Viewing file: Instructions.h (181.23 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file exposes the class definitions of all of the subclasses of the // Instruction class. This is meant to be an easy way to get access to all // instruction subclasses. // //===----------------------------------------------------------------------===//
#ifndef LLVM_IR_INSTRUCTIONS_H #define LLVM_IR_INSTRUCTIONS_H
#include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/Bitfields.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Twine.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constant.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/GEPNoWrapFlags.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/OperandTraits.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/ErrorHandling.h" #include <cassert> #include <cstddef> #include <cstdint> #include <iterator> #include <optional>
namespace llvm {
class APFloat; class APInt; class BasicBlock; class ConstantInt; class DataLayout; class StringRef; class Type; class Value; class UnreachableInst;
//===----------------------------------------------------------------------===// // AllocaInst Class //===----------------------------------------------------------------------===//
/// an instruction to allocate memory on the stack class AllocaInst : public UnaryInstruction { Type *AllocatedType;
using AlignmentField = AlignmentBitfieldElementT<0>; using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>; using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>; static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField, SwiftErrorField>(), "Bitfields must be contiguous");
protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
AllocaInst *cloneImpl() const;
public: explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, const Twine &Name, InsertPosition InsertBefore);
AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, InsertPosition InsertBefore);
AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align, const Twine &Name = "", InsertPosition InsertBefore = nullptr);
/// Return true if there is an allocation size parameter to the allocation /// instruction that is not 1. bool isArrayAllocation() const;
/// Get the number of elements allocated. For a simple allocation of a single /// element, this will return a constant 1 value. const Value *getArraySize() const { return getOperand(0); } Value *getArraySize() { return getOperand(0); }
/// Overload to return most specific pointer type. PointerType *getType() const { return cast<PointerType>(Instruction::getType()); }
/// Return the address space for the allocation. unsigned getAddressSpace() const { return getType()->getAddressSpace(); }
/// Get allocation size in bytes. Returns std::nullopt if size can't be /// determined, e.g. in case of a VLA. std::optional<TypeSize> getAllocationSize(const DataLayout &DL) const;
/// Get allocation size in bits. Returns std::nullopt if size can't be /// determined, e.g. in case of a VLA. std::optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const;
/// Return the type that is being allocated by the instruction. Type *getAllocatedType() const { return AllocatedType; } /// for use only in special circumstances that need to generically /// transform a whole instruction (eg: IR linking and vectorization). void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
/// Return the alignment of the memory that is being allocated by the /// instruction. Align getAlign() const { return Align(1ULL << getSubclassData<AlignmentField>()); }
void setAlignment(Align Align) { setSubclassData<AlignmentField>(Log2(Align)); }
/// Return true if this alloca is in the entry block of the function and is a /// constant size. If so, the code generator will fold it into the /// prolog/epilog code, so it is basically free. bool isStaticAlloca() const;
/// Return true if this alloca is used as an inalloca argument to a call. Such /// allocas are never considered static even if they are in the entry block. bool isUsedWithInAlloca() const { return getSubclassData<UsedWithInAllocaField>(); }
/// Specify whether this alloca is used to represent the arguments to a call. void setUsedWithInAlloca(bool V) { setSubclassData<UsedWithInAllocaField>(V); }
/// Return true if this alloca is used as a swifterror argument to a call. bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); } /// Specify whether this alloca is used to represent a swifterror. void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Alloca); } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); }
private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. template <typename Bitfield> void setSubclassData(typename Bitfield::Type Value) { Instruction::setSubclassData<Bitfield>(Value); } };
//===----------------------------------------------------------------------===// // LoadInst Class //===----------------------------------------------------------------------===//
/// An instruction for reading from memory. This uses the SubclassData field in /// Value to store whether or not the load is volatile. class LoadInst : public UnaryInstruction { using VolatileField = BoolBitfieldElementT<0>; using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>; using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>; static_assert( Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(), "Bitfields must be contiguous");
void AssertOK();
protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
LoadInst *cloneImpl() const;
public: LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, InsertPosition InsertBefore); LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, InsertPosition InsertBefore); LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, Align Align, InsertPosition InsertBefore = nullptr); LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, Align Align, AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System, InsertPosition InsertBefore = nullptr);
/// Return true if this is a load from a volatile memory location. bool isVolatile() const { return getSubclassData<VolatileField>(); }
/// Specify whether this is a volatile load or not. void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
/// Return the alignment of the access that is being performed. Align getAlign() const { return Align(1ULL << (getSubclassData<AlignmentField>())); }
void setAlignment(Align Align) { setSubclassData<AlignmentField>(Log2(Align)); }
/// Returns the ordering constraint of this load instruction. AtomicOrdering getOrdering() const { return getSubclassData<OrderingField>(); } /// Sets the ordering constraint of this load instruction. May not be Release /// or AcquireRelease. void setOrdering(AtomicOrdering Ordering) { setSubclassData<OrderingField>(Ordering); }
/// Returns the synchronization scope ID of this load instruction. SyncScope::ID getSyncScopeID() const { return SSID; }
/// Sets the synchronization scope ID of this load instruction. void setSyncScopeID(SyncScope::ID SSID) { this->SSID = SSID; }
/// Sets the ordering constraint and the synchronization scope ID of this load /// instruction. void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID = SyncScope::System) { setOrdering(Ordering); setSyncScopeID(SSID); }
bool isSimple() const { return !isAtomic() && !isVolatile(); }
bool isUnordered() const { return (getOrdering() == AtomicOrdering::NotAtomic || getOrdering() == AtomicOrdering::Unordered) && !isVolatile(); }
Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; } Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
/// Returns the address space of the pointer operand. unsigned getPointerAddressSpace() const { return getPointerOperandType()->getPointerAddressSpace(); }
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Load; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); }
private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. template <typename Bitfield> void setSubclassData(typename Bitfield::Type Value) { Instruction::setSubclassData<Bitfield>(Value); }
/// The synchronization scope ID of this load instruction. Not quite enough /// room in SubClassData for everything, so synchronization scope ID gets its /// own field. SyncScope::ID SSID; };
//===----------------------------------------------------------------------===// // StoreInst Class //===----------------------------------------------------------------------===//
/// An instruction for storing to memory. class StoreInst : public Instruction { using VolatileField = BoolBitfieldElementT<0>; using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>; using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>; static_assert( Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(), "Bitfields must be contiguous");
void AssertOK();
protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
StoreInst *cloneImpl() const;
public: StoreInst(Value *Val, Value *Ptr, InsertPosition InsertBefore); StoreInst(Value *Val, Value *Ptr, bool isVolatile, InsertPosition InsertBefore); StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, InsertPosition InsertBefore = nullptr); StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System, InsertPosition InsertBefore = nullptr);
// allocate space for exactly two operands void *operator new(size_t S) { return User::operator new(S, 2); } void operator delete(void *Ptr) { User::operator delete(Ptr); }
/// Return true if this is a store to a volatile memory location. bool isVolatile() const { return getSubclassData<VolatileField>(); }
/// Specify whether this is a volatile store or not. void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
/// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
Align getAlign() const { return Align(1ULL << (getSubclassData<AlignmentField>())); }
void setAlignment(Align Align) { setSubclassData<AlignmentField>(Log2(Align)); }
/// Returns the ordering constraint of this store instruction. AtomicOrdering getOrdering() const { return getSubclassData<OrderingField>(); }
/// Sets the ordering constraint of this store instruction. May not be /// Acquire or AcquireRelease. void setOrdering(AtomicOrdering Ordering) { setSubclassData<OrderingField>(Ordering); }
/// Returns the synchronization scope ID of this store instruction. SyncScope::ID getSyncScopeID() const { return SSID; }
/// Sets the synchronization scope ID of this store instruction. void setSyncScopeID(SyncScope::ID SSID) { this->SSID = SSID; }
/// Sets the ordering constraint and the synchronization scope ID of this /// store instruction. void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID = SyncScope::System) { setOrdering(Ordering); setSyncScopeID(SSID); }
bool isSimple() const { return !isAtomic() && !isVolatile(); }
bool isUnordered() const { return (getOrdering() == AtomicOrdering::NotAtomic || getOrdering() == AtomicOrdering::Unordered) && !isVolatile(); }
Value *getValueOperand() { return getOperand(0); } const Value *getValueOperand() const { return getOperand(0); }
Value *getPointerOperand() { return getOperand(1); } const Value *getPointerOperand() const { return getOperand(1); } static unsigned getPointerOperandIndex() { return 1U; } Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
/// Returns the address space of the pointer operand. unsigned getPointerAddressSpace() const { return getPointerOperandType()->getPointerAddressSpace(); }
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Store; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); }
