Viewing file: PatternMatch.h (102.68 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file provides a simple and efficient mechanism for performing general // tree-based pattern matches on the LLVM IR. The power of these routines is // that it allows you to write concise patterns that are expressive and easy to // understand. The other major advantage of this is that it allows you to // trivially capture/bind elements in the pattern to variables. For example, // you can do something like this: // // Value *Exp = ... // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2) // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)), // m_And(m_Value(Y), m_ConstantInt(C2))))) { // ... Pattern is matched and variables are bound ... // } // // This is primarily useful to things like the instruction combiner, but can // also be useful for static analysis tools or code generators. // //===----------------------------------------------------------------------===//
#ifndef LLVM_IR_PATTERNMATCH_H #define LLVM_IR_PATTERNMATCH_H
#include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include <cstdint>
namespace llvm { namespace PatternMatch {
template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) { return const_cast<Pattern &>(P).match(V); }
template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) { return const_cast<Pattern &>(P).match(Mask); }
template <typename SubPattern_t> struct OneUse_match { SubPattern_t SubPattern;
OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
template <typename OpTy> bool match(OpTy *V) { return V->hasOneUse() && SubPattern.match(V); } };
template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) { return SubPattern; }
template <typename SubPattern_t> struct AllowReassoc_match { SubPattern_t SubPattern;
AllowReassoc_match(const SubPattern_t &SP) : SubPattern(SP) {}
template <typename OpTy> bool match(OpTy *V) { auto *I = dyn_cast<FPMathOperator>(V); return I && I->hasAllowReassoc() && SubPattern.match(I); } };
template <typename T> inline AllowReassoc_match<T> m_AllowReassoc(const T &SubPattern) { return SubPattern; }
template <typename Class> struct class_match { template <typename ITy> bool match(ITy *V) { return isa<Class>(V); } };
/// Match an arbitrary value and ignore it. inline class_match<Value> m_Value() { return class_match<Value>(); }
/// Match an arbitrary unary operation and ignore it. inline class_match<UnaryOperator> m_UnOp() { return class_match<UnaryOperator>(); }
/// Match an arbitrary binary operation and ignore it. inline class_match<BinaryOperator> m_BinOp() { return class_match<BinaryOperator>(); }
/// Matches any compare instruction and ignore it. inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
struct undef_match { static bool check(const Value *V) { if (isa<UndefValue>(V)) return true;
const auto *CA = dyn_cast<ConstantAggregate>(V); if (!CA) return false;
SmallPtrSet<const ConstantAggregate *, 8> Seen; SmallVector<const ConstantAggregate *, 8> Worklist;
// Either UndefValue, PoisonValue, or an aggregate that only contains // these is accepted by matcher. // CheckValue returns false if CA cannot satisfy this constraint. auto CheckValue = [&](const ConstantAggregate *CA) { for (const Value *Op : CA->operand_values()) { if (isa<UndefValue>(Op)) continue;
const auto *CA = dyn_cast<ConstantAggregate>(Op); if (!CA) return false; if (Seen.insert(CA).second) Worklist.emplace_back(CA); }
return true; };
if (!CheckValue(CA)) return false;
while (!Worklist.empty()) { if (!CheckValue(Worklist.pop_back_val())) return false; } return true; } template <typename ITy> bool match(ITy *V) { return check(V); } };
/// Match an arbitrary undef constant. This matches poison as well. /// If this is an aggregate and contains a non-aggregate element that is /// neither undef nor poison, the aggregate is not matched. inline auto m_Undef() { return undef_match(); }
/// Match an arbitrary UndefValue constant. inline class_match<UndefValue> m_UndefValue() { return class_match<UndefValue>(); }
/// Match an arbitrary poison constant. inline class_match<PoisonValue> m_Poison() { return class_match<PoisonValue>(); }
/// Match an arbitrary Constant and ignore it. inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
/// Match an arbitrary ConstantInt and ignore it. inline class_match<ConstantInt> m_ConstantInt() { return class_match<ConstantInt>(); }
/// Match an arbitrary ConstantFP and ignore it. inline class_match<ConstantFP> m_ConstantFP() { return class_match<ConstantFP>(); }
struct constantexpr_match { template <typename ITy> bool match(ITy *V) { auto *C = dyn_cast<Constant>(V); return C && (isa<ConstantExpr>(C) || C->containsConstantExpression()); } };
/// Match a constant expression or a constant that contains a constant /// expression. inline constantexpr_match m_ConstantExpr() { return constantexpr_match(); }
/// Match an arbitrary basic block value and ignore it. inline class_match<BasicBlock> m_BasicBlock() { return class_match<BasicBlock>(); }
/// Inverting matcher template <typename Ty> struct match_unless { Ty M;
match_unless(const Ty &Matcher) : M(Matcher) {}
template <typename ITy> bool match(ITy *V) { return !M.match(V); } };
/// Match if the inner matcher does *NOT* match. template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) { return match_unless<Ty>(M); }
/// Matching combinators template <typename LTy, typename RTy> struct match_combine_or { LTy L; RTy R;
match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
template <typename ITy> bool match(ITy *V) { if (L.match(V)) return true; if (R.match(V)) return true; return false; } };
template <typename LTy, typename RTy> struct match_combine_and { LTy L; RTy R;
match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
template <typename ITy> bool match(ITy *V) { if (L.match(V)) if (R.match(V)) return true; return false; } };
/// Combine two pattern matchers matching L || R template <typename LTy, typename RTy> inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) { return match_combine_or<LTy, RTy>(L, R); }
/// Combine two pattern matchers matching L && R template <typename LTy, typename RTy> inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) { return match_combine_and<LTy, RTy>(L, R); }
struct apint_match { const APInt *&Res; bool AllowPoison;
apint_match(const APInt *&Res, bool AllowPoison) : Res(Res), AllowPoison(AllowPoison) {}
template <typename ITy> bool match(ITy *V) { if (auto *CI = dyn_cast<ConstantInt>(V)) { Res = &CI->getValue(); return true; } if (V->getType()->isVectorTy()) if (const auto *C = dyn_cast<Constant>(V)) if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowPoison))) { Res = &CI->getValue(); return true; } return false; } }; // Either constexpr if or renaming ConstantFP::getValueAPF to // ConstantFP::getValue is needed to do it via single template // function for both apint/apfloat. struct apfloat_match { const APFloat *&Res; bool AllowPoison;
apfloat_match(const APFloat *&Res, bool AllowPoison) : Res(Res), AllowPoison(AllowPoison) {}
template <typename ITy> bool match(ITy *V) { if (auto *CI = dyn_cast<ConstantFP>(V)) { Res = &CI->getValueAPF(); return true; } if (V->getType()->isVectorTy()) if (const auto *C = dyn_cast<Constant>(V)) if (auto *CI = dyn_cast_or_null<ConstantFP>(C->getSplatValue(AllowPoison))) { Res = &CI->getValueAPF(); return true; } return false; } };
/// Match a ConstantInt or splatted ConstantVector, binding the /// specified pointer to the contained APInt. inline apint_match m_APInt(const APInt *&Res) { // Forbid poison by default to maintain previous behavior. return apint_match(Res, /* AllowPoison */ false); }
/// Match APInt while allowing poison in splat vector constants. inline apint_match m_APIntAllowPoison(const APInt *&Res) { return apint_match(Res, /* AllowPoison */ true); }
/// Match APInt while forbidding poison in splat vector constants. inline apint_match m_APIntForbidPoison(const APInt *&Res) { return apint_match(Res, /* AllowPoison */ false); }
/// Match a ConstantFP or splatted ConstantVector, binding the /// specified pointer to the contained APFloat. inline apfloat_match m_APFloat(const APFloat *&Res) { // Forbid undefs by default to maintain previous behavior. return apfloat_match(Res, /* AllowPoison */ false); }
/// Match APFloat while allowing poison in splat vector constants. inline apfloat_match m_APFloatAllowPoison(const APFloat *&Res) { return apfloat_match(Res, /* AllowPoison */ true); }
/// Match APFloat while forbidding poison in splat vector constants. inline apfloat_match m_APFloatForbidPoison(const APFloat *&Res) { return apfloat_match(Res, /* AllowPoison */ false); }
template <int64_t Val> struct constantint_match { template <typename ITy> bool match(ITy *V) { if (const auto *CI = dyn_cast<ConstantInt>(V)) { const APInt &CIV = CI->getValue(); if (Val >= 0) return CIV == static_cast<uint64_t>(Val); // If Val is negative, and CI is shorter than it, truncate to the right // number of bits. If it is larger, then we have to sign extend. Just // compare their negated values. return -CIV == -Val; } return false; } };
/// Match a ConstantInt with a specific value. template <int64_t Val> inline constantint_match<Val> m_ConstantInt() { return constantint_match<Val>(); }
/// This helper class is used to match constant scalars, vector splats, /// and fixed width vectors that satisfy a specified predicate. /// For fixed width vector constants, poison elements are ignored if AllowPoison /// is true. template <typename Predicate, typename ConstantVal, bool AllowPoison> struct cstval_pred_ty : public Predicate { const Constant **Res = nullptr; template <typename ITy> bool match_impl(ITy *V) { if (const auto *CV = dyn_cast<ConstantVal>(V)) return this->isValue(CV->getValue()); if (const auto *VTy = dyn_cast<VectorType>(V->getType())) { if (const auto *C = dyn_cast<Constant>(V)) { if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue())) return this->isValue(CV->getValue());
// Number of elements of a scalable vector unknown at compile time auto *FVTy = dyn_cast<FixedVectorType>(VTy); if (!FVTy) return false;
// Non-splat vector constant: check each element for a match. unsigned NumElts = FVTy->getNumElements(); assert(NumElts != 0 && "Constant vector with no elements?"); bool HasNonPoisonElements = false; for (unsigned i = 0; i != NumElts; ++i) { Constant *Elt = C->getAggregateElement(i); if (!Elt) return false; if (AllowPoison && isa<PoisonValue>(Elt)) continue; auto *CV = dyn_cast<ConstantVal>(Elt); if (!CV || !this->isValue(CV->getValue())) return false; HasNonPoisonElements = true; } return HasNonPoisonElements; } } return false; }
template <typename ITy> bool match(ITy *V) { if (this->match_impl(V)) { if (Res) *Res = cast<Constant>(V); return true; } return false; } };
/// specialization of cstval_pred_ty for ConstantInt template <typename Predicate, bool AllowPoison = true> using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt, AllowPoison>;
