Viewing file: ModuleSummaryIndex.h (72.64 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- llvm/ModuleSummaryIndex.h - Module Summary Index ---------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// @file /// ModuleSummaryIndex.h This file contains the declarations the classes that /// hold the module index and summary for function importing. // //===----------------------------------------------------------------------===//
#ifndef LLVM_IR_MODULESUMMARYINDEX_H #define LLVM_IR_MODULESUMMARYINDEX_H
#include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/IR/ConstantRange.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/Module.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/ScaledNumber.h" #include "llvm/Support/StringSaver.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> #include <array> #include <cassert> #include <cstddef> #include <cstdint> #include <map> #include <memory> #include <optional> #include <set> #include <string> #include <unordered_set> #include <utility> #include <vector>
namespace llvm {
template <class GraphType> struct GraphTraits;
namespace yaml {
template <typename T> struct MappingTraits;
} // end namespace yaml
/// Class to accumulate and hold information about a callee. struct CalleeInfo { enum class HotnessType : uint8_t { Unknown = 0, Cold = 1, None = 2, Hot = 3, Critical = 4 };
// The size of the bit-field might need to be adjusted if more values are // added to HotnessType enum. uint32_t Hotness : 3;
// True if at least one of the calls to the callee is a tail call. bool HasTailCall : 1;
/// The value stored in RelBlockFreq has to be interpreted as the digits of /// a scaled number with a scale of \p -ScaleShift. static constexpr unsigned RelBlockFreqBits = 28; uint32_t RelBlockFreq : RelBlockFreqBits; static constexpr int32_t ScaleShift = 8; static constexpr uint64_t MaxRelBlockFreq = (1 << RelBlockFreqBits) - 1;
CalleeInfo() : Hotness(static_cast<uint32_t>(HotnessType::Unknown)), HasTailCall(false), RelBlockFreq(0) {} explicit CalleeInfo(HotnessType Hotness, bool HasTC, uint64_t RelBF) : Hotness(static_cast<uint32_t>(Hotness)), HasTailCall(HasTC), RelBlockFreq(RelBF) {}
void updateHotness(const HotnessType OtherHotness) { Hotness = std::max(Hotness, static_cast<uint32_t>(OtherHotness)); }
bool hasTailCall() const { return HasTailCall; }
void setHasTailCall(const bool HasTC) { HasTailCall = HasTC; }
HotnessType getHotness() const { return HotnessType(Hotness); }
/// Update \p RelBlockFreq from \p BlockFreq and \p EntryFreq /// /// BlockFreq is divided by EntryFreq and added to RelBlockFreq. To represent /// fractional values, the result is represented as a fixed point number with /// scale of -ScaleShift. void updateRelBlockFreq(uint64_t BlockFreq, uint64_t EntryFreq) { if (EntryFreq == 0) return; using Scaled64 = ScaledNumber<uint64_t>; Scaled64 Temp(BlockFreq, ScaleShift); Temp /= Scaled64::get(EntryFreq);
uint64_t Sum = SaturatingAdd<uint64_t>(Temp.toInt<uint64_t>(), RelBlockFreq); Sum = std::min(Sum, uint64_t(MaxRelBlockFreq)); RelBlockFreq = static_cast<uint32_t>(Sum); } };
inline const char *getHotnessName(CalleeInfo::HotnessType HT) { switch (HT) { case CalleeInfo::HotnessType::Unknown: return "unknown"; case CalleeInfo::HotnessType::Cold: return "cold"; case CalleeInfo::HotnessType::None: return "none"; case CalleeInfo::HotnessType::Hot: return "hot"; case CalleeInfo::HotnessType::Critical: return "critical"; } llvm_unreachable("invalid hotness"); }
class GlobalValueSummary;
using GlobalValueSummaryList = std::vector<std::unique_ptr<GlobalValueSummary>>;
struct alignas(8) GlobalValueSummaryInfo { union NameOrGV { NameOrGV(bool HaveGVs) { if (HaveGVs) GV = nullptr; else Name = ""; }
/// The GlobalValue corresponding to this summary. This is only used in /// per-module summaries and when the IR is available. E.g. when module /// analysis is being run, or when parsing both the IR and the summary /// from assembly. const GlobalValue *GV;
/// Summary string representation. This StringRef points to BC module /// string table and is valid until module data is stored in memory. /// This is guaranteed to happen until runThinLTOBackend function is /// called, so it is safe to use this field during thin link. This field /// is only valid if summary index was loaded from BC file. StringRef Name; } U;
inline GlobalValueSummaryInfo(bool HaveGVs);
/// List of global value summary structures for a particular value held /// in the GlobalValueMap. Requires a vector in the case of multiple /// COMDAT values of the same name. GlobalValueSummaryList SummaryList; };
/// Map from global value GUID to corresponding summary structures. Use a /// std::map rather than a DenseMap so that pointers to the map's value_type /// (which are used by ValueInfo) are not invalidated by insertion. Also it will /// likely incur less overhead, as the value type is not very small and the size /// of the map is unknown, resulting in inefficiencies due to repeated /// insertions and resizing. using GlobalValueSummaryMapTy = std::map<GlobalValue::GUID, GlobalValueSummaryInfo>;
/// Struct that holds a reference to a particular GUID in a global value /// summary. struct ValueInfo { enum Flags { HaveGV = 1, ReadOnly = 2, WriteOnly = 4 }; PointerIntPair<const GlobalValueSummaryMapTy::value_type *, 3, int> RefAndFlags;
ValueInfo() = default; ValueInfo(bool HaveGVs, const GlobalValueSummaryMapTy::value_type *R) { RefAndFlags.setPointer(R); RefAndFlags.setInt(HaveGVs); }
explicit operator bool() const { return getRef(); }
GlobalValue::GUID getGUID() const { return getRef()->first; } const GlobalValue *getValue() const { assert(haveGVs()); return getRef()->second.U.GV; }
ArrayRef<std::unique_ptr<GlobalValueSummary>> getSummaryList() const { return getRef()->second.SummaryList; }
StringRef name() const { return haveGVs() ? getRef()->second.U.GV->getName() : getRef()->second.U.Name; }
bool haveGVs() const { return RefAndFlags.getInt() & HaveGV; } bool isReadOnly() const { assert(isValidAccessSpecifier()); return RefAndFlags.getInt() & ReadOnly; } bool isWriteOnly() const { assert(isValidAccessSpecifier()); return RefAndFlags.getInt() & WriteOnly; } unsigned getAccessSpecifier() const { assert(isValidAccessSpecifier()); return RefAndFlags.getInt() & (ReadOnly | WriteOnly); } bool isValidAccessSpecifier() const { unsigned BadAccessMask = ReadOnly | WriteOnly; return (RefAndFlags.getInt() & BadAccessMask) != BadAccessMask; } void setReadOnly() { // We expect ro/wo attribute to set only once during // ValueInfo lifetime. assert(getAccessSpecifier() == 0); RefAndFlags.setInt(RefAndFlags.getInt() | ReadOnly); } void setWriteOnly() { assert(getAccessSpecifier() == 0); RefAndFlags.setInt(RefAndFlags.getInt() | WriteOnly); }
const GlobalValueSummaryMapTy::value_type *getRef() const { return RefAndFlags.getPointer(); }
/// Returns the most constraining visibility among summaries. The /// visibilities, ordered from least to most constraining, are: default, /// protected and hidden. GlobalValue::VisibilityTypes getELFVisibility() const;
/// Checks if all summaries are DSO local (have the flag set). When DSOLocal /// propagation has been done, set the parameter to enable fast check. bool isDSOLocal(bool WithDSOLocalPropagation = false) const;
/// Checks if all copies are eligible for auto-hiding (have flag set). bool canAutoHide() const; };
inline raw_ostream &operator<<(raw_ostream &OS, const ValueInfo &VI) { OS << VI.getGUID(); if (!VI.name().empty()) OS << " (" << VI.name() << ")"; return OS; }
inline bool operator==(const ValueInfo &A, const ValueInfo &B) { assert(A.getRef() && B.getRef() && "Need ValueInfo with non-null Ref for comparison"); return A.getRef() == B.getRef(); }
inline bool operator!=(const ValueInfo &A, const ValueInfo &B) { assert(A.getRef() && B.getRef() && "Need ValueInfo with non-null Ref for comparison"); return A.getRef() != B.getRef(); }
inline bool operator<(const ValueInfo &A, const ValueInfo &B) { assert(A.getRef() && B.getRef() && "Need ValueInfo with non-null Ref to compare GUIDs"); return A.getGUID() < B.getGUID(); }
template <> struct DenseMapInfo<ValueInfo> { static inline ValueInfo getEmptyKey() { return ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); }
static inline ValueInfo getTombstoneKey() { return ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-16); }
static inline bool isSpecialKey(ValueInfo V) { return V == getTombstoneKey() || V == getEmptyKey(); }