private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. template <typename Bitfield> void setSubclassData(typename Bitfield::Type Value) { Instruction::setSubclassData<Bitfield>(Value); }
/// The synchronization scope ID of this store instruction. Not quite enough /// room in SubClassData for everything, so synchronization scope ID gets its /// own field. SyncScope::ID SSID; };
template <> struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)
//===----------------------------------------------------------------------===// // FenceInst Class //===----------------------------------------------------------------------===//
/// An instruction for ordering other memory operations. class FenceInst : public Instruction { using OrderingField = AtomicOrderingBitfieldElementT<0>;
void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
FenceInst *cloneImpl() const;
public: // Ordering may only be Acquire, Release, AcquireRelease, or // SequentiallyConsistent. FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID = SyncScope::System, InsertPosition InsertBefore = nullptr);
// allocate space for exactly zero operands void *operator new(size_t S) { return User::operator new(S, 0); } void operator delete(void *Ptr) { User::operator delete(Ptr); }
/// Returns the ordering constraint of this fence instruction. AtomicOrdering getOrdering() const { return getSubclassData<OrderingField>(); }
/// Sets the ordering constraint of this fence instruction. May only be /// Acquire, Release, AcquireRelease, or SequentiallyConsistent. void setOrdering(AtomicOrdering Ordering) { setSubclassData<OrderingField>(Ordering); }
/// Returns the synchronization scope ID of this fence instruction. SyncScope::ID getSyncScopeID() const { return SSID; }
/// Sets the synchronization scope ID of this fence instruction. void setSyncScopeID(SyncScope::ID SSID) { this->SSID = SSID; }
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Fence; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); }
private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. template <typename Bitfield> void setSubclassData(typename Bitfield::Type Value) { Instruction::setSubclassData<Bitfield>(Value); }
/// The synchronization scope ID of this fence instruction. Not quite enough /// room in SubClassData for everything, so synchronization scope ID gets its /// own field. SyncScope::ID SSID; };
//===----------------------------------------------------------------------===// // AtomicCmpXchgInst Class //===----------------------------------------------------------------------===//
/// An instruction that atomically checks whether a /// specified value is in a memory location, and, if it is, stores a new value /// there. The value returned by this instruction is a pair containing the /// original value as first element, and an i1 indicating success (true) or /// failure (false) as second element. /// class AtomicCmpXchgInst : public Instruction { void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, SyncScope::ID SSID);
template <unsigned Offset> using AtomicOrderingBitfieldElement = typename Bitfield::Element<AtomicOrdering, Offset, 3, AtomicOrdering::LAST>;
protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
AtomicCmpXchgInst *cloneImpl() const;
public: AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, SyncScope::ID SSID, InsertPosition InsertBefore = nullptr);
// allocate space for exactly three operands void *operator new(size_t S) { return User::operator new(S, 3); } void operator delete(void *Ptr) { User::operator delete(Ptr); }
using VolatileField = BoolBitfieldElementT<0>; using WeakField = BoolBitfieldElementT<VolatileField::NextBit>; using SuccessOrderingField = AtomicOrderingBitfieldElementT<WeakField::NextBit>; using FailureOrderingField = AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>; using AlignmentField = AlignmentBitfieldElementT<FailureOrderingField::NextBit>; static_assert( Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField, FailureOrderingField, AlignmentField>(), "Bitfields must be contiguous");
/// Return the alignment of the memory that is being allocated by the /// instruction. Align getAlign() const { return Align(1ULL << getSubclassData<AlignmentField>()); }
void setAlignment(Align Align) { setSubclassData<AlignmentField>(Log2(Align)); }
/// Return true if this is a cmpxchg from a volatile memory /// location. /// bool isVolatile() const { return getSubclassData<VolatileField>(); }
/// Specify whether this is a volatile cmpxchg. /// void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
/// Return true if this cmpxchg may spuriously fail. bool isWeak() const { return getSubclassData<WeakField>(); }
void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
/// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
static bool isValidSuccessOrdering(AtomicOrdering Ordering) { return Ordering != AtomicOrdering::NotAtomic && Ordering != AtomicOrdering::Unordered; }
static bool isValidFailureOrdering(AtomicOrdering Ordering) { return Ordering != AtomicOrdering::NotAtomic && Ordering != AtomicOrdering::Unordered && Ordering != AtomicOrdering::AcquireRelease && Ordering != AtomicOrdering::Release; }
/// Returns the success ordering constraint of this cmpxchg instruction. AtomicOrdering getSuccessOrdering() const { return getSubclassData<SuccessOrderingField>(); }
/// Sets the success ordering constraint of this cmpxchg instruction. void setSuccessOrdering(AtomicOrdering Ordering) { assert(isValidSuccessOrdering(Ordering) && "invalid CmpXchg success ordering"); setSubclassData<SuccessOrderingField>(Ordering); }
/// Returns the failure ordering constraint of this cmpxchg instruction. AtomicOrdering getFailureOrdering() const { return getSubclassData<FailureOrderingField>(); }
/// Sets the failure ordering constraint of this cmpxchg instruction. void setFailureOrdering(AtomicOrdering Ordering) { assert(isValidFailureOrdering(Ordering) && "invalid CmpXchg failure ordering"); setSubclassData<FailureOrderingField>(Ordering); }
/// Returns a single ordering which is at least as strong as both the /// success and failure orderings for this cmpxchg. AtomicOrdering getMergedOrdering() const { if (getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) return AtomicOrdering::SequentiallyConsistent; if (getFailureOrdering() == AtomicOrdering::Acquire) { if (getSuccessOrdering() == AtomicOrdering::Monotonic) return AtomicOrdering::Acquire; if (getSuccessOrdering() == AtomicOrdering::Release) return AtomicOrdering::AcquireRelease; } return getSuccessOrdering(); }
/// Returns the synchronization scope ID of this cmpxchg instruction. SyncScope::ID getSyncScopeID() const { return SSID; }
/// Sets the synchronization scope ID of this cmpxchg instruction. void setSyncScopeID(SyncScope::ID SSID) { this->SSID = SSID; }
Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; }
Value *getCompareOperand() { return getOperand(1); } const Value *getCompareOperand() const { return getOperand(1); }
Value *getNewValOperand() { return getOperand(2); } const Value *getNewValOperand() const { return getOperand(2); }
/// Returns the address space of the pointer operand. unsigned getPointerAddressSpace() const { return getPointerOperand()->getType()->getPointerAddressSpace(); }
/// Returns the strongest permitted ordering on failure, given the /// desired ordering on success. /// /// If the comparison in a cmpxchg operation fails, there is no atomic store /// so release semantics cannot be provided. So this function drops explicit /// Release requests from the AtomicOrdering. A SequentiallyConsistent /// operation would remain SequentiallyConsistent. static AtomicOrdering getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) { switch (SuccessOrdering) { default: llvm_unreachable("invalid cmpxchg success ordering"); case AtomicOrdering::Release: case AtomicOrdering::Monotonic: return AtomicOrdering::Monotonic; case AtomicOrdering::AcquireRelease: case AtomicOrdering::Acquire: return AtomicOrdering::Acquire; case AtomicOrdering::SequentiallyConsistent: return AtomicOrdering::SequentiallyConsistent; } }
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::AtomicCmpXchg; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); }
private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. template <typename Bitfield> void setSubclassData(typename Bitfield::Type Value) { Instruction::setSubclassData<Bitfield>(Value); }
/// The synchronization scope ID of this cmpxchg instruction. Not quite /// enough room in SubClassData for everything, so synchronization scope ID /// gets its own field. SyncScope::ID SSID; };
template <> struct OperandTraits<AtomicCmpXchgInst> : public FixedNumOperandTraits<AtomicCmpXchgInst, 3> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)
//===----------------------------------------------------------------------===// // AtomicRMWInst Class //===----------------------------------------------------------------------===//
/// an instruction that atomically reads a memory location, /// combines it with another value, and then stores the result back. Returns /// the old value. /// class AtomicRMWInst : public Instruction { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
AtomicRMWInst *cloneImpl() const;
public: /// This enumeration lists the possible modifications atomicrmw can make. In /// the descriptions, 'p' is the pointer to the instruction's memory location, /// 'old' is the initial value of *p, and 'v' is the other value passed to the /// instruction. These instructions always return 'old'. enum BinOp : unsigned { /// *p = v Xchg, /// *p = old + v Add, /// *p = old - v Sub, /// *p = old & v And, /// *p = ~(old & v) Nand, /// *p = old | v Or, /// *p = old ^ v Xor, /// *p = old >signed v ? old : v Max, /// *p = old <signed v ? old : v Min, /// *p = old >unsigned v ? old : v UMax, /// *p = old <unsigned v ? old : v UMin,
/// *p = old + v FAdd,
/// *p = old - v FSub,
/// *p = maxnum(old, v) /// \p maxnum matches the behavior of \p llvm.maxnum.*. FMax,
/// *p = minnum(old, v) /// \p minnum matches the behavior of \p llvm.minnum.*. FMin,
/// Increment one up to a maximum value. /// *p = (old u>= v) ? 0 : (old + 1) UIncWrap,
/// Decrement one until a minimum value or zero. /// *p = ((old == 0) || (old u> v)) ? v : (old - 1) UDecWrap,
FIRST_BINOP = Xchg, LAST_BINOP = UDecWrap, BAD_BINOP };
private: template <unsigned Offset> using AtomicOrderingBitfieldElement = typename Bitfield::Element<AtomicOrdering, Offset, 3, AtomicOrdering::LAST>;
template <unsigned Offset> using BinOpBitfieldElement = typename Bitfield::Element<BinOp, Offset, 5, BinOp::LAST_BINOP>;
public: AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, AtomicOrdering Ordering, SyncScope::ID SSID, InsertPosition InsertBefore = nullptr);
// allocate space for exactly two operands void *operator new(size_t S) { return User::operator new(S, 2); } void operator delete(void *Ptr) { User::operator delete(Ptr); }
using VolatileField = BoolBitfieldElementT<0>; using AtomicOrderingField = AtomicOrderingBitfieldElementT<VolatileField::NextBit>; using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>; using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>; static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField, OperationField, AlignmentField>(), "Bitfields must be contiguous");
BinOp getOperation() const { return getSubclassData<OperationField>(); }
static StringRef getOperationName(BinOp Op);