/// specialization of cstval_pred_ty for ConstantFP template <typename Predicate> using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP, /*AllowPoison=*/true>;
/// This helper class is used to match scalar and vector constants that /// satisfy a specified predicate, and bind them to an APInt. template <typename Predicate> struct api_pred_ty : public Predicate { const APInt *&Res;
api_pred_ty(const APInt *&R) : Res(R) {}
template <typename ITy> bool match(ITy *V) { if (const auto *CI = dyn_cast<ConstantInt>(V)) if (this->isValue(CI->getValue())) { Res = &CI->getValue(); return true; } if (V->getType()->isVectorTy()) if (const auto *C = dyn_cast<Constant>(V)) if (auto *CI = dyn_cast_or_null<ConstantInt>( C->getSplatValue(/*AllowPoison=*/true))) if (this->isValue(CI->getValue())) { Res = &CI->getValue(); return true; }
return false; } };
/// This helper class is used to match scalar and vector constants that /// satisfy a specified predicate, and bind them to an APFloat. /// Poison is allowed in splat vector constants. template <typename Predicate> struct apf_pred_ty : public Predicate { const APFloat *&Res;
apf_pred_ty(const APFloat *&R) : Res(R) {}
template <typename ITy> bool match(ITy *V) { if (const auto *CI = dyn_cast<ConstantFP>(V)) if (this->isValue(CI->getValue())) { Res = &CI->getValue(); return true; } if (V->getType()->isVectorTy()) if (const auto *C = dyn_cast<Constant>(V)) if (auto *CI = dyn_cast_or_null<ConstantFP>( C->getSplatValue(/* AllowPoison */ true))) if (this->isValue(CI->getValue())) { Res = &CI->getValue(); return true; }
return false; } };
/////////////////////////////////////////////////////////////////////////////// // // Encapsulate constant value queries for use in templated predicate matchers. // This allows checking if constants match using compound predicates and works // with vector constants, possibly with relaxed constraints. For example, ignore // undef values. // ///////////////////////////////////////////////////////////////////////////////
template <typename APTy> struct custom_checkfn { function_ref<bool(const APTy &)> CheckFn; bool isValue(const APTy &C) { return CheckFn(C); } };
/// Match an integer or vector where CheckFn(ele) for each element is true. /// For vectors, poison elements are assumed to match. inline cst_pred_ty<custom_checkfn<APInt>> m_CheckedInt(function_ref<bool(const APInt &)> CheckFn) { return cst_pred_ty<custom_checkfn<APInt>>{{CheckFn}}; }
inline cst_pred_ty<custom_checkfn<APInt>> m_CheckedInt(const Constant *&V, function_ref<bool(const APInt &)> CheckFn) { return cst_pred_ty<custom_checkfn<APInt>>{{CheckFn}, &V}; }
/// Match a float or vector where CheckFn(ele) for each element is true. /// For vectors, poison elements are assumed to match. inline cstfp_pred_ty<custom_checkfn<APFloat>> m_CheckedFp(function_ref<bool(const APFloat &)> CheckFn) { return cstfp_pred_ty<custom_checkfn<APFloat>>{{CheckFn}}; }
inline cstfp_pred_ty<custom_checkfn<APFloat>> m_CheckedFp(const Constant *&V, function_ref<bool(const APFloat &)> CheckFn) { return cstfp_pred_ty<custom_checkfn<APFloat>>{{CheckFn}, &V}; }
struct is_any_apint { bool isValue(const APInt &C) { return true; } }; /// Match an integer or vector with any integral constant. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() { return cst_pred_ty<is_any_apint>(); }
struct is_shifted_mask { bool isValue(const APInt &C) { return C.isShiftedMask(); } };
inline cst_pred_ty<is_shifted_mask> m_ShiftedMask() { return cst_pred_ty<is_shifted_mask>(); }
struct is_all_ones { bool isValue(const APInt &C) { return C.isAllOnes(); } }; /// Match an integer or vector with all bits set. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty<is_all_ones> m_AllOnes() { return cst_pred_ty<is_all_ones>(); }
inline cst_pred_ty<is_all_ones, false> m_AllOnesForbidPoison() { return cst_pred_ty<is_all_ones, false>(); }
struct is_maxsignedvalue { bool isValue(const APInt &C) { return C.isMaxSignedValue(); } }; /// Match an integer or vector with values having all bits except for the high /// bit set (0x7f...). /// For vectors, this includes constants with undefined elements. inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() { return cst_pred_ty<is_maxsignedvalue>(); } inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) { return V; }
struct is_negative { bool isValue(const APInt &C) { return C.isNegative(); } }; /// Match an integer or vector of negative values. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty<is_negative> m_Negative() { return cst_pred_ty<is_negative>(); } inline api_pred_ty<is_negative> m_Negative(const APInt *&V) { return V; }
struct is_nonnegative { bool isValue(const APInt &C) { return C.isNonNegative(); } }; /// Match an integer or vector of non-negative values. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty<is_nonnegative> m_NonNegative() { return cst_pred_ty<is_nonnegative>(); } inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) { return V; }
struct is_strictlypositive { bool isValue(const APInt &C) { return C.isStrictlyPositive(); } }; /// Match an integer or vector of strictly positive values. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() { return cst_pred_ty<is_strictlypositive>(); } inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) { return V; }
struct is_nonpositive { bool isValue(const APInt &C) { return C.isNonPositive(); } }; /// Match an integer or vector of non-positive values. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty<is_nonpositive> m_NonPositive() { return cst_pred_ty<is_nonpositive>(); } inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; }
struct is_one { bool isValue(const APInt &C) { return C.isOne(); } }; /// Match an integer 1 or a vector with all elements equal to 1. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); }
struct is_zero_int { bool isValue(const APInt &C) { return C.isZero(); } }; /// Match an integer 0 or a vector with all elements equal to 0. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty<is_zero_int> m_ZeroInt() { return cst_pred_ty<is_zero_int>(); }
struct is_zero { template <typename ITy> bool match(ITy *V) { auto *C = dyn_cast<Constant>(V); // FIXME: this should be able to do something for scalable vectors return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C)); } }; /// Match any null constant or a vector with all elements equal to 0. /// For vectors, this includes constants with undefined elements. inline is_zero m_Zero() { return is_zero(); }
struct is_power2 { bool isValue(const APInt &C) { return C.isPowerOf2(); } }; /// Match an integer or vector power-of-2. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); } inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; }
struct is_negated_power2 { bool isValue(const APInt &C) { return C.isNegatedPowerOf2(); } }; /// Match a integer or vector negated power-of-2. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty<is_negated_power2> m_NegatedPower2() { return cst_pred_ty<is_negated_power2>(); } inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) { return V; }
struct is_negated_power2_or_zero { bool isValue(const APInt &C) { return !C || C.isNegatedPowerOf2(); } }; /// Match a integer or vector negated power-of-2. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty<is_negated_power2_or_zero> m_NegatedPower2OrZero() { return cst_pred_ty<is_negated_power2_or_zero>(); } inline api_pred_ty<is_negated_power2_or_zero> m_NegatedPower2OrZero(const APInt *&V) { return V; }
struct is_power2_or_zero { bool isValue(const APInt &C) { return !C || C.isPowerOf2(); } }; /// Match an integer or vector of 0 or power-of-2 values. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() { return cst_pred_ty<is_power2_or_zero>(); } inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) { return V; }
struct is_sign_mask { bool isValue(const APInt &C) { return C.isSignMask(); } }; /// Match an integer or vector with only the sign bit(s) set. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty<is_sign_mask> m_SignMask() { return cst_pred_ty<is_sign_mask>(); }
struct is_lowbit_mask { bool isValue(const APInt &C) { return C.isMask(); } }; /// Match an integer or vector with only the low bit(s) set. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() { return cst_pred_ty<is_lowbit_mask>(); } inline api_pred_ty<is_lowbit_mask> m_LowBitMask(const APInt *&V) { return V; }
struct is_lowbit_mask_or_zero { bool isValue(const APInt &C) { return !C || C.isMask(); } }; /// Match an integer or vector with only the low bit(s) set. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty<is_lowbit_mask_or_zero> m_LowBitMaskOrZero() { return cst_pred_ty<is_lowbit_mask_or_zero>(); } inline api_pred_ty<is_lowbit_mask_or_zero> m_LowBitMaskOrZero(const APInt *&V) { return V; }
struct icmp_pred_with_threshold { ICmpInst::Predicate Pred; const APInt *Thr; bool isValue(const APInt &C) { return ICmpInst::compare(C, *Thr, Pred); } }; /// Match an integer or vector with every element comparing 'pred' (eg/ne/...) /// to Threshold. For vectors, this includes constants with undefined elements. inline cst_pred_ty<icmp_pred_with_threshold> m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) { cst_pred_ty<icmp_pred_with_threshold> P; P.Pred = Predicate; P.Thr = &Threshold; return P; }
struct is_nan { bool isValue(const APFloat &C) { return C.isNaN(); } }; /// Match an arbitrary NaN constant. This includes quiet and signalling nans. /// For vectors, this includes constants with undefined elements. inline cstfp_pred_ty<is_nan> m_NaN() { return cstfp_pred_ty<is_nan>(); }
struct is_nonnan { bool isValue(const APFloat &C) { return !C.isNaN(); } }; /// Match a non-NaN FP constant. /// For vectors, this includes constants with undefined elements. inline cstfp_pred_ty<is_nonnan> m_NonNaN() { return cstfp_pred_ty<is_nonnan>(); }
struct is_inf { bool isValue(const APFloat &C) { return C.isInfinity(); } }; /// Match a positive or negative infinity FP constant. /// For vectors, this includes constants with undefined elements. inline cstfp_pred_ty<is_inf> m_Inf() { return cstfp_pred_ty<is_inf>(); }
struct is_noninf { bool isValue(const APFloat &C) { return !C.isInfinity(); } }; /// Match a non-infinity FP constant, i.e. finite or NaN. /// For vectors, this includes constants with undefined elements. inline cstfp_pred_ty<is_noninf> m_NonInf() { return cstfp_pred_ty<is_noninf>(); }
struct is_finite { bool isValue(const APFloat &C) { return C.isFinite(); } }; /// Match a finite FP constant, i.e. not infinity or NaN. /// For vectors, this includes constants with undefined elements. inline cstfp_pred_ty<is_finite> m_Finite() { return cstfp_pred_ty<is_finite>(); } inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; }
struct is_finitenonzero { bool isValue(const APFloat &C) { return C.isFiniteNonZero(); } }; /// Match a finite non-zero FP constant. /// For vectors, this includes constants with undefined elements. inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() { return cstfp_pred_ty<is_finitenonzero>(); } inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) { return V; }