static bool isEqual(ValueInfo L, ValueInfo R) { // We are not supposed to mix ValueInfo(s) with different HaveGVs flag // in a same container. assert(isSpecialKey(L) || isSpecialKey(R) || (L.haveGVs() == R.haveGVs())); return L.getRef() == R.getRef(); } static unsigned getHashValue(ValueInfo I) { return (uintptr_t)I.getRef(); } };
/// Summary of memprof callsite metadata. struct CallsiteInfo { // Actual callee function. ValueInfo Callee;
// Used to record whole program analysis cloning decisions. // The ThinLTO backend will need to create as many clones as there are entries // in the vector (it is expected and should be confirmed that all such // summaries in the same FunctionSummary have the same number of entries). // Each index records version info for the corresponding clone of this // function. The value is the callee clone it calls (becomes the appended // suffix id). Index 0 is the original version, and a value of 0 calls the // original callee. SmallVector<unsigned> Clones{0};
// Represents stack ids in this context, recorded as indices into the // StackIds vector in the summary index, which in turn holds the full 64-bit // stack ids. This reduces memory as there are in practice far fewer unique // stack ids than stack id references. SmallVector<unsigned> StackIdIndices;
CallsiteInfo(ValueInfo Callee, SmallVector<unsigned> StackIdIndices) : Callee(Callee), StackIdIndices(std::move(StackIdIndices)) {} CallsiteInfo(ValueInfo Callee, SmallVector<unsigned> Clones, SmallVector<unsigned> StackIdIndices) : Callee(Callee), Clones(std::move(Clones)), StackIdIndices(std::move(StackIdIndices)) {} };
inline raw_ostream &operator<<(raw_ostream &OS, const CallsiteInfo &SNI) { OS << "Callee: " << SNI.Callee; bool First = true; OS << " Clones: "; for (auto V : SNI.Clones) { if (!First) OS << ", "; First = false; OS << V; } First = true; OS << " StackIds: "; for (auto Id : SNI.StackIdIndices) { if (!First) OS << ", "; First = false; OS << Id; } return OS; }
// Allocation type assigned to an allocation reached by a given context. // More can be added, now this is cold, notcold and hot. // Values should be powers of two so that they can be ORed, in particular to // track allocations that have different behavior with different calling // contexts. enum class AllocationType : uint8_t { None = 0, NotCold = 1, Cold = 2, Hot = 4, All = 7 // This should always be set to the OR of all values. };
/// Summary of a single MIB in a memprof metadata on allocations. struct MIBInfo { // The allocation type for this profiled context. AllocationType AllocType;
// Represents stack ids in this context, recorded as indices into the // StackIds vector in the summary index, which in turn holds the full 64-bit // stack ids. This reduces memory as there are in practice far fewer unique // stack ids than stack id references. SmallVector<unsigned> StackIdIndices;
MIBInfo(AllocationType AllocType, SmallVector<unsigned> StackIdIndices) : AllocType(AllocType), StackIdIndices(std::move(StackIdIndices)) {} };
inline raw_ostream &operator<<(raw_ostream &OS, const MIBInfo &MIB) { OS << "AllocType " << (unsigned)MIB.AllocType; bool First = true; OS << " StackIds: "; for (auto Id : MIB.StackIdIndices) { if (!First) OS << ", "; First = false; OS << Id; } return OS; }
/// Summary of memprof metadata on allocations. struct AllocInfo { // Used to record whole program analysis cloning decisions. // The ThinLTO backend will need to create as many clones as there are entries // in the vector (it is expected and should be confirmed that all such // summaries in the same FunctionSummary have the same number of entries). // Each index records version info for the corresponding clone of this // function. The value is the allocation type of the corresponding allocation. // Index 0 is the original version. Before cloning, index 0 may have more than // one allocation type. SmallVector<uint8_t> Versions;
// Vector of MIBs in this memprof metadata. std::vector<MIBInfo> MIBs;
// If requested, keep track of total profiled sizes for each MIB. This will be // a vector of the same length and order as the MIBs vector, if non-empty. std::vector<uint64_t> TotalSizes;
AllocInfo(std::vector<MIBInfo> MIBs) : MIBs(std::move(MIBs)) { Versions.push_back(0); } AllocInfo(SmallVector<uint8_t> Versions, std::vector<MIBInfo> MIBs) : Versions(std::move(Versions)), MIBs(std::move(MIBs)) {} };
inline raw_ostream &operator<<(raw_ostream &OS, const AllocInfo &AE) { bool First = true; OS << "Versions: "; for (auto V : AE.Versions) { if (!First) OS << ", "; First = false; OS << (unsigned)V; } OS << " MIB:\n"; for (auto &M : AE.MIBs) { OS << "\t\t" << M << "\n"; } if (!AE.TotalSizes.empty()) { OS << " TotalSizes per MIB:\n\t\t"; First = true; for (uint64_t TS : AE.TotalSizes) { if (!First) OS << ", "; First = false; OS << TS << "\n"; } } return OS; }
/// Function and variable summary information to aid decisions and /// implementation of importing. class GlobalValueSummary { public: /// Sububclass discriminator (for dyn_cast<> et al.) enum SummaryKind : unsigned { AliasKind, FunctionKind, GlobalVarKind };
enum ImportKind : unsigned { // The global value definition corresponding to the summary should be // imported from source module Definition = 0,
// When its definition doesn't exist in the destination module and not // imported (e.g., function is too large to be inlined), the global value // declaration corresponding to the summary should be imported, or the // attributes from summary should be annotated on the function declaration. Declaration = 1, };
/// Group flags (Linkage, NotEligibleToImport, etc.) as a bitfield. struct GVFlags { /// The linkage type of the associated global value. /// /// One use is to flag values that have local linkage types and need to /// have module identifier appended before placing into the combined /// index, to disambiguate from other values with the same name. /// In the future this will be used to update and optimize linkage /// types based on global summary-based analysis. unsigned Linkage : 4;
/// Indicates the visibility. unsigned Visibility : 2;
/// Indicate if the global value cannot be imported (e.g. it cannot /// be renamed or references something that can't be renamed). unsigned NotEligibleToImport : 1;
/// In per-module summary, indicate that the global value must be considered /// a live root for index-based liveness analysis. Used for special LLVM /// values such as llvm.global_ctors that the linker does not know about. /// /// In combined summary, indicate that the global value is live. unsigned Live : 1;
/// Indicates that the linker resolved the symbol to a definition from /// within the same linkage unit. unsigned DSOLocal : 1;
/// In the per-module summary, indicates that the global value is /// linkonce_odr and global unnamed addr (so eligible for auto-hiding /// via hidden visibility). In the combined summary, indicates that the /// prevailing linkonce_odr copy can be auto-hidden via hidden visibility /// when it is upgraded to weak_odr in the backend. This is legal when /// all copies are eligible for auto-hiding (i.e. all copies were /// linkonce_odr global unnamed addr. If any copy is not (e.g. it was /// originally weak_odr, we cannot auto-hide the prevailing copy as it /// means the symbol was externally visible. unsigned CanAutoHide : 1;
/// This field is written by the ThinLTO indexing step to postlink combined /// summary. The value is interpreted as 'ImportKind' enum defined above. unsigned ImportType : 1;
/// Convenience Constructors explicit GVFlags(GlobalValue::LinkageTypes Linkage, GlobalValue::VisibilityTypes Visibility, bool NotEligibleToImport, bool Live, bool IsLocal, bool CanAutoHide, ImportKind ImportType) : Linkage(Linkage), Visibility(Visibility), NotEligibleToImport(NotEligibleToImport), Live(Live), DSOLocal(IsLocal), CanAutoHide(CanAutoHide), ImportType(static_cast<unsigned>(ImportType)) {} };
private: /// Kind of summary for use in dyn_cast<> et al. SummaryKind Kind;
GVFlags Flags;
/// This is the hash of the name of the symbol in the original file. It is /// identical to the GUID for global symbols, but differs for local since the /// GUID includes the module level id in the hash. GlobalValue::GUID OriginalName = 0;