static bool isFPOperation(BinOp Op) { switch (Op) { case AtomicRMWInst::FAdd: case AtomicRMWInst::FSub: case AtomicRMWInst::FMax: case AtomicRMWInst::FMin: return true; default: return false; } }
void setOperation(BinOp Operation) { setSubclassData<OperationField>(Operation); }
/// Return the alignment of the memory that is being allocated by the /// instruction. Align getAlign() const { return Align(1ULL << getSubclassData<AlignmentField>()); }
void setAlignment(Align Align) { setSubclassData<AlignmentField>(Log2(Align)); }
/// Return true if this is a RMW on a volatile memory location. /// bool isVolatile() const { return getSubclassData<VolatileField>(); }
/// Specify whether this is a volatile RMW or not. /// void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
/// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// Returns the ordering constraint of this rmw instruction. AtomicOrdering getOrdering() const { return getSubclassData<AtomicOrderingField>(); }
/// Sets the ordering constraint of this rmw instruction. void setOrdering(AtomicOrdering Ordering) { assert(Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic."); assert(Ordering != AtomicOrdering::Unordered && "atomicrmw instructions cannot be unordered."); setSubclassData<AtomicOrderingField>(Ordering); }
/// Returns the synchronization scope ID of this rmw instruction. SyncScope::ID getSyncScopeID() const { return SSID; }
/// Sets the synchronization scope ID of this rmw instruction. void setSyncScopeID(SyncScope::ID SSID) { this->SSID = SSID; }
Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; }
Value *getValOperand() { return getOperand(1); } const Value *getValOperand() const { return getOperand(1); }
/// Returns the address space of the pointer operand. unsigned getPointerAddressSpace() const { return getPointerOperand()->getType()->getPointerAddressSpace(); }
bool isFloatingPointOperation() const { return isFPOperation(getOperation()); }
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::AtomicRMW; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); }
private: void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align, AtomicOrdering Ordering, SyncScope::ID SSID);
// Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. template <typename Bitfield> void setSubclassData(typename Bitfield::Type Value) { Instruction::setSubclassData<Bitfield>(Value); }
/// The synchronization scope ID of this rmw instruction. Not quite enough /// room in SubClassData for everything, so synchronization scope ID gets its /// own field. SyncScope::ID SSID; };
template <> struct OperandTraits<AtomicRMWInst> : public FixedNumOperandTraits<AtomicRMWInst,2> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)
//===----------------------------------------------------------------------===// // GetElementPtrInst Class //===----------------------------------------------------------------------===//
// checkGEPType - Simple wrapper function to give a better assertion failure // message on bad indexes for a gep instruction. // inline Type *checkGEPType(Type *Ty) { assert(Ty && "Invalid GetElementPtrInst indices for type!"); return Ty; }
/// an instruction for type-safe pointer arithmetic to /// access elements of arrays and structs /// class GetElementPtrInst : public Instruction { Type *SourceElementType; Type *ResultElementType;
GetElementPtrInst(const GetElementPtrInst &GEPI);
/// Constructors - Create a getelementptr instruction with a base pointer an /// list of indices. The first and second ctor can optionally insert before an /// existing instruction, the third appends the new instruction to the /// specified BasicBlock. inline GetElementPtrInst(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList, unsigned Values, const Twine &NameStr, InsertPosition InsertBefore);
void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
GetElementPtrInst *cloneImpl() const;
public: static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr) { unsigned Values = 1 + unsigned(IdxList.size()); assert(PointeeType && "Must specify element type"); return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, NameStr, InsertBefore); }
static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList, GEPNoWrapFlags NW, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr) { GetElementPtrInst *GEP = Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore); GEP->setNoWrapFlags(NW); return GEP; }
/// Create an "inbounds" getelementptr. See the documentation for the /// "inbounds" flag in LangRef.html for details. static GetElementPtrInst * CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr) { return Create(PointeeType, Ptr, IdxList, GEPNoWrapFlags::inBounds(), NameStr, InsertBefore); }
/// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
Type *getSourceElementType() const { return SourceElementType; }
void setSourceElementType(Type *Ty) { SourceElementType = Ty; } void setResultElementType(Type *Ty) { ResultElementType = Ty; }
Type *getResultElementType() const { return ResultElementType; }
/// Returns the address space of this instruction's pointer type. unsigned getAddressSpace() const { // Note that this is always the same as the pointer operand's address space // and that is cheaper to compute, so cheat here. return getPointerAddressSpace(); }
/// Returns the result type of a getelementptr with the given source /// element type and indexes. /// /// Null is returned if the indices are invalid for the specified /// source element type. static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList); static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList); static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
/// Return the type of the element at the given index of an indexable /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})". /// /// Returns null if the type can't be indexed, or the given index is not /// legal for the given type. static Type *getTypeAtIndex(Type *Ty, Value *Idx); static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
inline op_iterator idx_begin() { return op_begin()+1; } inline const_op_iterator idx_begin() const { return op_begin()+1; } inline op_iterator idx_end() { return op_end(); } inline const_op_iterator idx_end() const { return op_end(); }
inline iterator_range<op_iterator> indices() { return make_range(idx_begin(), idx_end()); }
inline iterator_range<const_op_iterator> indices() const { return make_range(idx_begin(), idx_end()); }
Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; // get index for modifying correct operand. }
/// Method to return the pointer operand as a /// PointerType. Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
/// Returns the address space of the pointer operand. unsigned getPointerAddressSpace() const { return getPointerOperandType()->getPointerAddressSpace(); }
/// Returns the pointer type returned by the GEP /// instruction, which may be a vector of pointers. static Type *getGEPReturnType(Value *Ptr, ArrayRef<Value *> IdxList) { // Vector GEP Type *Ty = Ptr->getType(); if (Ty->isVectorTy()) return Ty;
for (Value *Index : IdxList) if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) { ElementCount EltCount = IndexVTy->getElementCount(); return VectorType::get(Ty, EltCount); } // Scalar GEP return Ty; }
unsigned getNumIndices() const { // Note: always non-negative return getNumOperands() - 1; }
bool hasIndices() const { return getNumOperands() > 1; }
/// Return true if all of the indices of this GEP are /// zeros. If so, the result pointer and the first operand have the same /// value, just potentially different types. bool hasAllZeroIndices() const;
/// Return true if all of the indices of this GEP are /// constant integers. If so, the result pointer and the first operand have /// a constant offset between them. bool hasAllConstantIndices() const;
/// Set nowrap flags for GEP instruction. void setNoWrapFlags(GEPNoWrapFlags NW);
/// Set or clear the inbounds flag on this GEP instruction. /// See LangRef.html for the meaning of inbounds on a getelementptr. /// TODO: Remove this method in favor of setNoWrapFlags(). void setIsInBounds(bool b = true);
/// Get the nowrap flags for the GEP instruction. GEPNoWrapFlags getNoWrapFlags() const;
/// Determine whether the GEP has the inbounds flag. bool isInBounds() const;
/// Determine whether the GEP has the nusw flag. bool hasNoUnsignedSignedWrap() const;
/// Determine whether the GEP has the nuw flag. bool hasNoUnsignedWrap() const;
/// Accumulate the constant address offset of this GEP if possible. /// /// This routine accepts an APInt into which it will accumulate the constant /// offset of this GEP if the GEP is in fact constant. If the GEP is not /// all-constant, it returns false and the value of the offset APInt is /// undefined (it is *not* preserved!). The APInt passed into this routine /// must be at least as wide as the IntPtr type for the address space of /// the base GEP pointer. bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const; bool collectOffset(const DataLayout &DL, unsigned BitWidth, MapVector<Value *, APInt> &VariableOffsets, APInt &ConstantOffset) const; // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::GetElementPtr); } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
template <> struct OperandTraits<GetElementPtrInst> : public VariadicOperandTraits<GetElementPtrInst, 1> { };
GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList, unsigned Values, const Twine &NameStr, InsertPosition InsertBefore) : Instruction(getGEPReturnType(Ptr, IdxList), GetElementPtr, OperandTraits<GetElementPtrInst>::op_end(this) - Values, Values, InsertBefore), SourceElementType(PointeeType), ResultElementType(getIndexedType(PointeeType, IdxList)) { init(Ptr, IdxList, NameStr); }
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)
//===----------------------------------------------------------------------===// // ICmpInst Class //===----------------------------------------------------------------------===//
/// This instruction compares its operands according to the predicate given /// to the constructor. It only operates on integers or pointers. The operands /// must be identical types. /// Represent an integer comparison operator. class ICmpInst: public CmpInst { void AssertOK() { assert(isIntPredicate() && "Invalid ICmp predicate value"); assert(getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to ICmp instruction are not of the same type!"); // Check that the operands are the right type assert((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"); }
protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
/// Clone an identical ICmpInst ICmpInst *cloneImpl() const;
public: /// Constructor with insertion semantics. ICmpInst(InsertPosition InsertBefore, ///< Where to insert Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const Twine &NameStr = "" ///< Name of the instruction ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::ICmp, pred, LHS, RHS, NameStr, InsertBefore) { #ifndef NDEBUG AssertOK(); #endif }
/// Constructor with no-insertion semantics ICmpInst( Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const Twine &NameStr = "" ///< Name of the instruction ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::ICmp, pred, LHS, RHS, NameStr) { #ifndef NDEBUG AssertOK(); #endif }
/// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc. /// @returns the predicate that would be the result if the operand were /// regarded as signed. /// Return the signed version of the predicate Predicate getSignedPredicate() const { return getSignedPredicate(getPredicate()); }