struct is_any_zero_fp { bool isValue(const APFloat &C) { return C.isZero(); } }; /// Match a floating-point negative zero or positive zero. /// For vectors, this includes constants with undefined elements. inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() { return cstfp_pred_ty<is_any_zero_fp>(); }
struct is_pos_zero_fp { bool isValue(const APFloat &C) { return C.isPosZero(); } }; /// Match a floating-point positive zero. /// For vectors, this includes constants with undefined elements. inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() { return cstfp_pred_ty<is_pos_zero_fp>(); }
struct is_neg_zero_fp { bool isValue(const APFloat &C) { return C.isNegZero(); } }; /// Match a floating-point negative zero. /// For vectors, this includes constants with undefined elements. inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() { return cstfp_pred_ty<is_neg_zero_fp>(); }
struct is_non_zero_fp { bool isValue(const APFloat &C) { return C.isNonZero(); } }; /// Match a floating-point non-zero. /// For vectors, this includes constants with undefined elements. inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() { return cstfp_pred_ty<is_non_zero_fp>(); }
///////////////////////////////////////////////////////////////////////////////
template <typename Class> struct bind_ty { Class *&VR;
bind_ty(Class *&V) : VR(V) {}
template <typename ITy> bool match(ITy *V) { if (auto *CV = dyn_cast<Class>(V)) { VR = CV; return true; } return false; } };
/// Match a value, capturing it if we match. inline bind_ty<Value> m_Value(Value *&V) { return V; } inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
/// Match an instruction, capturing it if we match. inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; } /// Match a unary operator, capturing it if we match. inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; } /// Match a binary operator, capturing it if we match. inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; } /// Match a with overflow intrinsic, capturing it if we match. inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) { return I; } inline bind_ty<const WithOverflowInst> m_WithOverflowInst(const WithOverflowInst *&I) { return I; }
/// Match an UndefValue, capturing the value if we match. inline bind_ty<UndefValue> m_UndefValue(UndefValue *&U) { return U; }
/// Match a Constant, capturing the value if we match. inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
/// Match a ConstantInt, capturing the value if we match. inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
/// Match a ConstantFP, capturing the value if we match. inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
/// Match a ConstantExpr, capturing the value if we match. inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; }
/// Match a basic block value, capturing it if we match. inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; } inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) { return V; }
/// Match an arbitrary immediate Constant and ignore it. inline match_combine_and<class_match<Constant>, match_unless<constantexpr_match>> m_ImmConstant() { return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr())); }
/// Match an immediate Constant, capturing the value if we match. inline match_combine_and<bind_ty<Constant>, match_unless<constantexpr_match>> m_ImmConstant(Constant *&C) { return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr())); }
/// Match a specified Value*. struct specificval_ty { const Value *Val;
specificval_ty(const Value *V) : Val(V) {}
template <typename ITy> bool match(ITy *V) { return V == Val; } };
/// Match if we have a specific specified value. inline specificval_ty m_Specific(const Value *V) { return V; }
/// Stores a reference to the Value *, not the Value * itself, /// thus can be used in commutative matchers. template <typename Class> struct deferredval_ty { Class *const &Val;
deferredval_ty(Class *const &V) : Val(V) {}
template <typename ITy> bool match(ITy *const V) { return V == Val; } };
/// Like m_Specific(), but works if the specific value to match is determined /// as part of the same match() expression. For example: /// m_Add(m_Value(X), m_Specific(X)) is incorrect, because m_Specific() will /// bind X before the pattern match starts. /// m_Add(m_Value(X), m_Deferred(X)) is correct, and will check against /// whichever value m_Value(X) populated. inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; } inline deferredval_ty<const Value> m_Deferred(const Value *const &V) { return V; }
/// Match a specified floating point value or vector of all elements of /// that value. struct specific_fpval { double Val;
specific_fpval(double V) : Val(V) {}
template <typename ITy> bool match(ITy *V) { if (const auto *CFP = dyn_cast<ConstantFP>(V)) return CFP->isExactlyValue(Val); if (V->getType()->isVectorTy()) if (const auto *C = dyn_cast<Constant>(V)) if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) return CFP->isExactlyValue(Val); return false; } };
/// Match a specific floating point value or vector with all elements /// equal to the value. inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
/// Match a float 1.0 or vector with all elements equal to 1.0. inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
struct bind_const_intval_ty { uint64_t &VR;
bind_const_intval_ty(uint64_t &V) : VR(V) {}
template <typename ITy> bool match(ITy *V) { if (const auto *CV = dyn_cast<ConstantInt>(V)) if (CV->getValue().ule(UINT64_MAX)) { VR = CV->getZExtValue(); return true; } return false; } };
/// Match a specified integer value or vector of all elements of that /// value. template <bool AllowPoison> struct specific_intval { const APInt &Val;
specific_intval(const APInt &V) : Val(V) {}
template <typename ITy> bool match(ITy *V) { const auto *CI = dyn_cast<ConstantInt>(V); if (!CI && V->getType()->isVectorTy()) if (const auto *C = dyn_cast<Constant>(V)) CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowPoison));
return CI && APInt::isSameValue(CI->getValue(), Val); } };
template <bool AllowPoison> struct specific_intval64 { uint64_t Val;
specific_intval64(uint64_t V) : Val(V) {}
template <typename ITy> bool match(ITy *V) { const auto *CI = dyn_cast<ConstantInt>(V); if (!CI && V->getType()->isVectorTy()) if (const auto *C = dyn_cast<Constant>(V)) CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowPoison));
return CI && CI->getValue() == Val; } };
/// Match a specific integer value or vector with all elements equal to /// the value. inline specific_intval<false> m_SpecificInt(const APInt &V) { return specific_intval<false>(V); }
inline specific_intval64<false> m_SpecificInt(uint64_t V) { return specific_intval64<false>(V); }
inline specific_intval<true> m_SpecificIntAllowPoison(const APInt &V) { return specific_intval<true>(V); }
inline specific_intval64<true> m_SpecificIntAllowPoison(uint64_t V) { return specific_intval64<true>(V); }
/// Match a ConstantInt and bind to its value. This does not match /// ConstantInts wider than 64-bits. inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
/// Match a specified basic block value. struct specific_bbval { BasicBlock *Val;
specific_bbval(BasicBlock *Val) : Val(Val) {}
template <typename ITy> bool match(ITy *V) { const auto *BB = dyn_cast<BasicBlock>(V); return BB && BB == Val; } };
/// Match a specific basic block value. inline specific_bbval m_SpecificBB(BasicBlock *BB) { return specific_bbval(BB); }
/// A commutative-friendly version of m_Specific(). inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) { return BB; } inline deferredval_ty<const BasicBlock> m_Deferred(const BasicBlock *const &BB) { return BB; }
//===----------------------------------------------------------------------===// // Matcher for any binary operator. // template <typename LHS_t, typename RHS_t, bool Commutable = false> struct AnyBinaryOp_match { LHS_t L; RHS_t R;
// The evaluation order is always stable, regardless of Commutability. // The LHS is always matched first. AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
template <typename OpTy> bool match(OpTy *V) { if (auto *I = dyn_cast<BinaryOperator>(V)) return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || (Commutable && L.match(I->getOperand(1)) && R.match(I->getOperand(0))); return false; } };
template <typename LHS, typename RHS> inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) { return AnyBinaryOp_match<LHS, RHS>(L, R); }
//===----------------------------------------------------------------------===// // Matcher for any unary operator. // TODO fuse unary, binary matcher into n-ary matcher // template <typename OP_t> struct AnyUnaryOp_match { OP_t X;
AnyUnaryOp_match(const OP_t &X) : X(X) {}
template <typename OpTy> bool match(OpTy *V) { if (auto *I = dyn_cast<UnaryOperator>(V)) return X.match(I->getOperand(0)); return false; } };
template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) { return AnyUnaryOp_match<OP_t>(X); }
//===----------------------------------------------------------------------===// // Matchers for specific binary operators. //
template <typename LHS_t, typename RHS_t, unsigned Opcode, bool Commutable = false> struct BinaryOp_match { LHS_t L; RHS_t R;
// The evaluation order is always stable, regardless of Commutability. // The LHS is always matched first. BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
template <typename OpTy> inline bool match(unsigned Opc, OpTy *V) { if (V->getValueID() == Value::InstructionVal + Opc) { auto *I = cast<BinaryOperator>(V); return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || (Commutable && L.match(I->getOperand(1)) && R.match(I->getOperand(0))); } return false; }
template <typename OpTy> bool match(OpTy *V) { return match(Opcode, V); } };
template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R); }
template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R); }
template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R); }
template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R); }
template <typename Op_t> struct FNeg_match { Op_t X;
FNeg_match(const Op_t &Op) : X(Op) {} template <typename OpTy> bool match(OpTy *V) { auto *FPMO = dyn_cast<FPMathOperator>(V); if (!FPMO) return false;
if (FPMO->getOpcode() == Instruction::FNeg) return X.match(FPMO->getOperand(0));
if (FPMO->getOpcode() == Instruction::FSub) { if (FPMO->hasNoSignedZeros()) { // With 'nsz', any zero goes. if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0))) return false; } else { // Without 'nsz', we need fsub -0.0, X exactly. if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0))) return false; }
return X.match(FPMO->getOperand(1)); }
return false; } };
/// Match 'fneg X' as 'fsub -0.0, X'. template <typename OpTy> inline FNeg_match<OpTy> m_FNeg(const OpTy &X) { return FNeg_match<OpTy>(X); }