/// Path of module IR containing value's definition, used to locate /// module during importing. /// /// This is only used during parsing of the combined index, or when /// parsing the per-module index for creation of the combined summary index, /// not during writing of the per-module index which doesn't contain a /// module path string table. StringRef ModulePath;
/// List of values referenced by this global value's definition /// (either by the initializer of a global variable, or referenced /// from within a function). This does not include functions called, which /// are listed in the derived FunctionSummary object. std::vector<ValueInfo> RefEdgeList;
protected: GlobalValueSummary(SummaryKind K, GVFlags Flags, std::vector<ValueInfo> Refs) : Kind(K), Flags(Flags), RefEdgeList(std::move(Refs)) { assert((K != AliasKind || Refs.empty()) && "Expect no references for AliasSummary"); }
public: virtual ~GlobalValueSummary() = default;
/// Returns the hash of the original name, it is identical to the GUID for /// externally visible symbols, but not for local ones. GlobalValue::GUID getOriginalName() const { return OriginalName; }
/// Initialize the original name hash in this summary. void setOriginalName(GlobalValue::GUID Name) { OriginalName = Name; }
/// Which kind of summary subclass this is. SummaryKind getSummaryKind() const { return Kind; }
/// Set the path to the module containing this function, for use in /// the combined index. void setModulePath(StringRef ModPath) { ModulePath = ModPath; }
/// Get the path to the module containing this function. StringRef modulePath() const { return ModulePath; }
/// Get the flags for this GlobalValue (see \p struct GVFlags). GVFlags flags() const { return Flags; }
/// Return linkage type recorded for this global value. GlobalValue::LinkageTypes linkage() const { return static_cast<GlobalValue::LinkageTypes>(Flags.Linkage); }
/// Sets the linkage to the value determined by global summary-based /// optimization. Will be applied in the ThinLTO backends. void setLinkage(GlobalValue::LinkageTypes Linkage) { Flags.Linkage = Linkage; }
/// Return true if this global value can't be imported. bool notEligibleToImport() const { return Flags.NotEligibleToImport; }
bool isLive() const { return Flags.Live; }
void setLive(bool Live) { Flags.Live = Live; }
void setDSOLocal(bool Local) { Flags.DSOLocal = Local; }
bool isDSOLocal() const { return Flags.DSOLocal; }
void setCanAutoHide(bool CanAutoHide) { Flags.CanAutoHide = CanAutoHide; }
bool canAutoHide() const { return Flags.CanAutoHide; }
bool shouldImportAsDecl() const { return Flags.ImportType == GlobalValueSummary::ImportKind::Declaration; }
void setImportKind(ImportKind IK) { Flags.ImportType = IK; }
GlobalValueSummary::ImportKind importType() const { return static_cast<ImportKind>(Flags.ImportType); }
GlobalValue::VisibilityTypes getVisibility() const { return (GlobalValue::VisibilityTypes)Flags.Visibility; } void setVisibility(GlobalValue::VisibilityTypes Vis) { Flags.Visibility = (unsigned)Vis; }
/// Flag that this global value cannot be imported. void setNotEligibleToImport() { Flags.NotEligibleToImport = true; }
/// Return the list of values referenced by this global value definition. ArrayRef<ValueInfo> refs() const { return RefEdgeList; }
/// If this is an alias summary, returns the summary of the aliased object (a /// global variable or function), otherwise returns itself. GlobalValueSummary *getBaseObject(); const GlobalValueSummary *getBaseObject() const;
friend class ModuleSummaryIndex; };
GlobalValueSummaryInfo::GlobalValueSummaryInfo(bool HaveGVs) : U(HaveGVs) {}
/// Alias summary information. class AliasSummary : public GlobalValueSummary { ValueInfo AliaseeValueInfo;
/// This is the Aliasee in the same module as alias (could get from VI, trades /// memory for time). Note that this pointer may be null (and the value info /// empty) when we have a distributed index where the alias is being imported /// (as a copy of the aliasee), but the aliasee is not. GlobalValueSummary *AliaseeSummary;
public: AliasSummary(GVFlags Flags) : GlobalValueSummary(AliasKind, Flags, ArrayRef<ValueInfo>{}), AliaseeSummary(nullptr) {}
/// Check if this is an alias summary. static bool classof(const GlobalValueSummary *GVS) { return GVS->getSummaryKind() == AliasKind; }
void setAliasee(ValueInfo &AliaseeVI, GlobalValueSummary *Aliasee) { AliaseeValueInfo = AliaseeVI; AliaseeSummary = Aliasee; }
bool hasAliasee() const { assert(!!AliaseeSummary == (AliaseeValueInfo && !AliaseeValueInfo.getSummaryList().empty()) && "Expect to have both aliasee summary and summary list or neither"); return !!AliaseeSummary; }
const GlobalValueSummary &getAliasee() const { assert(AliaseeSummary && "Unexpected missing aliasee summary"); return *AliaseeSummary; }
GlobalValueSummary &getAliasee() { return const_cast<GlobalValueSummary &>( static_cast<const AliasSummary *>(this)->getAliasee()); } ValueInfo getAliaseeVI() const { assert(AliaseeValueInfo && "Unexpected missing aliasee"); return AliaseeValueInfo; } GlobalValue::GUID getAliaseeGUID() const { assert(AliaseeValueInfo && "Unexpected missing aliasee"); return AliaseeValueInfo.getGUID(); } };
const inline GlobalValueSummary *GlobalValueSummary::getBaseObject() const { if (auto *AS = dyn_cast<AliasSummary>(this)) return &AS->getAliasee(); return this; }
inline GlobalValueSummary *GlobalValueSummary::getBaseObject() { if (auto *AS = dyn_cast<AliasSummary>(this)) return &AS->getAliasee(); return this; }
/// Function summary information to aid decisions and implementation of /// importing. class FunctionSummary : public GlobalValueSummary { public: /// <CalleeValueInfo, CalleeInfo> call edge pair. using EdgeTy = std::pair<ValueInfo, CalleeInfo>;
/// Types for -force-summary-edges-cold debugging option. enum ForceSummaryHotnessType : unsigned { FSHT_None, FSHT_AllNonCritical, FSHT_All };
/// An "identifier" for a virtual function. This contains the type identifier /// represented as a GUID and the offset from the address point to the virtual /// function pointer, where "address point" is as defined in the Itanium ABI: /// https://itanium-cxx-abi.github.io/cxx-abi/abi.html#vtable-general struct VFuncId { GlobalValue::GUID GUID; uint64_t Offset; };
/// A specification for a virtual function call with all constant integer /// arguments. This is used to perform virtual constant propagation on the /// summary. struct ConstVCall { VFuncId VFunc; std::vector<uint64_t> Args; };
/// All type identifier related information. Because these fields are /// relatively uncommon we only allocate space for them if necessary. struct TypeIdInfo { /// List of type identifiers used by this function in llvm.type.test /// intrinsics referenced by something other than an llvm.assume intrinsic, /// represented as GUIDs. std::vector<GlobalValue::GUID> TypeTests;
/// List of virtual calls made by this function using (respectively) /// llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics that do /// not have all constant integer arguments. std::vector<VFuncId> TypeTestAssumeVCalls, TypeCheckedLoadVCalls;
/// List of virtual calls made by this function using (respectively) /// llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics with /// all constant integer arguments. std::vector<ConstVCall> TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls; };
/// Flags specific to function summaries. struct FFlags { // Function attribute flags. Used to track if a function accesses memory, // recurses or aliases. unsigned ReadNone : 1; unsigned ReadOnly : 1; unsigned NoRecurse : 1; unsigned ReturnDoesNotAlias : 1;
// Indicate if the global value cannot be inlined. unsigned NoInline : 1; // Indicate if function should be always inlined. unsigned AlwaysInline : 1; // Indicate if function never raises an exception. Can be modified during // thinlink function attribute propagation unsigned NoUnwind : 1; // Indicate if function contains instructions that mayThrow unsigned MayThrow : 1;
// If there are calls to unknown targets (e.g. indirect) unsigned HasUnknownCall : 1;
// Indicate if a function must be an unreachable function. // // This bit is sufficient but not necessary; // if this bit is on, the function must be regarded as unreachable; // if this bit is off, the function might be reachable or unreachable. unsigned MustBeUnreachable : 1;