/// This is a static version that you can use without an instruction. /// Return the signed version of the predicate. static Predicate getSignedPredicate(Predicate pred);
/// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc. /// @returns the predicate that would be the result if the operand were /// regarded as unsigned. /// Return the unsigned version of the predicate Predicate getUnsignedPredicate() const { return getUnsignedPredicate(getPredicate()); }
/// This is a static version that you can use without an instruction. /// Return the unsigned version of the predicate. static Predicate getUnsignedPredicate(Predicate pred);
/// Return true if this predicate is either EQ or NE. This also /// tests for commutativity. static bool isEquality(Predicate P) { return P == ICMP_EQ || P == ICMP_NE; }
/// Return true if this predicate is either EQ or NE. This also /// tests for commutativity. bool isEquality() const { return isEquality(getPredicate()); }
/// @returns true if the predicate of this ICmpInst is commutative /// Determine if this relation is commutative. bool isCommutative() const { return isEquality(); }
/// Return true if the predicate is relational (not EQ or NE). /// bool isRelational() const { return !isEquality(); }
/// Return true if the predicate is relational (not EQ or NE). /// static bool isRelational(Predicate P) { return !isEquality(P); }
/// Return true if the predicate is SGT or UGT. /// static bool isGT(Predicate P) { return P == ICMP_SGT || P == ICMP_UGT; }
/// Return true if the predicate is SLT or ULT. /// static bool isLT(Predicate P) { return P == ICMP_SLT || P == ICMP_ULT; }
/// Return true if the predicate is SGE or UGE. /// static bool isGE(Predicate P) { return P == ICMP_SGE || P == ICMP_UGE; }
/// Return true if the predicate is SLE or ULE. /// static bool isLE(Predicate P) { return P == ICMP_SLE || P == ICMP_ULE; }
/// Returns the sequence of all ICmp predicates. /// static auto predicates() { return ICmpPredicates(); }
/// Exchange the two operands to this instruction in such a way that it does /// not modify the semantics of the instruction. The predicate value may be /// changed to retain the same result if the predicate is order dependent /// (e.g. ult). /// Swap operands and adjust predicate. void swapOperands() { setPredicate(getSwappedPredicate()); Op<0>().swap(Op<1>()); }
/// Return result of `LHS Pred RHS` comparison. static bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred);
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ICmp; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===// // FCmpInst Class //===----------------------------------------------------------------------===//
/// This instruction compares its operands according to the predicate given /// to the constructor. It only operates on floating point values or packed /// vectors of floating point values. The operands must be identical types. /// Represents a floating point comparison operator. class FCmpInst: public CmpInst { void AssertOK() { assert(isFPPredicate() && "Invalid FCmp predicate value"); assert(getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to FCmp instruction are not of the same type!"); // Check that the operands are the right type assert(getOperand(0)->getType()->isFPOrFPVectorTy() && "Invalid operand types for FCmp instruction"); }
protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
/// Clone an identical FCmpInst FCmpInst *cloneImpl() const;
public: /// Constructor with insertion semantics. FCmpInst(InsertPosition InsertBefore, ///< Where to insert Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const Twine &NameStr = "" ///< Name of the instruction ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, pred, LHS, RHS, NameStr, InsertBefore) { AssertOK(); }
/// Constructor with no-insertion semantics FCmpInst(Predicate Pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const Twine &NameStr = "", ///< Name of the instruction Instruction *FlagsSource = nullptr) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS, RHS, NameStr, nullptr, FlagsSource) { AssertOK(); }
/// @returns true if the predicate of this instruction is EQ or NE. /// Determine if this is an equality predicate. static bool isEquality(Predicate Pred) { return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ || Pred == FCMP_UNE; }
/// @returns true if the predicate of this instruction is EQ or NE. /// Determine if this is an equality predicate. bool isEquality() const { return isEquality(getPredicate()); }
/// @returns true if the predicate of this instruction is commutative. /// Determine if this is a commutative predicate. bool isCommutative() const { return isEquality() || getPredicate() == FCMP_FALSE || getPredicate() == FCMP_TRUE || getPredicate() == FCMP_ORD || getPredicate() == FCMP_UNO; }
/// @returns true if the predicate is relational (not EQ or NE). /// Determine if this a relational predicate. bool isRelational() const { return !isEquality(); }
/// Exchange the two operands to this instruction in such a way that it does /// not modify the semantics of the instruction. The predicate value may be /// changed to retain the same result if the predicate is order dependent /// (e.g. ult). /// Swap operands and adjust predicate. void swapOperands() { setPredicate(getSwappedPredicate()); Op<0>().swap(Op<1>()); }
/// Returns the sequence of all FCmp predicates. /// static auto predicates() { return FCmpPredicates(); }
/// Return result of `LHS Pred RHS` comparison. static bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred);
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::FCmp; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===// /// This class represents a function call, abstracting a target /// machine's calling convention. This class uses low bit of the SubClassData /// field to indicate whether or not this is a tail call. The rest of the bits /// hold the calling convention of the call. /// class CallInst : public CallBase { CallInst(const CallInst &CI);
/// Construct a CallInst from a range of arguments inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, InsertPosition InsertBefore);
inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, const Twine &NameStr, InsertPosition InsertBefore) : CallInst(Ty, Func, Args, std::nullopt, NameStr, InsertBefore) {}
explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr, InsertPosition InsertBefore);
void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
/// Compute the number of operands to allocate. static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { // We need one operand for the called function, plus the input operand // counts provided. return 1 + NumArgs + NumBundleInputs; }
protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
CallInst *cloneImpl() const;
public: static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr) { return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore); }
static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, const Twine &NameStr, InsertPosition InsertBefore = nullptr) { return new (ComputeNumOperands(Args.size())) CallInst(Ty, Func, Args, std::nullopt, NameStr, InsertBefore); }
static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, ArrayRef<OperandBundleDef> Bundles = std::nullopt, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr) { const int NumOperands = ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
return new (NumOperands, DescriptorBytes) CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore); }
static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr) { return Create(Func.getFunctionType(), Func.getCallee(), NameStr, InsertBefore); }
static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, ArrayRef<OperandBundleDef> Bundles = std::nullopt, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr) { return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, NameStr, InsertBefore); }
static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, const Twine &NameStr, InsertPosition InsertBefore = nullptr) { return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, InsertBefore); }
/// Create a clone of \p CI with a different set of operand bundles and /// insert it before \p InsertBefore. /// /// The returned call instruction is identical \p CI in every way except that /// the operand bundles for the new instruction are set to the operand bundles /// in \p Bundles. static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles, InsertPosition InsertPt = nullptr);
// Note that 'musttail' implies 'tail'. enum TailCallKind : unsigned { TCK_None = 0, TCK_Tail = 1, TCK_MustTail = 2, TCK_NoTail = 3, TCK_LAST = TCK_NoTail };
using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>; static_assert( Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(), "Bitfields must be contiguous");
TailCallKind getTailCallKind() const { return getSubclassData<TailCallKindField>(); }
bool isTailCall() const { TailCallKind Kind = getTailCallKind(); return Kind == TCK_Tail || Kind == TCK_MustTail; }
bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
void setTailCallKind(TailCallKind TCK) { setSubclassData<TailCallKindField>(TCK); }
void setTailCall(bool IsTc = true) { setTailCallKind(IsTc ? TCK_Tail : TCK_None); }
/// Return true if the call can return twice bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); } void setCanReturnTwice() { addFnAttr(Attribute::ReturnsTwice); }
/// Return true if the call is for a noreturn trap intrinsic. bool isNonContinuableTrap() const { switch (getIntrinsicID()) { case Intrinsic::trap: case Intrinsic::ubsantrap: return !hasFnAttr("trap-func-name"); default: return false; } }
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Call; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); }
/// Updates profile metadata by scaling it by \p S / \p T. void updateProfWeight(uint64_t S, uint64_t T);
private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. template <typename Bitfield> void setSubclassData(typename Bitfield::Type Value) { Instruction::setSubclassData<Bitfield>(Value); } };
CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, InsertPosition InsertBefore) : CallBase(Ty->getReturnType(), Instruction::Call, OperandTraits<CallBase>::op_end(this) - (Args.size() + CountBundleInputs(Bundles) + 1), unsigned(Args.size() + CountBundleInputs(Bundles) + 1), InsertBefore) { init(Ty, Func, Args, Bundles, NameStr); }
//===----------------------------------------------------------------------===// // SelectInst Class //===----------------------------------------------------------------------===//
/// This class represents the LLVM 'select' instruction. /// class SelectInst : public Instruction {
SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, InsertPosition InsertBefore) : Instruction(S1->getType(), Instruction::Select, &Op<0>(), 3, InsertBefore) { init(C, S1, S2); setName(NameStr); }
void init(Value *C, Value *S1, Value *S2) { assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select"); Op<0>() = C; Op<1>() = S1; Op<2>() = S2; }
protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
SelectInst *cloneImpl() const;
public: static SelectInst *Create(Value *C, Value *S1, Value *S2, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr, Instruction *MDFrom = nullptr) { SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore); if (MDFrom) Sel->copyMetadata(*MDFrom); return Sel; }