/// Match 'fneg X' as 'fsub +-0.0, X'. template <typename RHS> inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub> m_FNegNSZ(const RHS &X) { return m_FSub(m_AnyZeroFP(), X); }
template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R); }
template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R); }
template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R); }
template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R); }
template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R); }
template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R); }
template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R); }
template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R); }
template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::And>(L, R); }
template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R); }
template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R); }
template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R); }
template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R); }
template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R); }
template <typename LHS_t, typename RHS_t, unsigned Opcode, unsigned WrapFlags = 0, bool Commutable = false> struct OverflowingBinaryOp_match { LHS_t L; RHS_t R;
OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
template <typename OpTy> bool match(OpTy *V) { if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) { if (Op->getOpcode() != Opcode) return false; if ((WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap) && !Op->hasNoUnsignedWrap()) return false; if ((WrapFlags & OverflowingBinaryOperator::NoSignedWrap) && !Op->hasNoSignedWrap()) return false; return (L.match(Op->getOperand(0)) && R.match(Op->getOperand(1))) || (Commutable && L.match(Op->getOperand(1)) && R.match(Op->getOperand(0))); } return false; } };
template <typename LHS, typename RHS> inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap> m_NSWAdd(const LHS &L, const RHS &R) { return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap>(L, R); } template <typename LHS, typename RHS> inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap> m_NSWSub(const LHS &L, const RHS &R) { return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap>(L, R); } template <typename LHS, typename RHS> inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoSignedWrap> m_NSWMul(const LHS &L, const RHS &R) { return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoSignedWrap>(L, R); } template <typename LHS, typename RHS> inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoSignedWrap> m_NSWShl(const LHS &L, const RHS &R) { return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoSignedWrap>(L, R); }
template <typename LHS, typename RHS> inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap> m_NUWAdd(const LHS &L, const RHS &R) { return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap>( L, R); }
template <typename LHS, typename RHS> inline OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap, true> m_c_NUWAdd(const LHS &L, const RHS &R) { return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap, true>(L, R); }
template <typename LHS, typename RHS> inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap> m_NUWSub(const LHS &L, const RHS &R) { return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap>( L, R); } template <typename LHS, typename RHS> inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap> m_NUWMul(const LHS &L, const RHS &R) { return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap>( L, R); } template <typename LHS, typename RHS> inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap> m_NUWShl(const LHS &L, const RHS &R) { return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap>( L, R); }
template <typename LHS_t, typename RHS_t, bool Commutable = false> struct SpecificBinaryOp_match : public BinaryOp_match<LHS_t, RHS_t, 0, Commutable> { unsigned Opcode;
SpecificBinaryOp_match(unsigned Opcode, const LHS_t &LHS, const RHS_t &RHS) : BinaryOp_match<LHS_t, RHS_t, 0, Commutable>(LHS, RHS), Opcode(Opcode) {}
template <typename OpTy> bool match(OpTy *V) { return BinaryOp_match<LHS_t, RHS_t, 0, Commutable>::match(Opcode, V); } };
/// Matches a specific opcode. template <typename LHS, typename RHS> inline SpecificBinaryOp_match<LHS, RHS> m_BinOp(unsigned Opcode, const LHS &L, const RHS &R) { return SpecificBinaryOp_match<LHS, RHS>(Opcode, L, R); }
template <typename LHS, typename RHS, bool Commutable = false> struct DisjointOr_match { LHS L; RHS R;
DisjointOr_match(const LHS &L, const RHS &R) : L(L), R(R) {}
template <typename OpTy> bool match(OpTy *V) { if (auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) { assert(PDI->getOpcode() == Instruction::Or && "Only or can be disjoint"); if (!PDI->isDisjoint()) return false; return (L.match(PDI->getOperand(0)) && R.match(PDI->getOperand(1))) || (Commutable && L.match(PDI->getOperand(1)) && R.match(PDI->getOperand(0))); } return false; } };
template <typename LHS, typename RHS> inline DisjointOr_match<LHS, RHS> m_DisjointOr(const LHS &L, const RHS &R) { return DisjointOr_match<LHS, RHS>(L, R); }
template <typename LHS, typename RHS> inline DisjointOr_match<LHS, RHS, true> m_c_DisjointOr(const LHS &L, const RHS &R) { return DisjointOr_match<LHS, RHS, true>(L, R); }
/// Match either "add" or "or disjoint". template <typename LHS, typename RHS> inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Add>, DisjointOr_match<LHS, RHS>> m_AddLike(const LHS &L, const RHS &R) { return m_CombineOr(m_Add(L, R), m_DisjointOr(L, R)); }
/// Match either "add nsw" or "or disjoint" template <typename LHS, typename RHS> inline match_combine_or< OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap>, DisjointOr_match<LHS, RHS>> m_NSWAddLike(const LHS &L, const RHS &R) { return m_CombineOr(m_NSWAdd(L, R), m_DisjointOr(L, R)); }
/// Match either "add nuw" or "or disjoint" template <typename LHS, typename RHS> inline match_combine_or< OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap>, DisjointOr_match<LHS, RHS>> m_NUWAddLike(const LHS &L, const RHS &R) { return m_CombineOr(m_NUWAdd(L, R), m_DisjointOr(L, R)); }
//===----------------------------------------------------------------------===// // Class that matches a group of binary opcodes. // template <typename LHS_t, typename RHS_t, typename Predicate, bool Commutable = false> struct BinOpPred_match : Predicate { LHS_t L; RHS_t R;
BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
template <typename OpTy> bool match(OpTy *V) { if (auto *I = dyn_cast<Instruction>(V)) return this->isOpType(I->getOpcode()) && ((L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || (Commutable && L.match(I->getOperand(1)) && R.match(I->getOperand(0)))); return false; } };
struct is_shift_op { bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); } };
struct is_right_shift_op { bool isOpType(unsigned Opcode) { return Opcode == Instruction::LShr || Opcode == Instruction::AShr; } };
struct is_logical_shift_op { bool isOpType(unsigned Opcode) { return Opcode == Instruction::LShr || Opcode == Instruction::Shl; } };
struct is_bitwiselogic_op { bool isOpType(unsigned Opcode) { return Instruction::isBitwiseLogicOp(Opcode); } };
struct is_idiv_op { bool isOpType(unsigned Opcode) { return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv; } };
struct is_irem_op { bool isOpType(unsigned Opcode) { return Opcode == Instruction::SRem || Opcode == Instruction::URem; } };
/// Matches shift operations. template <typename LHS, typename RHS> inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L, const RHS &R) { return BinOpPred_match<LHS, RHS, is_shift_op>(L, R); }
/// Matches logical shift operations. template <typename LHS, typename RHS> inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L, const RHS &R) { return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R); }
/// Matches logical shift operations. template <typename LHS, typename RHS> inline BinOpPred_match<LHS, RHS, is_logical_shift_op> m_LogicalShift(const LHS &L, const RHS &R) { return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R); }
/// Matches bitwise logic operations. template <typename LHS, typename RHS> inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op> m_BitwiseLogic(const LHS &L, const RHS &R) { return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R); }
/// Matches bitwise logic operations in either order. template <typename LHS, typename RHS> inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op, true> m_c_BitwiseLogic(const LHS &L, const RHS &R) { return BinOpPred_match<LHS, RHS, is_bitwiselogic_op, true>(L, R); }
/// Matches integer division operations. template <typename LHS, typename RHS> inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L, const RHS &R) { return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R); }
/// Matches integer remainder operations. template <typename LHS, typename RHS> inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L, const RHS &R) { return BinOpPred_match<LHS, RHS, is_irem_op>(L, R); }
//===----------------------------------------------------------------------===// // Class that matches exact binary ops. // template <typename SubPattern_t> struct Exact_match { SubPattern_t SubPattern;
Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
template <typename OpTy> bool match(OpTy *V) { if (auto *PEO = dyn_cast<PossiblyExactOperator>(V)) return PEO->isExact() && SubPattern.match(V); return false; } };
template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) { return SubPattern; }
//===----------------------------------------------------------------------===// // Matchers for CmpInst classes //
template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy, bool Commutable = false> struct CmpClass_match { PredicateTy *Predicate; LHS_t L; RHS_t R;
// The evaluation order is always stable, regardless of Commutability. // The LHS is always matched first. CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS) : Predicate(&Pred), L(LHS), R(RHS) {} CmpClass_match(const LHS_t &LHS, const RHS_t &RHS) : Predicate(nullptr), L(LHS), R(RHS) {}
template <typename OpTy> bool match(OpTy *V) { if (auto *I = dyn_cast<Class>(V)) { if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) { if (Predicate) *Predicate = I->getPredicate(); return true; } else if (Commutable && L.match(I->getOperand(1)) && R.match(I->getOperand(0))) { if (Predicate) *Predicate = I->getSwappedPredicate(); return true; } } return false; } };
template <typename LHS, typename RHS> inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate> m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) { return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R); }
template <typename LHS, typename RHS> inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate> m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R); }