FFlags &operator&=(const FFlags &RHS) { this->ReadNone &= RHS.ReadNone; this->ReadOnly &= RHS.ReadOnly; this->NoRecurse &= RHS.NoRecurse; this->ReturnDoesNotAlias &= RHS.ReturnDoesNotAlias; this->NoInline &= RHS.NoInline; this->AlwaysInline &= RHS.AlwaysInline; this->NoUnwind &= RHS.NoUnwind; this->MayThrow &= RHS.MayThrow; this->HasUnknownCall &= RHS.HasUnknownCall; this->MustBeUnreachable &= RHS.MustBeUnreachable; return *this; }
bool anyFlagSet() { return this->ReadNone | this->ReadOnly | this->NoRecurse | this->ReturnDoesNotAlias | this->NoInline | this->AlwaysInline | this->NoUnwind | this->MayThrow | this->HasUnknownCall | this->MustBeUnreachable; }
operator std::string() { std::string Output; raw_string_ostream OS(Output); OS << "funcFlags: ("; OS << "readNone: " << this->ReadNone; OS << ", readOnly: " << this->ReadOnly; OS << ", noRecurse: " << this->NoRecurse; OS << ", returnDoesNotAlias: " << this->ReturnDoesNotAlias; OS << ", noInline: " << this->NoInline; OS << ", alwaysInline: " << this->AlwaysInline; OS << ", noUnwind: " << this->NoUnwind; OS << ", mayThrow: " << this->MayThrow; OS << ", hasUnknownCall: " << this->HasUnknownCall; OS << ", mustBeUnreachable: " << this->MustBeUnreachable; OS << ")"; return Output; } };
/// Describes the uses of a parameter by the function. struct ParamAccess { static constexpr uint32_t RangeWidth = 64;
/// Describes the use of a value in a call instruction, specifying the /// call's target, the value's parameter number, and the possible range of /// offsets from the beginning of the value that are passed. struct Call { uint64_t ParamNo = 0; ValueInfo Callee; ConstantRange Offsets{/*BitWidth=*/RangeWidth, /*isFullSet=*/true};
Call() = default; Call(uint64_t ParamNo, ValueInfo Callee, const ConstantRange &Offsets) : ParamNo(ParamNo), Callee(Callee), Offsets(Offsets) {} };
uint64_t ParamNo = 0; /// The range contains byte offsets from the parameter pointer which /// accessed by the function. In the per-module summary, it only includes /// accesses made by the function instructions. In the combined summary, it /// also includes accesses by nested function calls. ConstantRange Use{/*BitWidth=*/RangeWidth, /*isFullSet=*/true}; /// In the per-module summary, it summarizes the byte offset applied to each /// pointer parameter before passing to each corresponding callee. /// In the combined summary, it's empty and information is propagated by /// inter-procedural analysis and applied to the Use field. std::vector<Call> Calls;
ParamAccess() = default; ParamAccess(uint64_t ParamNo, const ConstantRange &Use) : ParamNo(ParamNo), Use(Use) {} };
/// Create an empty FunctionSummary (with specified call edges). /// Used to represent external nodes and the dummy root node. static FunctionSummary makeDummyFunctionSummary(std::vector<FunctionSummary::EdgeTy> Edges) { return FunctionSummary( FunctionSummary::GVFlags( GlobalValue::LinkageTypes::AvailableExternallyLinkage, GlobalValue::DefaultVisibility, /*NotEligibleToImport=*/true, /*Live=*/true, /*IsLocal=*/false, /*CanAutoHide=*/false, GlobalValueSummary::ImportKind::Definition), /*NumInsts=*/0, FunctionSummary::FFlags{}, /*EntryCount=*/0, std::vector<ValueInfo>(), std::move(Edges), std::vector<GlobalValue::GUID>(), std::vector<FunctionSummary::VFuncId>(), std::vector<FunctionSummary::VFuncId>(), std::vector<FunctionSummary::ConstVCall>(), std::vector<FunctionSummary::ConstVCall>(), std::vector<FunctionSummary::ParamAccess>(), std::vector<CallsiteInfo>(), std::vector<AllocInfo>()); }
/// A dummy node to reference external functions that aren't in the index static FunctionSummary ExternalNode;
private: /// Number of instructions (ignoring debug instructions, e.g.) computed /// during the initial compile step when the summary index is first built. unsigned InstCount;
/// Function summary specific flags. FFlags FunFlags;
/// The synthesized entry count of the function. /// This is only populated during ThinLink phase and remains unused while /// generating per-module summaries. uint64_t EntryCount = 0;
/// List of <CalleeValueInfo, CalleeInfo> call edge pairs from this function. std::vector<EdgeTy> CallGraphEdgeList;
std::unique_ptr<TypeIdInfo> TIdInfo;
/// Uses for every parameter to this function. using ParamAccessesTy = std::vector<ParamAccess>; std::unique_ptr<ParamAccessesTy> ParamAccesses;
/// Optional list of memprof callsite metadata summaries. The correspondence /// between the callsite summary and the callsites in the function is implied /// by the order in the vector (and can be validated by comparing the stack /// ids in the CallsiteInfo to those in the instruction callsite metadata). /// As a memory savings optimization, we only create these for the prevailing /// copy of a symbol when creating the combined index during LTO. using CallsitesTy = std::vector<CallsiteInfo>; std::unique_ptr<CallsitesTy> Callsites;
/// Optional list of allocation memprof metadata summaries. The correspondence /// between the alloc memprof summary and the allocation callsites in the /// function is implied by the order in the vector (and can be validated by /// comparing the stack ids in the AllocInfo to those in the instruction /// memprof metadata). /// As a memory savings optimization, we only create these for the prevailing /// copy of a symbol when creating the combined index during LTO. using AllocsTy = std::vector<AllocInfo>; std::unique_ptr<AllocsTy> Allocs;
public: FunctionSummary(GVFlags Flags, unsigned NumInsts, FFlags FunFlags, uint64_t EntryCount, std::vector<ValueInfo> Refs, std::vector<EdgeTy> CGEdges, std::vector<GlobalValue::GUID> TypeTests, std::vector<VFuncId> TypeTestAssumeVCalls, std::vector<VFuncId> TypeCheckedLoadVCalls, std::vector<ConstVCall> TypeTestAssumeConstVCalls, std::vector<ConstVCall> TypeCheckedLoadConstVCalls, std::vector<ParamAccess> Params, CallsitesTy CallsiteList, AllocsTy AllocList) : GlobalValueSummary(FunctionKind, Flags, std::move(Refs)), InstCount(NumInsts), FunFlags(FunFlags), EntryCount(EntryCount), CallGraphEdgeList(std::move(CGEdges)) { if (!TypeTests.empty() || !TypeTestAssumeVCalls.empty() || !TypeCheckedLoadVCalls.empty() || !TypeTestAssumeConstVCalls.empty() || !TypeCheckedLoadConstVCalls.empty()) TIdInfo = std::make_unique<TypeIdInfo>( TypeIdInfo{std::move(TypeTests), std::move(TypeTestAssumeVCalls), std::move(TypeCheckedLoadVCalls), std::move(TypeTestAssumeConstVCalls), std::move(TypeCheckedLoadConstVCalls)}); if (!Params.empty()) ParamAccesses = std::make_unique<ParamAccessesTy>(std::move(Params)); if (!CallsiteList.empty()) Callsites = std::make_unique<CallsitesTy>(std::move(CallsiteList)); if (!AllocList.empty()) Allocs = std::make_unique<AllocsTy>(std::move(AllocList)); } // Gets the number of readonly and writeonly refs in RefEdgeList std::pair<unsigned, unsigned> specialRefCounts() const;
/// Check if this is a function summary. static bool classof(const GlobalValueSummary *GVS) { return GVS->getSummaryKind() == FunctionKind; }
/// Get function summary flags. FFlags fflags() const { return FunFlags; }
void setNoRecurse() { FunFlags.NoRecurse = true; }
void setNoUnwind() { FunFlags.NoUnwind = true; }
/// Get the instruction count recorded for this function. unsigned instCount() const { return InstCount; }
/// Get the synthetic entry count for this function. uint64_t entryCount() const { return EntryCount; }
/// Set the synthetic entry count for this function. void setEntryCount(uint64_t EC) { EntryCount = EC; }
/// Return the list of <CalleeValueInfo, CalleeInfo> pairs. ArrayRef<EdgeTy> calls() const { return CallGraphEdgeList; }
std::vector<EdgeTy> &mutableCalls() { return CallGraphEdgeList; }
void addCall(EdgeTy E) { CallGraphEdgeList.push_back(E); }
/// Returns the list of type identifiers used by this function in /// llvm.type.test intrinsics other than by an llvm.assume intrinsic, /// represented as GUIDs. ArrayRef<GlobalValue::GUID> type_tests() const { if (TIdInfo) return TIdInfo->TypeTests; return {}; }
/// Returns the list of virtual calls made by this function using /// llvm.assume(llvm.type.test) intrinsics that do not have all constant /// integer arguments. ArrayRef<VFuncId> type_test_assume_vcalls() const { if (TIdInfo) return TIdInfo->TypeTestAssumeVCalls; return {}; }
/// Returns the list of virtual calls made by this function using /// llvm.type.checked.load intrinsics that do not have all constant integer /// arguments. ArrayRef<VFuncId> type_checked_load_vcalls() const { if (TIdInfo) return TIdInfo->TypeCheckedLoadVCalls; return {}; }