const Value *getCondition() const { return Op<0>(); } const Value *getTrueValue() const { return Op<1>(); } const Value *getFalseValue() const { return Op<2>(); } Value *getCondition() { return Op<0>(); } Value *getTrueValue() { return Op<1>(); } Value *getFalseValue() { return Op<2>(); }
void setCondition(Value *V) { Op<0>() = V; } void setTrueValue(Value *V) { Op<1>() = V; } void setFalseValue(Value *V) { Op<2>() = V; }
/// Swap the true and false values of the select instruction. /// This doesn't swap prof metadata. void swapValues() { Op<1>().swap(Op<2>()); }
/// Return a string if the specified operands are invalid /// for a select operation, otherwise return null. static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
/// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
OtherOps getOpcode() const { return static_cast<OtherOps>(Instruction::getOpcode()); }
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Select; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
template <> struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)
//===----------------------------------------------------------------------===// // VAArgInst Class //===----------------------------------------------------------------------===//
/// This class represents the va_arg llvm instruction, which returns /// an argument of the specified type given a va_list and increments that list /// class VAArgInst : public UnaryInstruction { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
VAArgInst *cloneImpl() const;
public: VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr) : UnaryInstruction(Ty, VAArg, List, InsertBefore) { setName(NameStr); }
Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; }
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == VAArg; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===// // ExtractElementInst Class //===----------------------------------------------------------------------===//
/// This instruction extracts a single (scalar) /// element from a VectorType value /// class ExtractElementInst : public Instruction { ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr);
protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
ExtractElementInst *cloneImpl() const;
public: static ExtractElementInst *Create(Value *Vec, Value *Idx, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr) { return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore); }
/// Return true if an extractelement instruction can be /// formed with the specified operands. static bool isValidOperands(const Value *Vec, const Value *Idx);
Value *getVectorOperand() { return Op<0>(); } Value *getIndexOperand() { return Op<1>(); } const Value *getVectorOperand() const { return Op<0>(); } const Value *getIndexOperand() const { return Op<1>(); }
VectorType *getVectorOperandType() const { return cast<VectorType>(getVectorOperand()->getType()); }
/// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ExtractElement; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
template <> struct OperandTraits<ExtractElementInst> : public FixedNumOperandTraits<ExtractElementInst, 2> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)
//===----------------------------------------------------------------------===// // InsertElementInst Class //===----------------------------------------------------------------------===//
/// This instruction inserts a single (scalar) /// element into a VectorType value /// class InsertElementInst : public Instruction { InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr);
protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
InsertElementInst *cloneImpl() const;
public: static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr) { return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore); }
/// Return true if an insertelement instruction can be /// formed with the specified operands. static bool isValidOperands(const Value *Vec, const Value *NewElt, const Value *Idx);
/// Overload to return most specific vector type. /// VectorType *getType() const { return cast<VectorType>(Instruction::getType()); }
/// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::InsertElement; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
template <> struct OperandTraits<InsertElementInst> : public FixedNumOperandTraits<InsertElementInst, 3> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)
//===----------------------------------------------------------------------===// // ShuffleVectorInst Class //===----------------------------------------------------------------------===//
constexpr int PoisonMaskElem = -1;
/// This instruction constructs a fixed permutation of two /// input vectors. /// /// For each element of the result vector, the shuffle mask selects an element /// from one of the input vectors to copy to the result. Non-negative elements /// in the mask represent an index into the concatenated pair of input vectors. /// PoisonMaskElem (-1) specifies that the result element is poison. /// /// For scalable vectors, all the elements of the mask must be 0 or -1. This /// requirement may be relaxed in the future. class ShuffleVectorInst : public Instruction { SmallVector<int, 4> ShuffleMask; Constant *ShuffleMaskForBitcode;
protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
ShuffleVectorInst *cloneImpl() const;
public: ShuffleVectorInst(Value *V1, Value *Mask, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr); ShuffleVectorInst(Value *V1, ArrayRef<int> Mask, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr); ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr); ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr);
void *operator new(size_t S) { return User::operator new(S, 2); } void operator delete(void *Ptr) { return User::operator delete(Ptr); }
/// Swap the operands and adjust the mask to preserve the semantics /// of the instruction. void commute();
/// Return true if a shufflevector instruction can be /// formed with the specified operands. static bool isValidOperands(const Value *V1, const Value *V2, const Value *Mask); static bool isValidOperands(const Value *V1, const Value *V2, ArrayRef<int> Mask);
/// Overload to return most specific vector type. /// VectorType *getType() const { return cast<VectorType>(Instruction::getType()); }
/// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// Return the shuffle mask value of this instruction for the given element /// index. Return PoisonMaskElem if the element is undef. int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
/// Convert the input shuffle mask operand to a vector of integers. Undefined /// elements of the mask are returned as PoisonMaskElem. static void getShuffleMask(const Constant *Mask, SmallVectorImpl<int> &Result);
/// Return the mask for this instruction as a vector of integers. Undefined /// elements of the mask are returned as PoisonMaskElem. void getShuffleMask(SmallVectorImpl<int> &Result) const { Result.assign(ShuffleMask.begin(), ShuffleMask.end()); }
/// Return the mask for this instruction, for use in bitcode. /// /// TODO: This is temporary until we decide a new bitcode encoding for /// shufflevector. Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask, Type *ResultTy);
void setShuffleMask(ArrayRef<int> Mask);
ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
/// Return true if this shuffle returns a vector with a different number of /// elements than its source vectors. /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3> /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5> bool changesLength() const { unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType()) ->getElementCount() .getKnownMinValue(); unsigned NumMaskElts = ShuffleMask.size(); return NumSourceElts != NumMaskElts; }
/// Return true if this shuffle returns a vector with a greater number of /// elements than its source vectors. /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3> bool increasesLength() const { unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType()) ->getElementCount() .getKnownMinValue(); unsigned NumMaskElts = ShuffleMask.size(); return NumSourceElts < NumMaskElts; }
/// Return true if this shuffle mask chooses elements from exactly one source /// vector. /// Example: <7,5,undef,7> /// This assumes that vector operands (of length \p NumSrcElts) are the same /// length as the mask. static bool isSingleSourceMask(ArrayRef<int> Mask, int NumSrcElts); static bool isSingleSourceMask(const Constant *Mask, int NumSrcElts) { assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); SmallVector<int, 16> MaskAsInts; getShuffleMask(Mask, MaskAsInts); return isSingleSourceMask(MaskAsInts, NumSrcElts); }
/// Return true if this shuffle chooses elements from exactly one source /// vector without changing the length of that vector. /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3> /// TODO: Optionally allow length-changing shuffles. bool isSingleSource() const { return !changesLength() && isSingleSourceMask(ShuffleMask, ShuffleMask.size()); }
/// Return true if this shuffle mask chooses elements from exactly one source /// vector without lane crossings. A shuffle using this mask is not /// necessarily a no-op because it may change the number of elements from its /// input vectors or it may provide demanded bits knowledge via undef lanes. /// Example: <undef,undef,2,3> static bool isIdentityMask(ArrayRef<int> Mask, int NumSrcElts); static bool isIdentityMask(const Constant *Mask, int NumSrcElts) { assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
// Not possible to express a shuffle mask for a scalable vector for this // case. if (isa<ScalableVectorType>(Mask->getType())) return false;
SmallVector<int, 16> MaskAsInts; getShuffleMask(Mask, MaskAsInts); return isIdentityMask(MaskAsInts, NumSrcElts); }
/// Return true if this shuffle chooses elements from exactly one source /// vector without lane crossings and does not change the number of elements /// from its input vectors. /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef> bool isIdentity() const { // Not possible to express a shuffle mask for a scalable vector for this // case. if (isa<ScalableVectorType>(getType())) return false;
return !changesLength() && isIdentityMask(ShuffleMask, ShuffleMask.size()); }
/// Return true if this shuffle lengthens exactly one source vector with /// undefs in the high elements. bool isIdentityWithPadding() const;
/// Return true if this shuffle extracts the first N elements of exactly one /// source vector. bool isIdentityWithExtract() const;
/// Return true if this shuffle concatenates its 2 source vectors. This /// returns false if either input is undefined. In that case, the shuffle is /// is better classified as an identity with padding operation. bool isConcat() const;
/// Return true if this shuffle mask chooses elements from its source vectors /// without lane crossings. A shuffle using this mask would be /// equivalent to a vector select with a constant condition operand. /// Example: <4,1,6,undef> /// This returns false if the mask does not choose from both input vectors. /// In that case, the shuffle is better classified as an identity shuffle. /// This assumes that vector operands are the same length as the mask /// (a length-changing shuffle can never be equivalent to a vector select). static bool isSelectMask(ArrayRef<int> Mask, int NumSrcElts); static bool isSelectMask(const Constant *Mask, int NumSrcElts) { assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); SmallVector<int, 16> MaskAsInts; getShuffleMask(Mask, MaskAsInts); return isSelectMask(MaskAsInts, NumSrcElts); }