template <typename LHS, typename RHS> inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate> m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) { return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R); }
template <typename LHS, typename RHS> inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate> m_Cmp(const LHS &L, const RHS &R) { return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(L, R); }
template <typename LHS, typename RHS> inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate> m_ICmp(const LHS &L, const RHS &R) { return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(L, R); }
template <typename LHS, typename RHS> inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate> m_FCmp(const LHS &L, const RHS &R) { return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(L, R); }
// Same as CmpClass, but instead of saving Pred as out output variable, match a // specific input pred for equality. template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy> struct SpecificCmpClass_match { const PredicateTy Predicate; LHS_t L; RHS_t R;
SpecificCmpClass_match(PredicateTy Pred, const LHS_t &LHS, const RHS_t &RHS) : Predicate(Pred), L(LHS), R(RHS) {}
template <typename OpTy> bool match(OpTy *V) { if (auto *I = dyn_cast<Class>(V)) return I->getPredicate() == Predicate && L.match(I->getOperand(0)) && R.match(I->getOperand(1)); return false; } };
template <typename LHS, typename RHS> inline SpecificCmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate> m_SpecificCmp(CmpInst::Predicate MatchPred, const LHS &L, const RHS &R) { return SpecificCmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>( MatchPred, L, R); }
template <typename LHS, typename RHS> inline SpecificCmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate> m_SpecificICmp(ICmpInst::Predicate MatchPred, const LHS &L, const RHS &R) { return SpecificCmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>( MatchPred, L, R); }
template <typename LHS, typename RHS> inline SpecificCmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate> m_SpecificFCmp(FCmpInst::Predicate MatchPred, const LHS &L, const RHS &R) { return SpecificCmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>( MatchPred, L, R); }
//===----------------------------------------------------------------------===// // Matchers for instructions with a given opcode and number of operands. //
/// Matches instructions with Opcode and three operands. template <typename T0, unsigned Opcode> struct OneOps_match { T0 Op1;
OneOps_match(const T0 &Op1) : Op1(Op1) {}
template <typename OpTy> bool match(OpTy *V) { if (V->getValueID() == Value::InstructionVal + Opcode) { auto *I = cast<Instruction>(V); return Op1.match(I->getOperand(0)); } return false; } };
/// Matches instructions with Opcode and three operands. template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match { T0 Op1; T1 Op2;
TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
template <typename OpTy> bool match(OpTy *V) { if (V->getValueID() == Value::InstructionVal + Opcode) { auto *I = cast<Instruction>(V); return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)); } return false; } };
/// Matches instructions with Opcode and three operands. template <typename T0, typename T1, typename T2, unsigned Opcode> struct ThreeOps_match { T0 Op1; T1 Op2; T2 Op3;
ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3) : Op1(Op1), Op2(Op2), Op3(Op3) {}
template <typename OpTy> bool match(OpTy *V) { if (V->getValueID() == Value::InstructionVal + Opcode) { auto *I = cast<Instruction>(V); return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) && Op3.match(I->getOperand(2)); } return false; } };
/// Matches instructions with Opcode and any number of operands template <unsigned Opcode, typename... OperandTypes> struct AnyOps_match { std::tuple<OperandTypes...> Operands;
AnyOps_match(const OperandTypes &...Ops) : Operands(Ops...) {}
// Operand matching works by recursively calling match_operands, matching the // operands left to right. The first version is called for each operand but // the last, for which the second version is called. The second version of // match_operands is also used to match each individual operand. template <int Idx, int Last> std::enable_if_t<Idx != Last, bool> match_operands(const Instruction *I) { return match_operands<Idx, Idx>(I) && match_operands<Idx + 1, Last>(I); }
template <int Idx, int Last> std::enable_if_t<Idx == Last, bool> match_operands(const Instruction *I) { return std::get<Idx>(Operands).match(I->getOperand(Idx)); }
template <typename OpTy> bool match(OpTy *V) { if (V->getValueID() == Value::InstructionVal + Opcode) { auto *I = cast<Instruction>(V); return I->getNumOperands() == sizeof...(OperandTypes) && match_operands<0, sizeof...(OperandTypes) - 1>(I); } return false; } };
/// Matches SelectInst. template <typename Cond, typename LHS, typename RHS> inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select> m_Select(const Cond &C, const LHS &L, const RHS &R) { return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R); }
/// This matches a select of two constants, e.g.: /// m_SelectCst<-1, 0>(m_Value(V)) template <int64_t L, int64_t R, typename Cond> inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>, Instruction::Select> m_SelectCst(const Cond &C) { return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>()); }
/// Matches FreezeInst. template <typename OpTy> inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) { return OneOps_match<OpTy, Instruction::Freeze>(Op); }
/// Matches InsertElementInst. template <typename Val_t, typename Elt_t, typename Idx_t> inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement> m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) { return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>( Val, Elt, Idx); }
/// Matches ExtractElementInst. template <typename Val_t, typename Idx_t> inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement> m_ExtractElt(const Val_t &Val, const Idx_t &Idx) { return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx); }
/// Matches shuffle. template <typename T0, typename T1, typename T2> struct Shuffle_match { T0 Op1; T1 Op2; T2 Mask;
Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask) : Op1(Op1), Op2(Op2), Mask(Mask) {}
template <typename OpTy> bool match(OpTy *V) { if (auto *I = dyn_cast<ShuffleVectorInst>(V)) { return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) && Mask.match(I->getShuffleMask()); } return false; } };
struct m_Mask { ArrayRef<int> &MaskRef; m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {} bool match(ArrayRef<int> Mask) { MaskRef = Mask; return true; } };
struct m_ZeroMask { bool match(ArrayRef<int> Mask) { return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; }); } };
struct m_SpecificMask { ArrayRef<int> &MaskRef; m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {} bool match(ArrayRef<int> Mask) { return MaskRef == Mask; } };
struct m_SplatOrPoisonMask { int &SplatIndex; m_SplatOrPoisonMask(int &SplatIndex) : SplatIndex(SplatIndex) {} bool match(ArrayRef<int> Mask) { const auto *First = find_if(Mask, [](int Elem) { return Elem != -1; }); if (First == Mask.end()) return false; SplatIndex = *First; return all_of(Mask, [First](int Elem) { return Elem == *First || Elem == -1; }); } };
template <typename PointerOpTy, typename OffsetOpTy> struct PtrAdd_match { PointerOpTy PointerOp; OffsetOpTy OffsetOp;
PtrAdd_match(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp) : PointerOp(PointerOp), OffsetOp(OffsetOp) {}
template <typename OpTy> bool match(OpTy *V) { auto *GEP = dyn_cast<GEPOperator>(V); return GEP && GEP->getSourceElementType()->isIntegerTy(8) && PointerOp.match(GEP->getPointerOperand()) && OffsetOp.match(GEP->idx_begin()->get()); } };
/// Matches ShuffleVectorInst independently of mask value. template <typename V1_t, typename V2_t> inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector> m_Shuffle(const V1_t &v1, const V2_t &v2) { return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2); }
template <typename V1_t, typename V2_t, typename Mask_t> inline Shuffle_match<V1_t, V2_t, Mask_t> m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) { return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask); }
/// Matches LoadInst. template <typename OpTy> inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) { return OneOps_match<OpTy, Instruction::Load>(Op); }
/// Matches StoreInst. template <typename ValueOpTy, typename PointerOpTy> inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store> m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) { return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp, PointerOp); }
/// Matches GetElementPtrInst. template <typename... OperandTypes> inline auto m_GEP(const OperandTypes &...Ops) { return AnyOps_match<Instruction::GetElementPtr, OperandTypes...>(Ops...); }
/// Matches GEP with i8 source element type template <typename PointerOpTy, typename OffsetOpTy> inline PtrAdd_match<PointerOpTy, OffsetOpTy> m_PtrAdd(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp) { return PtrAdd_match<PointerOpTy, OffsetOpTy>(PointerOp, OffsetOp); }
//===----------------------------------------------------------------------===// // Matchers for CastInst classes //
template <typename Op_t, unsigned Opcode> struct CastOperator_match { Op_t Op;
CastOperator_match(const Op_t &OpMatch) : Op(OpMatch) {}
template <typename OpTy> bool match(OpTy *V) { if (auto *O = dyn_cast<Operator>(V)) return O->getOpcode() == Opcode && Op.match(O->getOperand(0)); return false; } };
template <typename Op_t, typename Class> struct CastInst_match { Op_t Op;
CastInst_match(const Op_t &OpMatch) : Op(OpMatch) {}
template <typename OpTy> bool match(OpTy *V) { if (auto *I = dyn_cast<Class>(V)) return Op.match(I->getOperand(0)); return false; } };
template <typename Op_t> struct PtrToIntSameSize_match { const DataLayout &DL; Op_t Op;
PtrToIntSameSize_match(const DataLayout &DL, const Op_t &OpMatch) : DL(DL), Op(OpMatch) {}
template <typename OpTy> bool match(OpTy *V) { if (auto *O = dyn_cast<Operator>(V)) return O->getOpcode() == Instruction::PtrToInt && DL.getTypeSizeInBits(O->getType()) == DL.getTypeSizeInBits(O->getOperand(0)->getType()) && Op.match(O->getOperand(0)); return false; } };
template <typename Op_t> struct NNegZExt_match { Op_t Op;
NNegZExt_match(const Op_t &OpMatch) : Op(OpMatch) {}
template <typename OpTy> bool match(OpTy *V) { if (auto *I = dyn_cast<ZExtInst>(V)) return I->hasNonNeg() && Op.match(I->getOperand(0)); return false; } };
template <typename Op_t, unsigned WrapFlags = 0> struct NoWrapTrunc_match { Op_t Op;
NoWrapTrunc_match(const Op_t &OpMatch) : Op(OpMatch) {}
template <typename OpTy> bool match(OpTy *V) { if (auto *I = dyn_cast<TruncInst>(V)) return (I->getNoWrapKind() & WrapFlags) == WrapFlags && Op.match(I->getOperand(0)); return false; } };