/// Returns the list of virtual calls made by this function using /// llvm.assume(llvm.type.test) intrinsics with all constant integer /// arguments. ArrayRef<ConstVCall> type_test_assume_const_vcalls() const { if (TIdInfo) return TIdInfo->TypeTestAssumeConstVCalls; return {}; }
/// Returns the list of virtual calls made by this function using /// llvm.type.checked.load intrinsics with all constant integer arguments. ArrayRef<ConstVCall> type_checked_load_const_vcalls() const { if (TIdInfo) return TIdInfo->TypeCheckedLoadConstVCalls; return {}; }
/// Returns the list of known uses of pointer parameters. ArrayRef<ParamAccess> paramAccesses() const { if (ParamAccesses) return *ParamAccesses; return {}; }
/// Sets the list of known uses of pointer parameters. void setParamAccesses(std::vector<ParamAccess> NewParams) { if (NewParams.empty()) ParamAccesses.reset(); else if (ParamAccesses) *ParamAccesses = std::move(NewParams); else ParamAccesses = std::make_unique<ParamAccessesTy>(std::move(NewParams)); }
/// Add a type test to the summary. This is used by WholeProgramDevirt if we /// were unable to devirtualize a checked call. void addTypeTest(GlobalValue::GUID Guid) { if (!TIdInfo) TIdInfo = std::make_unique<TypeIdInfo>(); TIdInfo->TypeTests.push_back(Guid); }
const TypeIdInfo *getTypeIdInfo() const { return TIdInfo.get(); };
ArrayRef<CallsiteInfo> callsites() const { if (Callsites) return *Callsites; return {}; }
CallsitesTy &mutableCallsites() { assert(Callsites); return *Callsites; }
void addCallsite(CallsiteInfo &Callsite) { if (!Callsites) Callsites = std::make_unique<CallsitesTy>(); Callsites->push_back(Callsite); }
ArrayRef<AllocInfo> allocs() const { if (Allocs) return *Allocs; return {}; }
AllocsTy &mutableAllocs() { assert(Allocs); return *Allocs; }
friend struct GraphTraits<ValueInfo>; };
template <> struct DenseMapInfo<FunctionSummary::VFuncId> { static FunctionSummary::VFuncId getEmptyKey() { return {0, uint64_t(-1)}; }
static FunctionSummary::VFuncId getTombstoneKey() { return {0, uint64_t(-2)}; }
static bool isEqual(FunctionSummary::VFuncId L, FunctionSummary::VFuncId R) { return L.GUID == R.GUID && L.Offset == R.Offset; }
static unsigned getHashValue(FunctionSummary::VFuncId I) { return I.GUID; } };
template <> struct DenseMapInfo<FunctionSummary::ConstVCall> { static FunctionSummary::ConstVCall getEmptyKey() { return {{0, uint64_t(-1)}, {}}; }
static FunctionSummary::ConstVCall getTombstoneKey() { return {{0, uint64_t(-2)}, {}}; }
static bool isEqual(FunctionSummary::ConstVCall L, FunctionSummary::ConstVCall R) { return DenseMapInfo<FunctionSummary::VFuncId>::isEqual(L.VFunc, R.VFunc) && L.Args == R.Args; }
static unsigned getHashValue(FunctionSummary::ConstVCall I) { return I.VFunc.GUID; } };
/// The ValueInfo and offset for a function within a vtable definition /// initializer array. struct VirtFuncOffset { VirtFuncOffset(ValueInfo VI, uint64_t Offset) : FuncVI(VI), VTableOffset(Offset) {}
ValueInfo FuncVI; uint64_t VTableOffset; }; /// List of functions referenced by a particular vtable definition. using VTableFuncList = std::vector<VirtFuncOffset>;
/// Global variable summary information to aid decisions and /// implementation of importing. /// /// Global variable summary has two extra flag, telling if it is /// readonly or writeonly. Both readonly and writeonly variables /// can be optimized in the backed: readonly variables can be /// const-folded, while writeonly vars can be completely eliminated /// together with corresponding stores. We let both things happen /// by means of internalizing such variables after ThinLTO import. class GlobalVarSummary : public GlobalValueSummary { private: /// For vtable definitions this holds the list of functions and /// their corresponding offsets within the initializer array. std::unique_ptr<VTableFuncList> VTableFuncs;
public: struct GVarFlags { GVarFlags(bool ReadOnly, bool WriteOnly, bool Constant, GlobalObject::VCallVisibility Vis) : MaybeReadOnly(ReadOnly), MaybeWriteOnly(WriteOnly), Constant(Constant), VCallVisibility(Vis) {}
// If true indicates that this global variable might be accessed // purely by non-volatile load instructions. This in turn means // it can be internalized in source and destination modules during // thin LTO import because it neither modified nor its address // is taken. unsigned MaybeReadOnly : 1; // If true indicates that variable is possibly only written to, so // its value isn't loaded and its address isn't taken anywhere. // False, when 'Constant' attribute is set. unsigned MaybeWriteOnly : 1; // Indicates that value is a compile-time constant. Global variable // can be 'Constant' while not being 'ReadOnly' on several occasions: // - it is volatile, (e.g mapped device address) // - its address is taken, meaning that unlike 'ReadOnly' vars we can't // internalize it. // Constant variables are always imported thus giving compiler an // opportunity to make some extra optimizations. Readonly constants // are also internalized. unsigned Constant : 1; // Set from metadata on vtable definitions during the module summary // analysis. unsigned VCallVisibility : 2; } VarFlags;
GlobalVarSummary(GVFlags Flags, GVarFlags VarFlags, std::vector<ValueInfo> Refs) : GlobalValueSummary(GlobalVarKind, Flags, std::move(Refs)), VarFlags(VarFlags) {}
/// Check if this is a global variable summary. static bool classof(const GlobalValueSummary *GVS) { return GVS->getSummaryKind() == GlobalVarKind; }
GVarFlags varflags() const { return VarFlags; } void setReadOnly(bool RO) { VarFlags.MaybeReadOnly = RO; } void setWriteOnly(bool WO) { VarFlags.MaybeWriteOnly = WO; } bool maybeReadOnly() const { return VarFlags.MaybeReadOnly; } bool maybeWriteOnly() const { return VarFlags.MaybeWriteOnly; } bool isConstant() const { return VarFlags.Constant; } void setVCallVisibility(GlobalObject::VCallVisibility Vis) { VarFlags.VCallVisibility = Vis; } GlobalObject::VCallVisibility getVCallVisibility() const { return (GlobalObject::VCallVisibility)VarFlags.VCallVisibility; }
void setVTableFuncs(VTableFuncList Funcs) { assert(!VTableFuncs); VTableFuncs = std::make_unique<VTableFuncList>(std::move(Funcs)); }
ArrayRef<VirtFuncOffset> vTableFuncs() const { if (VTableFuncs) return *VTableFuncs; return {}; } };
struct TypeTestResolution { /// Specifies which kind of type check we should emit for this byte array. /// See http://clang.llvm.org/docs/ControlFlowIntegrityDesign.html for full /// details on each kind of check; the enumerators are described with /// reference to that document. enum Kind { Unsat, ///< Unsatisfiable type (i.e. no global has this type metadata) ByteArray, ///< Test a byte array (first example) Inline, ///< Inlined bit vector ("Short Inline Bit Vectors") Single, ///< Single element (last example in "Short Inline Bit Vectors") AllOnes, ///< All-ones bit vector ("Eliminating Bit Vector Checks for /// All-Ones Bit Vectors") Unknown, ///< Unknown (analysis not performed, don't lower) } TheKind = Unknown;
/// Range of size-1 expressed as a bit width. For example, if the size is in /// range [1,256], this number will be 8. This helps generate the most compact /// instruction sequences. unsigned SizeM1BitWidth = 0;
// The following fields are only used if the target does not support the use // of absolute symbols to store constants. Their meanings are the same as the // corresponding fields in LowerTypeTestsModule::TypeIdLowering in // LowerTypeTests.cpp.
uint64_t AlignLog2 = 0; uint64_t SizeM1 = 0; uint8_t BitMask = 0; uint64_t InlineBits = 0; };
struct WholeProgramDevirtResolution { enum Kind { Indir, ///< Just do a regular virtual call SingleImpl, ///< Single implementation devirtualization BranchFunnel, ///< When retpoline mitigation is enabled, use a branch funnel ///< that is defined in the merged module. Otherwise same as ///< Indir. } TheKind = Indir;
std::string SingleImplName;
struct ByArg { enum Kind { Indir, ///< Just do a regular virtual call UniformRetVal, ///< Uniform return value optimization UniqueRetVal, ///< Unique return value optimization VirtualConstProp, ///< Virtual constant propagation } TheKind = Indir;
/// Additional information for the resolution: /// - UniformRetVal: the uniform return value. /// - UniqueRetVal: the return value associated with the unique vtable (0 or /// 1). uint64_t Info = 0;
// The following fields are only used if the target does not support the use // of absolute symbols to store constants.