/// Return true if this shuffle chooses elements from its source vectors /// without lane crossings and all operands have the same number of elements. /// In other words, this shuffle is equivalent to a vector select with a /// constant condition operand. /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3> /// This returns false if the mask does not choose from both input vectors. /// In that case, the shuffle is better classified as an identity shuffle. /// TODO: Optionally allow length-changing shuffles. bool isSelect() const { return !changesLength() && isSelectMask(ShuffleMask, ShuffleMask.size()); }
/// Return true if this shuffle mask swaps the order of elements from exactly /// one source vector. /// Example: <7,6,undef,4> /// This assumes that vector operands (of length \p NumSrcElts) are the same /// length as the mask. static bool isReverseMask(ArrayRef<int> Mask, int NumSrcElts); static bool isReverseMask(const Constant *Mask, int NumSrcElts) { assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); SmallVector<int, 16> MaskAsInts; getShuffleMask(Mask, MaskAsInts); return isReverseMask(MaskAsInts, NumSrcElts); }
/// Return true if this shuffle swaps the order of elements from exactly /// one source vector. /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef> /// TODO: Optionally allow length-changing shuffles. bool isReverse() const { return !changesLength() && isReverseMask(ShuffleMask, ShuffleMask.size()); }
/// Return true if this shuffle mask chooses all elements with the same value /// as the first element of exactly one source vector. /// Example: <4,undef,undef,4> /// This assumes that vector operands (of length \p NumSrcElts) are the same /// length as the mask. static bool isZeroEltSplatMask(ArrayRef<int> Mask, int NumSrcElts); static bool isZeroEltSplatMask(const Constant *Mask, int NumSrcElts) { assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); SmallVector<int, 16> MaskAsInts; getShuffleMask(Mask, MaskAsInts); return isZeroEltSplatMask(MaskAsInts, NumSrcElts); }
/// Return true if all elements of this shuffle are the same value as the /// first element of exactly one source vector without changing the length /// of that vector. /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0> /// TODO: Optionally allow length-changing shuffles. /// TODO: Optionally allow splats from other elements. bool isZeroEltSplat() const { return !changesLength() && isZeroEltSplatMask(ShuffleMask, ShuffleMask.size()); }
/// Return true if this shuffle mask is a transpose mask. /// Transpose vector masks transpose a 2xn matrix. They read corresponding /// even- or odd-numbered vector elements from two n-dimensional source /// vectors and write each result into consecutive elements of an /// n-dimensional destination vector. Two shuffles are necessary to complete /// the transpose, one for the even elements and another for the odd elements. /// This description closely follows how the TRN1 and TRN2 AArch64 /// instructions operate. /// /// For example, a simple 2x2 matrix can be transposed with: /// /// ; Original matrix /// m0 = < a, b > /// m1 = < c, d > /// /// ; Transposed matrix /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 > /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 > /// /// For matrices having greater than n columns, the resulting nx2 transposed /// matrix is stored in two result vectors such that one vector contains /// interleaved elements from all the even-numbered rows and the other vector /// contains interleaved elements from all the odd-numbered rows. For example, /// a 2x4 matrix can be transposed with: /// /// ; Original matrix /// m0 = < a, b, c, d > /// m1 = < e, f, g, h > /// /// ; Transposed matrix /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 > /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 > static bool isTransposeMask(ArrayRef<int> Mask, int NumSrcElts); static bool isTransposeMask(const Constant *Mask, int NumSrcElts) { assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); SmallVector<int, 16> MaskAsInts; getShuffleMask(Mask, MaskAsInts); return isTransposeMask(MaskAsInts, NumSrcElts); }
/// Return true if this shuffle transposes the elements of its inputs without /// changing the length of the vectors. This operation may also be known as a /// merge or interleave. See the description for isTransposeMask() for the /// exact specification. /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6> bool isTranspose() const { return !changesLength() && isTransposeMask(ShuffleMask, ShuffleMask.size()); }
/// Return true if this shuffle mask is a splice mask, concatenating the two /// inputs together and then extracts an original width vector starting from /// the splice index. /// Example: shufflevector <4 x n> A, <4 x n> B, <1,2,3,4> /// This assumes that vector operands (of length \p NumSrcElts) are the same /// length as the mask. static bool isSpliceMask(ArrayRef<int> Mask, int NumSrcElts, int &Index); static bool isSpliceMask(const Constant *Mask, int NumSrcElts, int &Index) { assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); SmallVector<int, 16> MaskAsInts; getShuffleMask(Mask, MaskAsInts); return isSpliceMask(MaskAsInts, NumSrcElts, Index); }
/// Return true if this shuffle splices two inputs without changing the length /// of the vectors. This operation concatenates the two inputs together and /// then extracts an original width vector starting from the splice index. /// Example: shufflevector <4 x n> A, <4 x n> B, <1,2,3,4> bool isSplice(int &Index) const { return !changesLength() && isSpliceMask(ShuffleMask, ShuffleMask.size(), Index); }
/// Return true if this shuffle mask is an extract subvector mask. /// A valid extract subvector mask returns a smaller vector from a single /// source operand. The base extraction index is returned as well. static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts, int &Index); static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts, int &Index) { assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); // Not possible to express a shuffle mask for a scalable vector for this // case. if (isa<ScalableVectorType>(Mask->getType())) return false; SmallVector<int, 16> MaskAsInts; getShuffleMask(Mask, MaskAsInts); return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index); }
/// Return true if this shuffle mask is an extract subvector mask. bool isExtractSubvectorMask(int &Index) const { // Not possible to express a shuffle mask for a scalable vector for this // case. if (isa<ScalableVectorType>(getType())) return false;
int NumSrcElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index); }
/// Return true if this shuffle mask is an insert subvector mask. /// A valid insert subvector mask inserts the lowest elements of a second /// source operand into an in-place first source operand. /// Both the sub vector width and the insertion index is returned. static bool isInsertSubvectorMask(ArrayRef<int> Mask, int NumSrcElts, int &NumSubElts, int &Index); static bool isInsertSubvectorMask(const Constant *Mask, int NumSrcElts, int &NumSubElts, int &Index) { assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); // Not possible to express a shuffle mask for a scalable vector for this // case. if (isa<ScalableVectorType>(Mask->getType())) return false; SmallVector<int, 16> MaskAsInts; getShuffleMask(Mask, MaskAsInts); return isInsertSubvectorMask(MaskAsInts, NumSrcElts, NumSubElts, Index); }
/// Return true if this shuffle mask is an insert subvector mask. bool isInsertSubvectorMask(int &NumSubElts, int &Index) const { // Not possible to express a shuffle mask for a scalable vector for this // case. if (isa<ScalableVectorType>(getType())) return false;
int NumSrcElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); return isInsertSubvectorMask(ShuffleMask, NumSrcElts, NumSubElts, Index); }
/// Return true if this shuffle mask replicates each of the \p VF elements /// in a vector \p ReplicationFactor times. /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is: /// <0,0,0,1,1,1,2,2,2,3,3,3> static bool isReplicationMask(ArrayRef<int> Mask, int &ReplicationFactor, int &VF); static bool isReplicationMask(const Constant *Mask, int &ReplicationFactor, int &VF) { assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); // Not possible to express a shuffle mask for a scalable vector for this // case. if (isa<ScalableVectorType>(Mask->getType())) return false; SmallVector<int, 16> MaskAsInts; getShuffleMask(Mask, MaskAsInts); return isReplicationMask(MaskAsInts, ReplicationFactor, VF); }
/// Return true if this shuffle mask is a replication mask. bool isReplicationMask(int &ReplicationFactor, int &VF) const;
/// Return true if this shuffle mask represents "clustered" mask of size VF, /// i.e. each index between [0..VF) is used exactly once in each submask of /// size VF. /// For example, the mask for \p VF=4 is: /// 0, 1, 2, 3, 3, 2, 0, 1 - "clustered", because each submask of size 4 /// (0,1,2,3 and 3,2,0,1) uses indices [0..VF) exactly one time. /// 0, 1, 2, 3, 3, 3, 1, 0 - not "clustered", because /// element 3 is used twice in the second submask /// (3,3,1,0) and index 2 is not used at all. static bool isOneUseSingleSourceMask(ArrayRef<int> Mask, int VF);
/// Return true if this shuffle mask is a one-use-single-source("clustered") /// mask. bool isOneUseSingleSourceMask(int VF) const;
/// Change values in a shuffle permute mask assuming the two vector operands /// of length InVecNumElts have swapped position. static void commuteShuffleMask(MutableArrayRef<int> Mask, unsigned InVecNumElts) { for (int &Idx : Mask) { if (Idx == -1) continue; Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts; assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 && "shufflevector mask index out of range"); } }
/// Return if this shuffle interleaves its two input vectors together. bool isInterleave(unsigned Factor);
/// Return true if the mask interleaves one or more input vectors together. /// /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...> /// E.g. For a Factor of 2 (LaneLen=4): /// <0, 4, 1, 5, 2, 6, 3, 7> /// E.g. For a Factor of 3 (LaneLen=4): /// <4, 0, 9, 5, 1, 10, 6, 2, 11, 7, 3, 12> /// E.g. For a Factor of 4 (LaneLen=2): /// <0, 2, 6, 4, 1, 3, 7, 5> /// /// NumInputElts is the total number of elements in the input vectors. /// /// StartIndexes are the first indexes of each vector being interleaved, /// substituting any indexes that were undef /// E.g. <4, -1, 2, 5, 1, 3> (Factor=3): StartIndexes=<4, 0, 2> /// /// Note that this does not check if the input vectors are consecutive: /// It will return true for masks such as /// <0, 4, 6, 1, 5, 7> (Factor=3, LaneLen=2) static bool isInterleaveMask(ArrayRef<int> Mask, unsigned Factor, unsigned NumInputElts, SmallVectorImpl<unsigned> &StartIndexes); static bool isInterleaveMask(ArrayRef<int> Mask, unsigned Factor, unsigned NumInputElts) { SmallVector<unsigned, 8> StartIndexes; return isInterleaveMask(Mask, Factor, NumInputElts, StartIndexes); }
/// Check if the mask is a DE-interleave mask of the given factor /// \p Factor like: /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor> static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor, unsigned &Index); static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor) { unsigned Unused; return isDeInterleaveMaskOfFactor(Mask, Factor, Unused); }