/// Matches BitCast. template <typename OpTy> inline CastOperator_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) { return CastOperator_match<OpTy, Instruction::BitCast>(Op); }
template <typename Op_t> struct ElementWiseBitCast_match { Op_t Op;
ElementWiseBitCast_match(const Op_t &OpMatch) : Op(OpMatch) {}
template <typename OpTy> bool match(OpTy *V) { auto *I = dyn_cast<BitCastInst>(V); if (!I) return false; Type *SrcType = I->getSrcTy(); Type *DstType = I->getType(); // Make sure the bitcast doesn't change between scalar and vector and // doesn't change the number of vector elements. if (SrcType->isVectorTy() != DstType->isVectorTy()) return false; if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcType); SrcVecTy && SrcVecTy->getElementCount() != cast<VectorType>(DstType)->getElementCount()) return false; return Op.match(I->getOperand(0)); } };
template <typename OpTy> inline ElementWiseBitCast_match<OpTy> m_ElementWiseBitCast(const OpTy &Op) { return ElementWiseBitCast_match<OpTy>(Op); }
/// Matches PtrToInt. template <typename OpTy> inline CastOperator_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) { return CastOperator_match<OpTy, Instruction::PtrToInt>(Op); }
template <typename OpTy> inline PtrToIntSameSize_match<OpTy> m_PtrToIntSameSize(const DataLayout &DL, const OpTy &Op) { return PtrToIntSameSize_match<OpTy>(DL, Op); }
/// Matches IntToPtr. template <typename OpTy> inline CastOperator_match<OpTy, Instruction::IntToPtr> m_IntToPtr(const OpTy &Op) { return CastOperator_match<OpTy, Instruction::IntToPtr>(Op); }
/// Matches Trunc. template <typename OpTy> inline CastInst_match<OpTy, TruncInst> m_Trunc(const OpTy &Op) { return CastInst_match<OpTy, TruncInst>(Op); }
/// Matches trunc nuw. template <typename OpTy> inline NoWrapTrunc_match<OpTy, TruncInst::NoUnsignedWrap> m_NUWTrunc(const OpTy &Op) { return NoWrapTrunc_match<OpTy, TruncInst::NoUnsignedWrap>(Op); }
/// Matches trunc nsw. template <typename OpTy> inline NoWrapTrunc_match<OpTy, TruncInst::NoSignedWrap> m_NSWTrunc(const OpTy &Op) { return NoWrapTrunc_match<OpTy, TruncInst::NoSignedWrap>(Op); }
template <typename OpTy> inline match_combine_or<CastInst_match<OpTy, TruncInst>, OpTy> m_TruncOrSelf(const OpTy &Op) { return m_CombineOr(m_Trunc(Op), Op); }
/// Matches SExt. template <typename OpTy> inline CastInst_match<OpTy, SExtInst> m_SExt(const OpTy &Op) { return CastInst_match<OpTy, SExtInst>(Op); }
/// Matches ZExt. template <typename OpTy> inline CastInst_match<OpTy, ZExtInst> m_ZExt(const OpTy &Op) { return CastInst_match<OpTy, ZExtInst>(Op); }
template <typename OpTy> inline NNegZExt_match<OpTy> m_NNegZExt(const OpTy &Op) { return NNegZExt_match<OpTy>(Op); }
template <typename OpTy> inline match_combine_or<CastInst_match<OpTy, ZExtInst>, OpTy> m_ZExtOrSelf(const OpTy &Op) { return m_CombineOr(m_ZExt(Op), Op); }
template <typename OpTy> inline match_combine_or<CastInst_match<OpTy, SExtInst>, OpTy> m_SExtOrSelf(const OpTy &Op) { return m_CombineOr(m_SExt(Op), Op); }
/// Match either "sext" or "zext nneg". template <typename OpTy> inline match_combine_or<CastInst_match<OpTy, SExtInst>, NNegZExt_match<OpTy>> m_SExtLike(const OpTy &Op) { return m_CombineOr(m_SExt(Op), m_NNegZExt(Op)); }
template <typename OpTy> inline match_combine_or<CastInst_match<OpTy, ZExtInst>, CastInst_match<OpTy, SExtInst>> m_ZExtOrSExt(const OpTy &Op) { return m_CombineOr(m_ZExt(Op), m_SExt(Op)); }
template <typename OpTy> inline match_combine_or<match_combine_or<CastInst_match<OpTy, ZExtInst>, CastInst_match<OpTy, SExtInst>>, OpTy> m_ZExtOrSExtOrSelf(const OpTy &Op) { return m_CombineOr(m_ZExtOrSExt(Op), Op); }
template <typename OpTy> inline CastInst_match<OpTy, UIToFPInst> m_UIToFP(const OpTy &Op) { return CastInst_match<OpTy, UIToFPInst>(Op); }
template <typename OpTy> inline CastInst_match<OpTy, SIToFPInst> m_SIToFP(const OpTy &Op) { return CastInst_match<OpTy, SIToFPInst>(Op); }
template <typename OpTy> inline CastInst_match<OpTy, FPToUIInst> m_FPToUI(const OpTy &Op) { return CastInst_match<OpTy, FPToUIInst>(Op); }
template <typename OpTy> inline CastInst_match<OpTy, FPToSIInst> m_FPToSI(const OpTy &Op) { return CastInst_match<OpTy, FPToSIInst>(Op); }
template <typename OpTy> inline CastInst_match<OpTy, FPTruncInst> m_FPTrunc(const OpTy &Op) { return CastInst_match<OpTy, FPTruncInst>(Op); }
template <typename OpTy> inline CastInst_match<OpTy, FPExtInst> m_FPExt(const OpTy &Op) { return CastInst_match<OpTy, FPExtInst>(Op); }
//===----------------------------------------------------------------------===// // Matchers for control flow. //
struct br_match { BasicBlock *&Succ;
br_match(BasicBlock *&Succ) : Succ(Succ) {}
template <typename OpTy> bool match(OpTy *V) { if (auto *BI = dyn_cast<BranchInst>(V)) if (BI->isUnconditional()) { Succ = BI->getSuccessor(0); return true; } return false; } };
inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t> struct brc_match { Cond_t Cond; TrueBlock_t T; FalseBlock_t F;
brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f) : Cond(C), T(t), F(f) {}
template <typename OpTy> bool match(OpTy *V) { if (auto *BI = dyn_cast<BranchInst>(V)) if (BI->isConditional() && Cond.match(BI->getCondition())) return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1)); return false; } };
template <typename Cond_t> inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) { return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>( C, m_BasicBlock(T), m_BasicBlock(F)); }
template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t> inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t> m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) { return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F); }
//===----------------------------------------------------------------------===// // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y). //
template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t, bool Commutable = false> struct MaxMin_match { using PredType = Pred_t; LHS_t L; RHS_t R;
// The evaluation order is always stable, regardless of Commutability. // The LHS is always matched first. MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
template <typename OpTy> bool match(OpTy *V) { if (auto *II = dyn_cast<IntrinsicInst>(V)) { Intrinsic::ID IID = II->getIntrinsicID(); if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) || (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) || (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) || (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) { Value *LHS = II->getOperand(0), *RHS = II->getOperand(1); return (L.match(LHS) && R.match(RHS)) || (Commutable && L.match(RHS) && R.match(LHS)); } } // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x". auto *SI = dyn_cast<SelectInst>(V); if (!SI) return false; auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition()); if (!Cmp) return false; // At this point we have a select conditioned on a comparison. Check that // it is the values returned by the select that are being compared. auto *TrueVal = SI->getTrueValue(); auto *FalseVal = SI->getFalseValue(); auto *LHS = Cmp->getOperand(0); auto *RHS = Cmp->getOperand(1); if ((TrueVal != LHS || FalseVal != RHS) && (TrueVal != RHS || FalseVal != LHS)) return false; typename CmpInst_t::Predicate Pred = LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate(); // Does "(x pred y) ? x : y" represent the desired max/min operation? if (!Pred_t::match(Pred)) return false; // It does! Bind the operands. return (L.match(LHS) && R.match(RHS)) || (Commutable && L.match(RHS) && R.match(LHS)); } };
/// Helper class for identifying signed max predicates. struct smax_pred_ty { static bool match(ICmpInst::Predicate Pred) { return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE; } };
/// Helper class for identifying signed min predicates. struct smin_pred_ty { static bool match(ICmpInst::Predicate Pred) { return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE; } };
/// Helper class for identifying unsigned max predicates. struct umax_pred_ty { static bool match(ICmpInst::Predicate Pred) { return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE; } };
/// Helper class for identifying unsigned min predicates. struct umin_pred_ty { static bool match(ICmpInst::Predicate Pred) { return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE; } };
/// Helper class for identifying ordered max predicates. struct ofmax_pred_ty { static bool match(FCmpInst::Predicate Pred) { return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE; } };
/// Helper class for identifying ordered min predicates. struct ofmin_pred_ty { static bool match(FCmpInst::Predicate Pred) { return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE; } };
/// Helper class for identifying unordered max predicates. struct ufmax_pred_ty { static bool match(FCmpInst::Predicate Pred) { return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE; } };
/// Helper class for identifying unordered min predicates. struct ufmin_pred_ty { static bool match(FCmpInst::Predicate Pred) { return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE; } };
template <typename LHS, typename RHS> inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L, const RHS &R) { return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R); }
template <typename LHS, typename RHS> inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L, const RHS &R) { return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R); }
template <typename LHS, typename RHS> inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L, const RHS &R) { return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R); }
template <typename LHS, typename RHS> inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L, const RHS &R) { return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R); }
template <typename LHS, typename RHS> inline match_combine_or< match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>, MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>, match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>, MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>> m_MaxOrMin(const LHS &L, const RHS &R) { return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)), m_CombineOr(m_UMax(L, R), m_UMin(L, R))); }
/// Match an 'ordered' floating point maximum function. /// Floating point has one special value 'NaN'. Therefore, there is no total /// order. However, if we can ignore the 'NaN' value (for example, because of a /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' /// semantics. In the presence of 'NaN' we have to preserve the original /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate. /// /// max(L, R) iff L and R are not NaN /// m_OrdFMax(L, R) = R iff L or R are NaN template <typename LHS, typename RHS> inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L, const RHS &R) { return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R); }