uint32_t Byte = 0; uint32_t Bit = 0; };
/// Resolutions for calls with all constant integer arguments (excluding the /// first argument, "this"), where the key is the argument vector. std::map<std::vector<uint64_t>, ByArg> ResByArg; };
struct TypeIdSummary { TypeTestResolution TTRes;
/// Mapping from byte offset to whole-program devirt resolution for that /// (typeid, byte offset) pair. std::map<uint64_t, WholeProgramDevirtResolution> WPDRes; };
/// 160 bits SHA1 using ModuleHash = std::array<uint32_t, 5>;
/// Type used for iterating through the global value summary map. using const_gvsummary_iterator = GlobalValueSummaryMapTy::const_iterator; using gvsummary_iterator = GlobalValueSummaryMapTy::iterator;
/// String table to hold/own module path strings, as well as a hash /// of the module. The StringMap makes a copy of and owns inserted strings. using ModulePathStringTableTy = StringMap<ModuleHash>;
/// Map of global value GUID to its summary, used to identify values defined in /// a particular module, and provide efficient access to their summary. using GVSummaryMapTy = DenseMap<GlobalValue::GUID, GlobalValueSummary *>;
/// A set of global value summary pointers. using GVSummaryPtrSet = std::unordered_set<GlobalValueSummary *>;
/// Map of a type GUID to type id string and summary (multimap used /// in case of GUID conflicts). using TypeIdSummaryMapTy = std::multimap<GlobalValue::GUID, std::pair<std::string, TypeIdSummary>>;
/// The following data structures summarize type metadata information. /// For type metadata overview see https://llvm.org/docs/TypeMetadata.html. /// Each type metadata includes both the type identifier and the offset of /// the address point of the type (the address held by objects of that type /// which may not be the beginning of the virtual table). Vtable definitions /// are decorated with type metadata for the types they are compatible with. /// /// Holds information about vtable definitions decorated with type metadata: /// the vtable definition value and its address point offset in a type /// identifier metadata it is decorated (compatible) with. struct TypeIdOffsetVtableInfo { TypeIdOffsetVtableInfo(uint64_t Offset, ValueInfo VI) : AddressPointOffset(Offset), VTableVI(VI) {}
uint64_t AddressPointOffset; ValueInfo VTableVI; }; /// List of vtable definitions decorated by a particular type identifier, /// and their corresponding offsets in that type identifier's metadata. /// Note that each type identifier may be compatible with multiple vtables, due /// to inheritance, which is why this is a vector. using TypeIdCompatibleVtableInfo = std::vector<TypeIdOffsetVtableInfo>;
/// Class to hold module path string table and global value map, /// and encapsulate methods for operating on them. class ModuleSummaryIndex { private: /// Map from value name to list of summary instances for values of that /// name (may be duplicates in the COMDAT case, e.g.). GlobalValueSummaryMapTy GlobalValueMap;
/// Holds strings for combined index, mapping to the corresponding module ID. ModulePathStringTableTy ModulePathStringTable;
/// Mapping from type identifier GUIDs to type identifier and its summary /// information. Produced by thin link. TypeIdSummaryMapTy TypeIdMap;
/// Mapping from type identifier to information about vtables decorated /// with that type identifier's metadata. Produced by per module summary /// analysis and consumed by thin link. For more information, see description /// above where TypeIdCompatibleVtableInfo is defined. std::map<std::string, TypeIdCompatibleVtableInfo, std::less<>> TypeIdCompatibleVtableMap;
/// Mapping from original ID to GUID. If original ID can map to multiple /// GUIDs, it will be mapped to 0. std::map<GlobalValue::GUID, GlobalValue::GUID> OidGuidMap;
/// Indicates that summary-based GlobalValue GC has run, and values with /// GVFlags::Live==false are really dead. Otherwise, all values must be /// considered live. bool WithGlobalValueDeadStripping = false;
/// Indicates that summary-based attribute propagation has run and /// GVarFlags::MaybeReadonly / GVarFlags::MaybeWriteonly are really /// read/write only. bool WithAttributePropagation = false;
/// Indicates that summary-based DSOLocal propagation has run and the flag in /// every summary of a GV is synchronized. bool WithDSOLocalPropagation = false;
/// Indicates that we have whole program visibility. bool WithWholeProgramVisibility = false;
/// Indicates that summary-based synthetic entry count propagation has run bool HasSyntheticEntryCounts = false;
/// Indicates that we linked with allocator supporting hot/cold new operators. bool WithSupportsHotColdNew = false;
/// Indicates that distributed backend should skip compilation of the /// module. Flag is suppose to be set by distributed ThinLTO indexing /// when it detected that the module is not needed during the final /// linking. As result distributed backend should just output a minimal /// valid object file. bool SkipModuleByDistributedBackend = false;
/// If true then we're performing analysis of IR module, or parsing along with /// the IR from assembly. The value of 'false' means we're reading summary /// from BC or YAML source. Affects the type of value stored in NameOrGV /// union. bool HaveGVs;
// True if the index was created for a module compiled with -fsplit-lto-unit. bool EnableSplitLTOUnit;
// True if the index was created for a module compiled with -funified-lto bool UnifiedLTO;
// True if some of the modules were compiled with -fsplit-lto-unit and // some were not. Set when the combined index is created during the thin link. bool PartiallySplitLTOUnits = false;
/// True if some of the FunctionSummary contains a ParamAccess. bool HasParamAccess = false;
std::set<std::string> CfiFunctionDefs; std::set<std::string> CfiFunctionDecls;
// Used in cases where we want to record the name of a global, but // don't have the string owned elsewhere (e.g. the Strtab on a module). BumpPtrAllocator Alloc; StringSaver Saver;
// The total number of basic blocks in the module in the per-module summary or // the total number of basic blocks in the LTO unit in the combined index. // FIXME: Putting this in the distributed ThinLTO index files breaks LTO // backend caching on any BB change to any linked file. It is currently not // used except in the case of a SamplePGO partial profile, and should be // reevaluated/redesigned to allow more effective incremental builds in that // case. uint64_t BlockCount;
// List of unique stack ids (hashes). We use a 4B index of the id in the // stack id lists on the alloc and callsite summaries for memory savings, // since the number of unique ids is in practice much smaller than the // number of stack id references in the summaries. std::vector<uint64_t> StackIds;
// Temporary map while building StackIds list. Clear when index is completely // built via releaseTemporaryMemory. DenseMap<uint64_t, unsigned> StackIdToIndex;
// YAML I/O support. friend yaml::MappingTraits<ModuleSummaryIndex>;
GlobalValueSummaryMapTy::value_type * getOrInsertValuePtr(GlobalValue::GUID GUID) { return &*GlobalValueMap.emplace(GUID, GlobalValueSummaryInfo(HaveGVs)) .first; }
public: // See HaveGVs variable comment. ModuleSummaryIndex(bool HaveGVs, bool EnableSplitLTOUnit = false, bool UnifiedLTO = false) : HaveGVs(HaveGVs), EnableSplitLTOUnit(EnableSplitLTOUnit), UnifiedLTO(UnifiedLTO), Saver(Alloc), BlockCount(0) {}
// Current version for the module summary in bitcode files. // The BitcodeSummaryVersion should be bumped whenever we introduce changes // in the way some record are interpreted, like flags for instance. // Note that incrementing this may require changes in both BitcodeReader.cpp // and BitcodeWriter.cpp. static constexpr uint64_t BitcodeSummaryVersion = 10;
// Regular LTO module name for ASM writer static constexpr const char *getRegularLTOModuleName() { return "[Regular LTO]"; }
bool haveGVs() const { return HaveGVs; }
uint64_t getFlags() const; void setFlags(uint64_t Flags);
uint64_t getBlockCount() const { return BlockCount; } void addBlockCount(uint64_t C) { BlockCount += C; } void setBlockCount(uint64_t C) { BlockCount = C; }
gvsummary_iterator begin() { return GlobalValueMap.begin(); } const_gvsummary_iterator begin() const { return GlobalValueMap.begin(); } gvsummary_iterator end() { return GlobalValueMap.end(); } const_gvsummary_iterator end() const { return GlobalValueMap.end(); } size_t size() const { return GlobalValueMap.size(); }
const std::vector<uint64_t> &stackIds() const { return StackIds; }
