbackVH(V), Map(nullptr) {}
public: KeyT Unwrap() const { return cast_or_null<KeySansPointerT>(getValPtr()); }
void deleted() override { // Make a copy that won't get changed even when *this is destroyed. ValueMapCallbackVH Copy(*this); typename Config::mutex_type *M = Config::getMutex(Copy.Map->Data); std::unique_lock<typename Config::mutex_type> Guard; if (M) Guard = std::unique_lock<typename Config::mutex_type>(*M); Config::onDelete(Copy.Map->Data, Copy.Unwrap()); // May destroy *this. Copy.Map->Map.erase(Copy); // Definitely destroys *this. }
void allUsesReplacedWith(Value *new_key) override { assert(isa<KeySansPointerT>(new_key) && "Invalid RAUW on key of ValueMap<>"); // Make a copy that won't get changed even when *this is destroyed. ValueMapCallbackVH Copy(*this); typename Config::mutex_type *M = Config::getMutex(Copy.Map->Data); std::unique_lock<typename Config::mutex_type> Guard; if (M) Guard = std::unique_lock<typename Config::mutex_type>(*M);
KeyT typed_new_key = cast<KeySansPointerT>(new_key); // Can destroy *this: Config::onRAUW(Copy.Map->Data, Copy.Unwrap(), typed_new_key); if (Config::FollowRAUW) { typename ValueMapT::MapT::iterator I = Copy.Map->Map.find(Copy); // I could == Copy.Map->Map.end() if the onRAUW callback already // removed the old mapping. if (I != Copy.Map->Map.end()) { ValueT Target(std::move(I->second)); Copy.Map->Map.erase(I); // Definitely destroys *this. Copy.Map->insert(std::make_pair(typed_new_key, std::move(Target))); } } } };
template<typename KeyT, typename ValueT, typename Config> struct DenseMapInfo<ValueMapCallbackVH<KeyT, ValueT, Config>> { using VH = ValueMapCallbackVH<KeyT, ValueT, Config>;
static inline VH getEmptyKey() { return VH(DenseMapInfo<Value *>::getEmptyKey()); }
static inline VH getTombstoneKey() { return VH(DenseMapInfo<Value *>::getTombstoneKey()); }
static unsigned getHashValue(const VH &Val) { return DenseMapInfo<KeyT>::getHashValue(Val.Unwrap()); }
static unsigned getHashValue(const KeyT &Val) { return DenseMapInfo<KeyT>::getHashValue(Val); }
static bool isEqual(const VH &LHS, const VH &RHS) { return LHS == RHS; }
static bool isEqual(const KeyT &LHS, const VH &RHS) { return LHS == RHS.getValPtr(); } };
template <typename DenseMapT, typename KeyT> class ValueMapIterator { using BaseT = typename DenseMapT::iterator; using ValueT = typename DenseMapT::mapped_type;
BaseT I;
public: using iterator_category = std::forward_iterator_tag; using value_type = std::pair<KeyT, typename DenseMapT::mapped_type>; using difference_type = std::ptrdiff_t; using pointer = value_type *; using reference = value_type &;
ValueMapIterator() : I() {} ValueMapIterator(BaseT I) : I(I) {}
BaseT base() const { return I; }
struct ValueTypeProxy { const KeyT first; ValueT& second;
ValueTypeProxy *operator->() { return this; }
operator std::pair<KeyT, ValueT>() const { return std::make_pair(first, second); } };
ValueTypeProxy operator*() const { ValueTypeProxy Result = {I->first.Unwrap(), I->second}; return Result; }
ValueTypeProxy operator->() const { return operator*(); }
bool operator==(const ValueMapIterator &RHS) const { return I == RHS.I; } bool operator!=(const ValueMapIterator &RHS) const { return I != RHS.I; }
inline ValueMapIterator& operator++() { // Preincrement ++I; return *this; } ValueMapIterator operator++(int) { // Postincrement ValueMapIterator tmp = *this; ++*this; return tmp; } };
template <typename DenseMapT, typename KeyT> class ValueMapConstIterator { using BaseT = typename DenseMapT::const_iterator; using ValueT = typename DenseMapT::mapped_type;
BaseT I;
public: using iterator_category = std::forward_iterator_tag; using value_type = std::pair<KeyT, typename DenseMapT::mapped_type>; using difference_type = std::ptrdiff_t; using pointer = value_type *; using reference = value_type &;
ValueMapConstIterator() : I() {} ValueMapConstIterator(BaseT I) : I(I) {} ValueMapConstIterator(ValueMapIterator<DenseMapT, KeyT> Other) : I(Other.base()) {}
BaseT base() const { return I; }
struct ValueTypeProxy { const KeyT first; const ValueT& second; ValueTypeProxy *operator->() { return this; } operator std::pair<KeyT, ValueT>() const { return std::make_pair(first, second); } };
ValueTypeProxy operator*() const { ValueTypeProxy Result = {I->first.Unwrap(), I->second}; return Result; }
ValueTypeProxy operator->() const { return operator*(); }
bool operator==(const ValueMapConstIterator &RHS) const { return I == RHS.I; } bool operator!=(const ValueMapConstIterator &RHS) const { return I != RHS.I; }
inline ValueMapConstIterator& operator++() { // Preincrement ++I; return *this; } ValueMapConstIterator operator++(int) { // Postincrement ValueMapConstIterator tmp = *this; ++*this; return tmp; } };
} // end namespace llvm
#endif // LLVM_IR_VALUEMAP_H
|