/// Match an 'ordered' floating point minimum function. /// Floating point has one special value 'NaN'. Therefore, there is no total /// order. However, if we can ignore the 'NaN' value (for example, because of a /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' /// semantics. In the presence of 'NaN' we have to preserve the original /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate. /// /// min(L, R) iff L and R are not NaN /// m_OrdFMin(L, R) = R iff L or R are NaN template <typename LHS, typename RHS> inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L, const RHS &R) { return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R); }
/// Match an 'unordered' floating point maximum function. /// Floating point has one special value 'NaN'. Therefore, there is no total /// order. However, if we can ignore the 'NaN' value (for example, because of a /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' /// semantics. In the presence of 'NaN' we have to preserve the original /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate. /// /// max(L, R) iff L and R are not NaN /// m_UnordFMax(L, R) = L iff L or R are NaN template <typename LHS, typename RHS> inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty> m_UnordFMax(const LHS &L, const RHS &R) { return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R); }
/// Match an 'unordered' floating point minimum function. /// Floating point has one special value 'NaN'. Therefore, there is no total /// order. However, if we can ignore the 'NaN' value (for example, because of a /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' /// semantics. In the presence of 'NaN' we have to preserve the original /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate. /// /// min(L, R) iff L and R are not NaN /// m_UnordFMin(L, R) = L iff L or R are NaN template <typename LHS, typename RHS> inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty> m_UnordFMin(const LHS &L, const RHS &R) { return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R); }
/// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'. /// NOTE: we first match the 'Not' (by matching '-1'), /// and only then match the inner matcher! template <typename ValTy> inline BinaryOp_match<cst_pred_ty<is_all_ones>, ValTy, Instruction::Xor, true> m_Not(const ValTy &V) { return m_c_Xor(m_AllOnes(), V); }
template <typename ValTy> inline BinaryOp_match<cst_pred_ty<is_all_ones, false>, ValTy, Instruction::Xor, true> m_NotForbidPoison(const ValTy &V) { return m_c_Xor(m_AllOnesForbidPoison(), V); }
//===----------------------------------------------------------------------===// // Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b // Note that S might be matched to other instructions than AddInst. //
template <typename LHS_t, typename RHS_t, typename Sum_t> struct UAddWithOverflow_match { LHS_t L; RHS_t R; Sum_t S;
UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S) : L(L), R(R), S(S) {}
template <typename OpTy> bool match(OpTy *V) { Value *ICmpLHS, *ICmpRHS; ICmpInst::Predicate Pred; if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V)) return false;
Value *AddLHS, *AddRHS; auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
// (a + b) u< a, (a + b) u< b if (Pred == ICmpInst::ICMP_ULT) if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS)) return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
// a >u (a + b), b >u (a + b) if (Pred == ICmpInst::ICMP_UGT) if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS)) return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
Value *Op1; auto XorExpr = m_OneUse(m_Not(m_Value(Op1))); // (~a) <u b if (Pred == ICmpInst::ICMP_ULT) { if (XorExpr.match(ICmpLHS)) return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS); } // b > u (~a) if (Pred == ICmpInst::ICMP_UGT) { if (XorExpr.match(ICmpRHS)) return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS); }
// Match special-case for increment-by-1. if (Pred == ICmpInst::ICMP_EQ) { // (a + 1) == 0 // (1 + a) == 0 if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) && (m_One().match(AddLHS) || m_One().match(AddRHS))) return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); // 0 == (a + 1) // 0 == (1 + a) if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) && (m_One().match(AddLHS) || m_One().match(AddRHS))) return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); }
return false; } };
/// Match an icmp instruction checking for unsigned overflow on addition. /// /// S is matched to the addition whose result is being checked for overflow, and /// L and R are matched to the LHS and RHS of S. template <typename LHS_t, typename RHS_t, typename Sum_t> UAddWithOverflow_match<LHS_t, RHS_t, Sum_t> m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) { return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S); }
template <typename Opnd_t> struct Argument_match { unsigned OpI; Opnd_t Val;
Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
template <typename OpTy> bool match(OpTy *V) { // FIXME: Should likely be switched to use `CallBase`. if (const auto *CI = dyn_cast<CallInst>(V)) return Val.match(CI->getArgOperand(OpI)); return false; } };
/// Match an argument. template <unsigned OpI, typename Opnd_t> inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) { return Argument_match<Opnd_t>(OpI, Op); }
/// Intrinsic matchers. struct IntrinsicID_match { unsigned ID;
IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
template <typename OpTy> bool match(OpTy *V) { if (const auto *CI = dyn_cast<CallInst>(V)) if (const auto *F = CI->getCalledFunction()) return F->getIntrinsicID() == ID; return false; } };
/// Intrinsic matches are combinations of ID matchers, and argument /// matchers. Higher arity matcher are defined recursively in terms of and-ing /// them with lower arity matchers. Here's some convenient typedefs for up to /// several arguments, and more can be added as needed template <typename T0 = void, typename T1 = void, typename T2 = void, typename T3 = void, typename T4 = void, typename T5 = void, typename T6 = void, typename T7 = void, typename T8 = void, typename T9 = void, typename T10 = void> struct m_Intrinsic_Ty; template <typename T0> struct m_Intrinsic_Ty<T0> { using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>; }; template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> { using Ty = match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>; }; template <typename T0, typename T1, typename T2> struct m_Intrinsic_Ty<T0, T1, T2> { using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty, Argument_match<T2>>; }; template <typename T0, typename T1, typename T2, typename T3> struct m_Intrinsic_Ty<T0, T1, T2, T3> { using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty, Argument_match<T3>>; };
template <typename T0, typename T1, typename T2, typename T3, typename T4> struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> { using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty, Argument_match<T4>>; };
template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5> struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> { using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty, Argument_match<T5>>; };
/// Match intrinsic calls like this: /// m_Intrinsic<Intrinsic::fabs>(m_Value(X)) template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() { return IntrinsicID_match(IntrID); }
/// Matches MaskedLoad Intrinsic. template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3> inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, const Opnd3 &Op3) { return m_Intrinsic<Intrinsic::masked_load>(Op0, Op1, Op2, Op3); }
/// Matches MaskedGather Intrinsic. template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3> inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, const Opnd3 &Op3) { return m_Intrinsic<Intrinsic::masked_gather>(Op0, Op1, Op2, Op3); }
template <Intrinsic::ID IntrID, typename T0> inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) { return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0)); }
template <Intrinsic::ID IntrID, typename T0, typename T1> inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0, const T1 &Op1) { return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1)); }
template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2> inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) { return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2)); }
template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, typename T3> inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) { return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3)); }
template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, typename T3, typename T4> inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3, const T4 &Op4) { return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3), m_Argument<4>(Op4)); }
template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, typename T3, typename T4, typename T5> inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3, const T4 &Op4, const T5 &Op5) { return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4), m_Argument<5>(Op5)); }
// Helper intrinsic matching specializations. template <typename Opnd0> inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) { return m_Intrinsic<Intrinsic::bitreverse>(Op0); }
template <typename Opnd0> inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) { return m_Intrinsic<Intrinsic::bswap>(Op0); }
template <typename Opnd0> inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) { return m_Intrinsic<Intrinsic::fabs>(Op0); }
template <typename Opnd0> inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) { return m_Intrinsic<Intrinsic::canonicalize>(Op0); }
template <typename Opnd0, typename Opnd1> inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0, const Opnd1 &Op1) { return m_Intrinsic<Intrinsic::minnum>(Op0, Op1); }
template <typename Opnd0, typename Opnd1> inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0, const Opnd1 &Op1) { return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1); }
template <typename Opnd0, typename Opnd1, typename Opnd2> inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) { return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2); }
template <typename Opnd0, typename Opnd1, typename Opnd2> inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) { return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2); }
template <typename Opnd0> inline typename m_Intrinsic_Ty<Opnd0>::Ty m_Sqrt(const Opnd0 &Op0) { return m_Intrinsic<Intrinsic::sqrt>(Op0); }
template <typename Opnd0, typename Opnd1> inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_CopySign(const Opnd0 &Op0, const Opnd1 &Op1) { return m_Intrinsic<Intrinsic::copysign>(Op0, Op1); }
template <typename Opnd0> inline typename m_Intrinsic_Ty<Opnd0>::Ty m_VecReverse(const Opnd0 &Op0) { return m_Intrinsic<Intrinsic::vector_reverse>(Op0); }