unsigned addOrGetStackIdIndex(uint64_t StackId) { auto Inserted = StackIdToIndex.insert({StackId, StackIds.size()}); if (Inserted.second) StackIds.push_back(StackId); return Inserted.first->second; }
uint64_t getStackIdAtIndex(unsigned Index) const { assert(StackIds.size() > Index); return StackIds[Index]; }
// Facility to release memory from data structures only needed during index // construction (including while building combined index). Currently this only // releases the temporary map used while constructing a correspondence between // stack ids and their index in the StackIds vector. Mostly impactful when // building a large combined index. void releaseTemporaryMemory() { assert(StackIdToIndex.size() == StackIds.size()); StackIdToIndex.clear(); StackIds.shrink_to_fit(); }
/// Convenience function for doing a DFS on a ValueInfo. Marks the function in /// the FunctionHasParent map. static void discoverNodes(ValueInfo V, std::map<ValueInfo, bool> &FunctionHasParent) { if (!V.getSummaryList().size()) return; // skip external functions that don't have summaries
// Mark discovered if we haven't yet auto S = FunctionHasParent.emplace(V, false);
// Stop if we've already discovered this node if (!S.second) return;
FunctionSummary *F = dyn_cast<FunctionSummary>(V.getSummaryList().front().get()); assert(F != nullptr && "Expected FunctionSummary node");
for (const auto &C : F->calls()) { // Insert node if necessary auto S = FunctionHasParent.emplace(C.first, true);
// Skip nodes that we're sure have parents if (!S.second && S.first->second) continue;
if (S.second) discoverNodes(C.first, FunctionHasParent); else S.first->second = true; } }
// Calculate the callgraph root FunctionSummary calculateCallGraphRoot() { // Functions that have a parent will be marked in FunctionHasParent pair. // Once we've marked all functions, the functions in the map that are false // have no parent (so they're the roots) std::map<ValueInfo, bool> FunctionHasParent;
for (auto &S : *this) { // Skip external functions if (!S.second.SummaryList.size() || !isa<FunctionSummary>(S.second.SummaryList.front().get())) continue; discoverNodes(ValueInfo(HaveGVs, &S), FunctionHasParent); }
std::vector<FunctionSummary::EdgeTy> Edges; // create edges to all roots in the Index for (auto &P : FunctionHasParent) { if (P.second) continue; // skip over non-root nodes Edges.push_back(std::make_pair(P.first, CalleeInfo{})); } if (Edges.empty()) { // Failed to find root - return an empty node return FunctionSummary::makeDummyFunctionSummary({}); } auto CallGraphRoot = FunctionSummary::makeDummyFunctionSummary(Edges); return CallGraphRoot; }
bool withGlobalValueDeadStripping() const { return WithGlobalValueDeadStripping; } void setWithGlobalValueDeadStripping() { WithGlobalValueDeadStripping = true; }
bool withAttributePropagation() const { return WithAttributePropagation; } void setWithAttributePropagation() { WithAttributePropagation = true; }
bool withDSOLocalPropagation() const { return WithDSOLocalPropagation; } void setWithDSOLocalPropagation() { WithDSOLocalPropagation = true; }
bool withWholeProgramVisibility() const { return WithWholeProgramVisibility; } void setWithWholeProgramVisibility() { WithWholeProgramVisibility = true; }
bool isReadOnly(const GlobalVarSummary *GVS) const { return WithAttributePropagation && GVS->maybeReadOnly(); } bool isWriteOnly(const GlobalVarSummary *GVS) const { return WithAttributePropagation && GVS->maybeWriteOnly(); }
bool hasSyntheticEntryCounts() const { return HasSyntheticEntryCounts; } void setHasSyntheticEntryCounts() { HasSyntheticEntryCounts = true; }
bool withSupportsHotColdNew() const { return WithSupportsHotColdNew; } void setWithSupportsHotColdNew() { WithSupportsHotColdNew = true; }
bool skipModuleByDistributedBackend() const { return SkipModuleByDistributedBackend; } void setSkipModuleByDistributedBackend() { SkipModuleByDistributedBackend = true; }
bool enableSplitLTOUnit() const { return EnableSplitLTOUnit; } void setEnableSplitLTOUnit() { EnableSplitLTOUnit = true; }
bool hasUnifiedLTO() const { return UnifiedLTO; } void setUnifiedLTO() { UnifiedLTO = true; }
bool partiallySplitLTOUnits() const { return PartiallySplitLTOUnits; } void setPartiallySplitLTOUnits() { PartiallySplitLTOUnits = true; }
bool hasParamAccess() const { return HasParamAccess; }
bool isGlobalValueLive(const GlobalValueSummary *GVS) const { return !WithGlobalValueDeadStripping || GVS->isLive(); } bool isGUIDLive(GlobalValue::GUID GUID) const;
/// Return a ValueInfo for the index value_type (convenient when iterating /// index). ValueInfo getValueInfo(const GlobalValueSummaryMapTy::value_type &R) const { return ValueInfo(HaveGVs, &R); }
/// Return a ValueInfo for GUID if it exists, otherwise return ValueInfo(). ValueInfo getValueInfo(GlobalValue::GUID GUID) const { auto I = GlobalValueMap.find(GUID); return ValueInfo(HaveGVs, I == GlobalValueMap.end() ? nullptr : &*I); }
/// Return a ValueInfo for \p GUID. ValueInfo getOrInsertValueInfo(GlobalValue::GUID GUID) { return ValueInfo(HaveGVs, getOrInsertValuePtr(GUID)); }
// Save a string in the Index. Use before passing Name to // getOrInsertValueInfo when the string isn't owned elsewhere (e.g. on the // module's Strtab). StringRef saveString(StringRef String) { return Saver.save(String); }
/// Return a ValueInfo for \p GUID setting value \p Name. ValueInfo getOrInsertValueInfo(GlobalValue::GUID GUID, StringRef Name) { assert(!HaveGVs); auto VP = getOrInsertValuePtr(GUID); VP->second.U.Name = Name; return ValueInfo(HaveGVs, VP); }
/// Return a ValueInfo for \p GV and mark it as belonging to GV. ValueInfo getOrInsertValueInfo(const GlobalValue *GV) { assert(HaveGVs); auto VP = getOrInsertValuePtr(GV->getGUID()); VP->second.U.GV = GV; return ValueInfo(HaveGVs, VP); }
/// Return the GUID for \p OriginalId in the OidGuidMap. GlobalValue::GUID getGUIDFromOriginalID(GlobalValue::GUID OriginalID) const { const auto I = OidGuidMap.find(OriginalID); return I == OidGuidMap.end() ? 0 : I->second; }
std::set<std::string> &cfiFunctionDefs() { return CfiFunctionDefs; } const std::set<std::string> &cfiFunctionDefs() const { return CfiFunctionDefs; }
std::set<std::string> &cfiFunctionDecls() { return CfiFunctionDecls; } const std::set<std::string> &cfiFunctionDecls() const { return CfiFunctionDecls; }
/// Add a global value summary for a value. void addGlobalValueSummary(const GlobalValue &GV, std::unique_ptr<GlobalValueSummary> Summary) { addGlobalValueSummary(getOrInsertValueInfo(&GV), std::move(Summary)); }
/// Add a global value summary for a value of the given name. void addGlobalValueSummary(StringRef ValueName, std::unique_ptr<GlobalValueSummary> Summary) { addGlobalValueSummary(getOrInsertValueInfo(GlobalValue::getGUID(ValueName)), std::move(Summary)); }
/// Add a global value summary for the given ValueInfo. void addGlobalValueSummary(ValueInfo VI, std::unique_ptr<GlobalValueSummary> Summary) { if (const FunctionSummary *FS = dyn_cast<FunctionSummary>(Summary.get())) HasParamAccess |= !FS->paramAccesses().empty(); addOriginalName(VI.getGUID(), Summary->getOriginalName()); // Here we have a notionally const VI, but the value it points to is owned // by the non-const *this. const_cast<GlobalValueSummaryMapTy::value_type *>(VI.getRef()) ->second.SummaryList.push_back(std::move(Summary)); }
/// Add an original name for the value of the given GUID. void addOriginalName(GlobalValue::GUID ValueGUID, GlobalValue::GUID OrigGUID) { if (OrigGUID == 0 || ValueGUID == OrigGUID) return; if (OidGuidMap.count(OrigGUID) && OidGuidMap[OrigGUID] != ValueGUID) OidGuidMap[OrigGUID] = 0; else OidGuidMap[OrigGUID] = ValueGUID; }
/// Find the summary for ValueInfo \p VI in module \p ModuleId, or nullptr if /// not found. GlobalValueSummary *findSummaryInModule(ValueInfo VI, StringRef ModuleId) const { auto SummaryList = VI.getSummaryList(); auto Summary = llvm::find_if(SummaryList, [&](const std::unique_ptr<GlobalValueSummary> &Summary) { return Summary->modulePath() == ModuleId; }); if (Summary == SummaryList.end()) return nullptr; return Summary->get(); }
/// Find the summary for global \p GUID in module \p ModuleId, or nullptr if /// not found. GlobalValueSummary *findSummaryInModule(GlobalValue::GUID ValueGUID, StringRef ModuleId) const { auto CalleeInfo = getValueInfo(ValueGUID); if (!CalleeInfo) return nullptr; // This function does not have a summary return findSummaryInModule(CalleeInfo, ModuleId); }
/// Returns the first GlobalValueSummary for \p GV, asserting that there /// is only one if \p PerModuleIndex. GlobalValueSummary *getGlobalValueSummary(const GlobalValue &GV, bool PerModuleIndex = true) const { assert(GV.hasName() && "Can't get GlobalValueSummary for GV with no name"); return getGlobalValueSummary(GV.getGUID(), PerModuleIndex); }