/// Checks if the shuffle is a bit rotation of the first operand across /// multiple subelements, e.g: /// /// shuffle <8 x i8> %a, <8 x i8> poison, <8 x i32> <1, 0, 3, 2, 5, 4, 7, 6> /// /// could be expressed as /// /// rotl <4 x i16> %a, 8 /// /// If it can be expressed as a rotation, returns the number of subelements to /// group by in NumSubElts and the number of bits to rotate left in RotateAmt. static bool isBitRotateMask(ArrayRef<int> Mask, unsigned EltSizeInBits, unsigned MinSubElts, unsigned MaxSubElts, unsigned &NumSubElts, unsigned &RotateAmt);
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ShuffleVector; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
template <> struct OperandTraits<ShuffleVectorInst> : public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)
//===----------------------------------------------------------------------===// // ExtractValueInst Class //===----------------------------------------------------------------------===//
/// This instruction extracts a struct member or array /// element value from an aggregate value. /// class ExtractValueInst : public UnaryInstruction { SmallVector<unsigned, 4> Indices;
ExtractValueInst(const ExtractValueInst &EVI);
/// Constructors - Create a extractvalue instruction with a base aggregate /// value and a list of indices. The first and second ctor can optionally /// insert before an existing instruction, the third appends the new /// instruction to the specified BasicBlock. inline ExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, const Twine &NameStr, InsertPosition InsertBefore);
void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
ExtractValueInst *cloneImpl() const;
public: static ExtractValueInst *Create(Value *Agg, ArrayRef<unsigned> Idxs, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr) { return new ExtractValueInst(Agg, Idxs, NameStr, InsertBefore); }
/// Returns the type of the element that would be extracted /// with an extractvalue instruction with the specified parameters. /// /// Null is returned if the indices are invalid for the specified type. static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
using idx_iterator = const unsigned*;
inline idx_iterator idx_begin() const { return Indices.begin(); } inline idx_iterator idx_end() const { return Indices.end(); } inline iterator_range<idx_iterator> indices() const { return make_range(idx_begin(), idx_end()); }
Value *getAggregateOperand() { return getOperand(0); } const Value *getAggregateOperand() const { return getOperand(0); } static unsigned getAggregateOperandIndex() { return 0U; // get index for modifying correct operand }
ArrayRef<unsigned> getIndices() const { return Indices; }
unsigned getNumIndices() const { return (unsigned)Indices.size(); }
bool hasIndices() const { return true; }
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ExtractValue; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
ExtractValueInst::ExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, const Twine &NameStr, InsertPosition InsertBefore) : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), ExtractValue, Agg, InsertBefore) { init(Idxs, NameStr); }
//===----------------------------------------------------------------------===// // InsertValueInst Class //===----------------------------------------------------------------------===//
/// This instruction inserts a struct field of array element /// value into an aggregate value. /// class InsertValueInst : public Instruction { SmallVector<unsigned, 4> Indices;
InsertValueInst(const InsertValueInst &IVI);
/// Constructors - Create a insertvalue instruction with a base aggregate /// value, a value to insert, and a list of indices. The first and second ctor /// can optionally insert before an existing instruction, the third appends /// the new instruction to the specified BasicBlock. inline InsertValueInst(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const Twine &NameStr, InsertPosition InsertBefore);
/// Constructors - These three constructors are convenience methods because /// one and two index insertvalue instructions are so common. InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr);
void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const Twine &NameStr);
protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
InsertValueInst *cloneImpl() const;
public: // allocate space for exactly two operands void *operator new(size_t S) { return User::operator new(S, 2); } void operator delete(void *Ptr) { User::operator delete(Ptr); }
static InsertValueInst *Create(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr) { return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore); }
/// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
using idx_iterator = const unsigned*;
inline idx_iterator idx_begin() const { return Indices.begin(); } inline idx_iterator idx_end() const { return Indices.end(); } inline iterator_range<idx_iterator> indices() const { return make_range(idx_begin(), idx_end()); }
Value *getAggregateOperand() { return getOperand(0); } const Value *getAggregateOperand() const { return getOperand(0); } static unsigned getAggregateOperandIndex() { return 0U; // get index for modifying correct operand }
Value *getInsertedValueOperand() { return getOperand(1); } const Value *getInsertedValueOperand() const { return getOperand(1); } static unsigned getInsertedValueOperandIndex() { return 1U; // get index for modifying correct operand }
ArrayRef<unsigned> getIndices() const { return Indices; }
unsigned getNumIndices() const { return (unsigned)Indices.size(); }
bool hasIndices() const { return true; }
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::InsertValue; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
template <> struct OperandTraits<InsertValueInst> : public FixedNumOperandTraits<InsertValueInst, 2> { };
InsertValueInst::InsertValueInst(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const Twine &NameStr, InsertPosition InsertBefore) : Instruction(Agg->getType(), InsertValue, OperandTraits<InsertValueInst>::op_begin(this), 2, InsertBefore) { init(Agg, Val, Idxs, NameStr); }
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)
//===----------------------------------------------------------------------===// // PHINode Class //===----------------------------------------------------------------------===//
// PHINode - The PHINode class is used to represent the magical mystical PHI // node, that can not exist in nature, but can be synthesized in a computer // scientist's overactive imagination. // class PHINode : public Instruction { /// The number of operands actually allocated. NumOperands is /// the number actually in use. unsigned ReservedSpace;
PHINode(const PHINode &PN);
explicit PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr) : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore), ReservedSpace(NumReservedValues) { assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!"); setName(NameStr); allocHungoffUses(ReservedSpace); }
protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
PHINode *cloneImpl() const;
// allocHungoffUses - this is more complicated than the generic // User::allocHungoffUses, because we have to allocate Uses for the incoming // values and pointers to the incoming blocks, all in one allocation. void allocHungoffUses(unsigned N) { User::allocHungoffUses(N, /* IsPhi */ true); }
public: /// Constructors - NumReservedValues is a hint for the number of incoming /// edges that this phi node will have (use 0 if you really have no idea). static PHINode *Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr) { return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore); }
/// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// Block iterator interface. This provides access to the list of incoming // basic blocks, which parallels the list of incoming values. // Please note that we are not providing non-const iterators for blocks to // force all updates go through an interface function.
using block_iterator = BasicBlock **; using const_block_iterator = BasicBlock * const *;
const_block_iterator block_begin() const { return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace); }
const_block_iterator block_end() const { return block_begin() + getNumOperands(); }
iterator_range<const_block_iterator> blocks() const { return make_range(block_begin(), block_end()); }
op_range incoming_values() { return operands(); }
const_op_range incoming_values() const { return operands(); }
/// Return the number of incoming edges /// unsigned getNumIncomingValues() const { return getNumOperands(); }
/// Return incoming value number x /// Value *getIncomingValue(unsigned i) const { return getOperand(i); } void setIncomingValue(unsigned i, Value *V) { assert(V && "PHI node got a null value!"); assert(getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"); setOperand(i, V); }
static unsigned getOperandNumForIncomingValue(unsigned i) { return i; }
static unsigned getIncomingValueNumForOperand(unsigned i) { return i; }
/// Return incoming basic block number @p i. /// BasicBlock *getIncomingBlock(unsigned i) const { return block_begin()[i]; }
/// Return incoming basic block corresponding /// to an operand of the PHI. /// BasicBlock *getIncomingBlock(const Use &U) const { assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?"); return getIncomingBlock(unsigned(&U - op_begin())); }
/// Return incoming basic block corresponding /// to value use iterator. /// BasicBlock *getIncomingBlock(Value::const_user_iterator I) const { return getIncomingBlock(I.getUse()); }
void setIncomingBlock(unsigned i, BasicBlock *BB) { const_cast<block_iterator>(block_begin())[i] = BB; }
/// Copies the basic blocks from \p BBRange to the incoming basic block list /// of this PHINode, starting at \p ToIdx. void copyIncomingBlocks(iterator_range<const_block_iterator> BBRange, uint32_t ToIdx = 0) { copy(BBRange, const_cast<block_iterator>(block_begin()) + ToIdx); }
/// Replace every incoming basic block \p Old to basic block \p New. void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) { assert(New && Old && "PHI node got a null basic block!"); for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) if (getIncomingBlock(Op) == Old) setIncomingBlock(Op, New); }
/// Add an incoming value to the end of the PHI list /// void addIncoming(Value *V, BasicBlock *BB) { if (getNumOperands() == ReservedSpace) growOperands(); // Get more space! // Initialize some new operands. setNumHungOffUseOperands(getNumOperands() + 1); setIncomingValue(getNumOperands() - 1, V); setIncomingBlock(getNumOperands() - 1, BB); }
/// Remove an incoming value. This is useful if a /// predecessor basic block is deleted. The value removed is returned. /// /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty /// is true), the PHI node is destroyed and any uses of it are replaced with /// dummy values. The only time there should be zero incoming values to a PHI /// node is when the block is dead, so this strategy is sound. /// Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) { int Idx = getBasicBlockIndex(BB); assert(Idx >= 0 && "Invalid basic block argument to remove!"); return removeIncomingValue(Idx, DeletePHIIfEmpty); }
/// Remove all incoming values for which the predicate returns true. /// The predicate accepts the incoming value index. void removeIncomingValueIf(function_ref<bool(unsigned)> Predicate, bool DeletePHIIfEmpty = true);