//===----------------------------------------------------------------------===// // Matchers for two-operands operators with the operators in either order //
/// Matches a BinaryOperator with LHS and RHS in either order. template <typename LHS, typename RHS> inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) { return AnyBinaryOp_match<LHS, RHS, true>(L, R); }
/// Matches an ICmp with a predicate over LHS and RHS in either order. /// Swaps the predicate if operands are commuted. template <typename LHS, typename RHS> inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true> m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L, R); }
template <typename LHS, typename RHS> inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true> m_c_ICmp(const LHS &L, const RHS &R) { return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(L, R); }
/// Matches a specific opcode with LHS and RHS in either order. template <typename LHS, typename RHS> inline SpecificBinaryOp_match<LHS, RHS, true> m_c_BinOp(unsigned Opcode, const LHS &L, const RHS &R) { return SpecificBinaryOp_match<LHS, RHS, true>(Opcode, L, R); }
/// Matches a Add with LHS and RHS in either order. template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R); }
/// Matches a Mul with LHS and RHS in either order. template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R); }
/// Matches an And with LHS and RHS in either order. template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R); }
/// Matches an Or with LHS and RHS in either order. template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R); }
/// Matches an Xor with LHS and RHS in either order. template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R); }
/// Matches a 'Neg' as 'sub 0, V'. template <typename ValTy> inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub> m_Neg(const ValTy &V) { return m_Sub(m_ZeroInt(), V); }
/// Matches a 'Neg' as 'sub nsw 0, V'. template <typename ValTy> inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap> m_NSWNeg(const ValTy &V) { return m_NSWSub(m_ZeroInt(), V); }
/// Matches an SMin with LHS and RHS in either order. template <typename LHS, typename RHS> inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true> m_c_SMin(const LHS &L, const RHS &R) { return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R); } /// Matches an SMax with LHS and RHS in either order. template <typename LHS, typename RHS> inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true> m_c_SMax(const LHS &L, const RHS &R) { return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R); } /// Matches a UMin with LHS and RHS in either order. template <typename LHS, typename RHS> inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true> m_c_UMin(const LHS &L, const RHS &R) { return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R); } /// Matches a UMax with LHS and RHS in either order. template <typename LHS, typename RHS> inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true> m_c_UMax(const LHS &L, const RHS &R) { return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R); }
template <typename LHS, typename RHS> inline match_combine_or< match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>, MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>, match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>, MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>> m_c_MaxOrMin(const LHS &L, const RHS &R) { return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)), m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R))); }
template <Intrinsic::ID IntrID, typename T0, typename T1> inline match_combine_or<typename m_Intrinsic_Ty<T0, T1>::Ty, typename m_Intrinsic_Ty<T1, T0>::Ty> m_c_Intrinsic(const T0 &Op0, const T1 &Op1) { return m_CombineOr(m_Intrinsic<IntrID>(Op0, Op1), m_Intrinsic<IntrID>(Op1, Op0)); }
/// Matches FAdd with LHS and RHS in either order. template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true> m_c_FAdd(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R); }
/// Matches FMul with LHS and RHS in either order. template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::FMul, true> m_c_FMul(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R); }
template <typename Opnd_t> struct Signum_match { Opnd_t Val; Signum_match(const Opnd_t &V) : Val(V) {}
template <typename OpTy> bool match(OpTy *V) { unsigned TypeSize = V->getType()->getScalarSizeInBits(); if (TypeSize == 0) return false;
unsigned ShiftWidth = TypeSize - 1; Value *OpL = nullptr, *OpR = nullptr;
// This is the representation of signum we match: // // signum(x) == (x >> 63) | (-x >>u 63) // // An i1 value is its own signum, so it's correct to match // // signum(x) == (x >> 0) | (-x >>u 0) // // for i1 values.
auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth)); auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth)); auto Signum = m_Or(LHS, RHS);
return Signum.match(V) && OpL == OpR && Val.match(OpL); } };
/// Matches a signum pattern. /// /// signum(x) = /// x > 0 -> 1 /// x == 0 -> 0 /// x < 0 -> -1 template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) { return Signum_match<Val_t>(V); }
template <int Ind, typename Opnd_t> struct ExtractValue_match { Opnd_t Val; ExtractValue_match(const Opnd_t &V) : Val(V) {}
template <typename OpTy> bool match(OpTy *V) { if (auto *I = dyn_cast<ExtractValueInst>(V)) { // If Ind is -1, don't inspect indices if (Ind != -1 && !(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind)) return false; return Val.match(I->getAggregateOperand()); } return false; } };
/// Match a single index ExtractValue instruction. /// For example m_ExtractValue<1>(...) template <int Ind, typename Val_t> inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) { return ExtractValue_match<Ind, Val_t>(V); }
/// Match an ExtractValue instruction with any index. /// For example m_ExtractValue(...) template <typename Val_t> inline ExtractValue_match<-1, Val_t> m_ExtractValue(const Val_t &V) { return ExtractValue_match<-1, Val_t>(V); }
/// Matcher for a single index InsertValue instruction. template <int Ind, typename T0, typename T1> struct InsertValue_match { T0 Op0; T1 Op1;
InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {}
template <typename OpTy> bool match(OpTy *V) { if (auto *I = dyn_cast<InsertValueInst>(V)) { return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) && I->getNumIndices() == 1 && Ind == I->getIndices()[0]; } return false; } };
/// Matches a single index InsertValue instruction. template <int Ind, typename Val_t, typename Elt_t> inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val, const Elt_t &Elt) { return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt); }
/// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or /// the constant expression /// `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>` /// under the right conditions determined by DataLayout. struct VScaleVal_match { template <typename ITy> bool match(ITy *V) { if (m_Intrinsic<Intrinsic::vscale>().match(V)) return true;
Value *Ptr; if (m_PtrToInt(m_Value(Ptr)).match(V)) { if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { auto *DerefTy = dyn_cast<ScalableVectorType>(GEP->getSourceElementType()); if (GEP->getNumIndices() == 1 && DerefTy && DerefTy->getElementType()->isIntegerTy(8) && m_Zero().match(GEP->getPointerOperand()) && m_SpecificInt(1).match(GEP->idx_begin()->get())) return true; } }
return false; } };
inline VScaleVal_match m_VScale() { return VScaleVal_match(); }
template <typename LHS, typename RHS, unsigned Opcode, bool Commutable = false> struct LogicalOp_match { LHS L; RHS R;
LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {}
template <typename T> bool match(T *V) { auto *I = dyn_cast<Instruction>(V); if (!I || !I->getType()->isIntOrIntVectorTy(1)) return false;
if (I->getOpcode() == Opcode) { auto *Op0 = I->getOperand(0); auto *Op1 = I->getOperand(1); return (L.match(Op0) && R.match(Op1)) || (Commutable && L.match(Op1) && R.match(Op0)); }
if (auto *Select = dyn_cast<SelectInst>(I)) { auto *Cond = Select->getCondition(); auto *TVal = Select->getTrueValue(); auto *FVal = Select->getFalseValue();
// Don't match a scalar select of bool vectors. // Transforms expect a single type for operands if this matches. if (Cond->getType() != Select->getType()) return false;
if (Opcode == Instruction::And) { auto *C = dyn_cast<Constant>(FVal); if (C && C->isNullValue()) return (L.match(Cond) && R.match(TVal)) || (Commutable && L.match(TVal) && R.match(Cond)); } else { assert(Opcode == Instruction::Or); auto *C = dyn_cast<Constant>(TVal); if (C && C->isOneValue()) return (L.match(Cond) && R.match(FVal)) || (Commutable && L.match(FVal) && R.match(Cond)); } }
return false; } };
/// Matches L && R either in the form of L & R or L ? R : false. /// Note that the latter form is poison-blocking. template <typename LHS, typename RHS> inline LogicalOp_match<LHS, RHS, Instruction::And> m_LogicalAnd(const LHS &L, const RHS &R) { return LogicalOp_match<LHS, RHS, Instruction::And>(L, R); }
/// Matches L && R where L and R are arbitrary values. inline auto m_LogicalAnd() { return m_LogicalAnd(m_Value(), m_Value()); }
/// Matches L && R with LHS and RHS in either order. template <typename LHS, typename RHS> inline LogicalOp_match<LHS, RHS, Instruction::And, true> m_c_LogicalAnd(const LHS &L, const RHS &R) { return LogicalOp_match<LHS, RHS, Instruction::And, true>(L, R); }
/// Matches L || R either in the form of L | R or L ? true : R. /// Note that the latter form is poison-blocking. template <typename LHS, typename RHS> inline LogicalOp_match<LHS, RHS, Instruction::Or> m_LogicalOr(const LHS &L, const RHS &R) { return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R); }
/// Matches L || R where L and R are arbitrary values. inline auto m_LogicalOr() { return m_LogicalOr(m_Value(), m_Value()); }
/// Matches L || R with LHS and RHS in either order. template <typename LHS, typename RHS> inline LogicalOp_match<LHS, RHS, Instruction::Or, true> m_c_LogicalOr(const LHS &L, const RHS &R) { return LogicalOp_match<LHS, RHS, Instruction::Or, true>(L, R); }
/// Matches either L && R or L || R, /// either one being in the either binary or logical form. /// Note that the latter form is poison-blocking. template <typename LHS, typename RHS, bool Commutable = false> inline auto m_LogicalOp(const LHS &L, const RHS &R) { return m_CombineOr( LogicalOp_match<LHS, RHS, Instruction::And, Commutable>(L, R), LogicalOp_match<LHS, RHS, Instruction::Or, Commutable>(L, R)); }
/// Matches either L && R or L || R where L and R are arbitrary values. inline auto m_LogicalOp() { return m_LogicalOp(m_Value(), m_Value()); }
/// Matches either L && R or L || R with LHS and RHS in either order. template <typename LHS, typename RHS> inline auto m_c_LogicalOp(const LHS &L, const RHS &R) { return m_LogicalOp<LHS, RHS, /*Commutable=*/true>(L, R); }
} // end namespace PatternMatch } // end namespace llvm
#endif // LLVM_IR_PATTERNMATCH_H
|