/// Returns the first GlobalValueSummary for \p ValueGUID, asserting that /// there /// is only one if \p PerModuleIndex. GlobalValueSummary *getGlobalValueSummary(GlobalValue::GUID ValueGUID, bool PerModuleIndex = true) const;
/// Table of modules, containing module hash and id. const StringMap<ModuleHash> &modulePaths() const { return ModulePathStringTable; }
/// Table of modules, containing hash and id. StringMap<ModuleHash> &modulePaths() { return ModulePathStringTable; }
/// Get the module SHA1 hash recorded for the given module path. const ModuleHash &getModuleHash(const StringRef ModPath) const { auto It = ModulePathStringTable.find(ModPath); assert(It != ModulePathStringTable.end() && "Module not registered"); return It->second; }
/// Convenience method for creating a promoted global name /// for the given value name of a local, and its original module's ID. static std::string getGlobalNameForLocal(StringRef Name, ModuleHash ModHash) { std::string Suffix = utostr((uint64_t(ModHash[0]) << 32) | ModHash[1]); // Take the first 64 bits return getGlobalNameForLocal(Name, Suffix); }
static std::string getGlobalNameForLocal(StringRef Name, StringRef Suffix) { SmallString<256> NewName(Name); NewName += ".llvm."; NewName += Suffix; return std::string(NewName); }
/// Helper to obtain the unpromoted name for a global value (or the original /// name if not promoted). Split off the rightmost ".llvm.${hash}" suffix, /// because it is possible in certain clients (not clang at the moment) for /// two rounds of ThinLTO optimization and therefore promotion to occur. static StringRef getOriginalNameBeforePromote(StringRef Name) { std::pair<StringRef, StringRef> Pair = Name.rsplit(".llvm."); return Pair.first; }
typedef ModulePathStringTableTy::value_type ModuleInfo;
/// Add a new module with the given \p Hash, mapped to the given \p /// ModID, and return a reference to the module. ModuleInfo *addModule(StringRef ModPath, ModuleHash Hash = ModuleHash{{0}}) { return &*ModulePathStringTable.insert({ModPath, Hash}).first; }
/// Return module entry for module with the given \p ModPath. ModuleInfo *getModule(StringRef ModPath) { auto It = ModulePathStringTable.find(ModPath); assert(It != ModulePathStringTable.end() && "Module not registered"); return &*It; }
/// Return module entry for module with the given \p ModPath. const ModuleInfo *getModule(StringRef ModPath) const { auto It = ModulePathStringTable.find(ModPath); assert(It != ModulePathStringTable.end() && "Module not registered"); return &*It; }
/// Check if the given Module has any functions available for exporting /// in the index. We consider any module present in the ModulePathStringTable /// to have exported functions. bool hasExportedFunctions(const Module &M) const { return ModulePathStringTable.count(M.getModuleIdentifier()); }
const TypeIdSummaryMapTy &typeIds() const { return TypeIdMap; }
/// Return an existing or new TypeIdSummary entry for \p TypeId. /// This accessor can mutate the map and therefore should not be used in /// the ThinLTO backends. TypeIdSummary &getOrInsertTypeIdSummary(StringRef TypeId) { auto TidIter = TypeIdMap.equal_range(GlobalValue::getGUID(TypeId)); for (auto It = TidIter.first; It != TidIter.second; ++It) if (It->second.first == TypeId) return It->second.second; auto It = TypeIdMap.insert( {GlobalValue::getGUID(TypeId), {std::string(TypeId), TypeIdSummary()}}); return It->second.second; }
/// This returns either a pointer to the type id summary (if present in the /// summary map) or null (if not present). This may be used when importing. const TypeIdSummary *getTypeIdSummary(StringRef TypeId) const { auto TidIter = TypeIdMap.equal_range(GlobalValue::getGUID(TypeId)); for (auto It = TidIter.first; It != TidIter.second; ++It) if (It->second.first == TypeId) return &It->second.second; return nullptr; }
TypeIdSummary *getTypeIdSummary(StringRef TypeId) { return const_cast<TypeIdSummary *>( static_cast<const ModuleSummaryIndex *>(this)->getTypeIdSummary( TypeId)); }
const auto &typeIdCompatibleVtableMap() const { return TypeIdCompatibleVtableMap; }
/// Return an existing or new TypeIdCompatibleVtableMap entry for \p TypeId. /// This accessor can mutate the map and therefore should not be used in /// the ThinLTO backends. TypeIdCompatibleVtableInfo & getOrInsertTypeIdCompatibleVtableSummary(StringRef TypeId) { return TypeIdCompatibleVtableMap[std::string(TypeId)]; }
/// For the given \p TypeId, this returns the TypeIdCompatibleVtableMap /// entry if present in the summary map. This may be used when importing. std::optional<TypeIdCompatibleVtableInfo> getTypeIdCompatibleVtableSummary(StringRef TypeId) const { auto I = TypeIdCompatibleVtableMap.find(TypeId); if (I == TypeIdCompatibleVtableMap.end()) return std::nullopt; return I->second; }
/// Collect for the given module the list of functions it defines /// (GUID -> Summary). void collectDefinedFunctionsForModule(StringRef ModulePath, GVSummaryMapTy &GVSummaryMap) const;
/// Collect for each module the list of Summaries it defines (GUID -> /// Summary). template <class Map> void collectDefinedGVSummariesPerModule(Map &ModuleToDefinedGVSummaries) const { for (const auto &GlobalList : *this) { auto GUID = GlobalList.first; for (const auto &Summary : GlobalList.second.SummaryList) { ModuleToDefinedGVSummaries[Summary->modulePath()][GUID] = Summary.get(); } } }
/// Print to an output stream. void print(raw_ostream &OS, bool IsForDebug = false) const;
/// Dump to stderr (for debugging). void dump() const;
/// Export summary to dot file for GraphViz. void exportToDot(raw_ostream &OS, const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) const;
/// Print out strongly connected components for debugging. void dumpSCCs(raw_ostream &OS);
/// Do the access attribute and DSOLocal propagation in combined index. void propagateAttributes(const DenseSet<GlobalValue::GUID> &PreservedSymbols);
/// Checks if we can import global variable from another module. bool canImportGlobalVar(const GlobalValueSummary *S, bool AnalyzeRefs) const; };
/// GraphTraits definition to build SCC for the index template <> struct GraphTraits<ValueInfo> { typedef ValueInfo NodeRef; using EdgeRef = FunctionSummary::EdgeTy &;
static NodeRef valueInfoFromEdge(FunctionSummary::EdgeTy &P) { return P.first; } using ChildIteratorType = mapped_iterator<std::vector<FunctionSummary::EdgeTy>::iterator, decltype(&valueInfoFromEdge)>;
using ChildEdgeIteratorType = std::vector<FunctionSummary::EdgeTy>::iterator;
static NodeRef getEntryNode(ValueInfo V) { return V; }
static ChildIteratorType child_begin(NodeRef N) { if (!N.getSummaryList().size()) // handle external function return ChildIteratorType( FunctionSummary::ExternalNode.CallGraphEdgeList.begin(), &valueInfoFromEdge); FunctionSummary *F = cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject()); return ChildIteratorType(F->CallGraphEdgeList.begin(), &valueInfoFromEdge); }
static ChildIteratorType child_end(NodeRef N) { if (!N.getSummaryList().size()) // handle external function return ChildIteratorType( FunctionSummary::ExternalNode.CallGraphEdgeList.end(), &valueInfoFromEdge); FunctionSummary *F = cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject()); return ChildIteratorType(F->CallGraphEdgeList.end(), &valueInfoFromEdge); }
static ChildEdgeIteratorType child_edge_begin(NodeRef N) { if (!N.getSummaryList().size()) // handle external function return FunctionSummary::ExternalNode.CallGraphEdgeList.begin();
FunctionSummary *F = cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject()); return F->CallGraphEdgeList.begin(); }
static ChildEdgeIteratorType child_edge_end(NodeRef N) { if (!N.getSummaryList().size()) // handle external function return FunctionSummary::ExternalNode.CallGraphEdgeList.end();
FunctionSummary *F = cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject()); return F->CallGraphEdgeList.end(); }
static NodeRef edge_dest(EdgeRef E) { return E.first; } };
template <> struct GraphTraits<ModuleSummaryIndex *> : public GraphTraits<ValueInfo> { static NodeRef getEntryNode(ModuleSummaryIndex *I) { std::unique_ptr<GlobalValueSummary> Root = std::make_unique<FunctionSummary>(I->calculateCallGraphRoot()); GlobalValueSummaryInfo G(I->haveGVs()); G.SummaryList.push_back(std::move(Root)); static auto P = GlobalValueSummaryMapTy::value_type(GlobalValue::GUID(0), std::move(G)); return ValueInfo(I->haveGVs(), &P); } }; } // end namespace llvm
#endif // LLVM_IR_MODULESUMMARYINDEX_H
|