/// Return the first index of the specified basic /// block in the value list for this PHI. Returns -1 if no instance. /// int getBasicBlockIndex(const BasicBlock *BB) const { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (block_begin()[i] == BB) return i; return -1; }
Value *getIncomingValueForBlock(const BasicBlock *BB) const { int Idx = getBasicBlockIndex(BB); assert(Idx >= 0 && "Invalid basic block argument!"); return getIncomingValue(Idx); }
/// Set every incoming value(s) for block \p BB to \p V. void setIncomingValueForBlock(const BasicBlock *BB, Value *V) { assert(BB && "PHI node got a null basic block!"); bool Found = false; for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) if (getIncomingBlock(Op) == BB) { Found = true; setIncomingValue(Op, V); } (void)Found; assert(Found && "Invalid basic block argument to set!"); }
/// If the specified PHI node always merges together the /// same value, return the value, otherwise return null. Value *hasConstantValue() const;
/// Whether the specified PHI node always merges /// together the same value, assuming undefs are equal to a unique /// non-undef value. bool hasConstantOrUndefValue() const;
/// If the PHI node is complete which means all of its parent's predecessors /// have incoming value in this PHI, return true, otherwise return false. bool isComplete() const { return llvm::all_of(predecessors(getParent()), [this](const BasicBlock *Pred) { return getBasicBlockIndex(Pred) >= 0; }); }
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::PHI; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); }
private: void growOperands(); };
template <> struct OperandTraits<PHINode> : public HungoffOperandTraits<2> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)
//===----------------------------------------------------------------------===// // LandingPadInst Class //===----------------------------------------------------------------------===//
//===--------------------------------------------------------------------------- /// The landingpad instruction holds all of the information /// necessary to generate correct exception handling. The landingpad instruction /// cannot be moved from the top of a landing pad block, which itself is /// accessible only from the 'unwind' edge of an invoke. This uses the /// SubclassData field in Value to store whether or not the landingpad is a /// cleanup. /// class LandingPadInst : public Instruction { using CleanupField = BoolBitfieldElementT<0>;
/// The number of operands actually allocated. NumOperands is /// the number actually in use. unsigned ReservedSpace;
LandingPadInst(const LandingPadInst &LP);
public: enum ClauseType { Catch, Filter };
private: explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, const Twine &NameStr, InsertPosition InsertBefore);
// Allocate space for exactly zero operands. void *operator new(size_t S) { return User::operator new(S); }
void growOperands(unsigned Size); void init(unsigned NumReservedValues, const Twine &NameStr);
protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
LandingPadInst *cloneImpl() const;
public: void operator delete(void *Ptr) { User::operator delete(Ptr); }
/// Constructors - NumReservedClauses is a hint for the number of incoming /// clauses that this landingpad will have (use 0 if you really have no idea). static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr);
/// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// Return 'true' if this landingpad instruction is a /// cleanup. I.e., it should be run when unwinding even if its landing pad /// doesn't catch the exception. bool isCleanup() const { return getSubclassData<CleanupField>(); }
/// Indicate that this landingpad instruction is a cleanup. void setCleanup(bool V) { setSubclassData<CleanupField>(V); }
/// Add a catch or filter clause to the landing pad. void addClause(Constant *ClauseVal);
/// Get the value of the clause at index Idx. Use isCatch/isFilter to /// determine what type of clause this is. Constant *getClause(unsigned Idx) const { return cast<Constant>(getOperandList()[Idx]); }
/// Return 'true' if the clause and index Idx is a catch clause. bool isCatch(unsigned Idx) const { return !isa<ArrayType>(getOperandList()[Idx]->getType()); }
/// Return 'true' if the clause and index Idx is a filter clause. bool isFilter(unsigned Idx) const { return isa<ArrayType>(getOperandList()[Idx]->getType()); }
/// Get the number of clauses for this landing pad. unsigned getNumClauses() const { return getNumOperands(); }
/// Grow the size of the operand list to accommodate the new /// number of clauses. void reserveClauses(unsigned Size) { growOperands(Size); }
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::LandingPad; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
template <> struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)
//===----------------------------------------------------------------------===// // ReturnInst Class //===----------------------------------------------------------------------===//
//===--------------------------------------------------------------------------- /// Return a value (possibly void), from a function. Execution /// does not continue in this function any longer. /// class ReturnInst : public Instruction { ReturnInst(const ReturnInst &RI);
private: // ReturnInst constructors: // ReturnInst() - 'ret void' instruction // ReturnInst( null) - 'ret void' instruction // ReturnInst(Value* X) - 'ret X' instruction // ReturnInst(null, Iterator It) - 'ret void' instruction, insert before I // ReturnInst(Value* X, Iterator It) - 'ret X' instruction, insert before I // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B // // NOTE: If the Value* passed is of type void then the constructor behaves as // if it was passed NULL. explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr, InsertPosition InsertBefore = nullptr);
protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
ReturnInst *cloneImpl() const;
public: static ReturnInst *Create(LLVMContext &C, Value *retVal = nullptr, InsertPosition InsertBefore = nullptr) { return new(!!retVal) ReturnInst(C, retVal, InsertBefore); }
static ReturnInst *Create(LLVMContext &C, BasicBlock *InsertAtEnd) { return new (0) ReturnInst(C, nullptr, InsertAtEnd); }
/// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// Convenience accessor. Returns null if there is no return value. Value *getReturnValue() const { return getNumOperands() != 0 ? getOperand(0) : nullptr; }
unsigned getNumSuccessors() const { return 0; }
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Ret); } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); }
private: BasicBlock *getSuccessor(unsigned idx) const { llvm_unreachable("ReturnInst has no successors!"); }
void setSuccessor(unsigned idx, BasicBlock *B) { llvm_unreachable("ReturnInst has no successors!"); } };
template <> struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)
//===----------------------------------------------------------------------===// // BranchInst Class //===----------------------------------------------------------------------===//
//===--------------------------------------------------------------------------- /// Conditional or Unconditional Branch instruction. /// class BranchInst : public Instruction { /// Ops list - Branches are strange. The operands are ordered: /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because /// they don't have to check for cond/uncond branchness. These are mostly /// accessed relative from op_end(). BranchInst(const BranchInst &BI); // BranchInst constructors (where {B, T, F} are blocks, and C is a condition): // BranchInst(BB *B) - 'br B' // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F' // BranchInst(BB* B, Iter It) - 'br B' insert before I // BranchInst(BB* T, BB *F, Value *C, Iter It) - 'br C, T, F', insert before I // BranchInst(BB* B, Inst *I) - 'br B' insert before I // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I // BranchInst(BB* B, BB *I) - 'br B' insert at end // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end explicit BranchInst(BasicBlock *IfTrue, InsertPosition InsertBefore = nullptr); BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, InsertPosition InsertBefore = nullptr);
void AssertOK();
protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
BranchInst *cloneImpl() const;
public: /// Iterator type that casts an operand to a basic block. /// /// This only makes sense because the successors are stored as adjacent /// operands for branch instructions. struct succ_op_iterator : iterator_adaptor_base<succ_op_iterator, value_op_iterator, std::random_access_iterator_tag, BasicBlock *, ptrdiff_t, BasicBlock *, BasicBlock *> { explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
BasicBlock *operator*() const { return cast<BasicBlock>(*I); } BasicBlock *operator->() const { return operator*(); } };
/// The const version of `succ_op_iterator`. struct const_succ_op_iterator : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator, std::random_access_iterator_tag, const BasicBlock *, ptrdiff_t, const BasicBlock *, const BasicBlock *> { explicit const_succ_op_iterator(const_value_op_iterator I) : iterator_adaptor_base(I) {}
const BasicBlock *operator*() const { return cast<BasicBlock>(*I); } const BasicBlock *operator->() const { return operator*(); } };
static BranchInst *Create(BasicBlock *IfTrue, InsertPosition InsertBefore = nullptr) { return new(1) BranchInst(IfTrue, InsertBefore); }
static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, InsertPosition InsertBefore = nullptr) { return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore); }
/// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
bool isUnconditional() const { return getNumOperands() == 1; } bool isConditional() const { return getNumOperands() == 3; }
Value *getCondition() const { assert(isConditional() && "Cannot get condition of an uncond branch!"); return Op<-3>(); }
void setCondition(Value *V) { assert(isConditional() && "Cannot set condition of unconditional branch!"); Op<-3>() = V; }
unsigned getNumSuccessors() const { return 1+isConditional(); }
BasicBlock *getSuccessor(unsigned i) const { assert(i < getNumSuccessors() && "Successor # out of range for Branch!"); return cast_or_null<BasicBlock>((&Op<-1>() - i)->get()); }
void setSuccessor(unsigned idx, BasicBlock *NewSucc) { assert(idx < getNumSuccessors() && "Successor # out of range for Branch!"); *(&Op<-1>() - idx) = NewSucc; }
/// Swap the successors of this branch instruction. /// /// Swaps the successors of the branch instruction. This also swaps any /// branch weight metadata associated with the instruction so that it /// continues to map correctly to each operand. void swapSuccessors();
iterator_range<succ_op_iterator> successors() { return make_range( succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)), succ_op_iterator(value_op_end())); }
iterator_range<const_succ_op_iterator> successors() const { return make_range(const_succ_op_iterator( std::next(value_op_begin(), isConditional() ? 1 : 0)), const_succ_op_iterator(value_op_end())); }
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Br); } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
template <> struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)
//===----------------------------------------------------------------------===// // SwitchInst Class //===----------------------------------------------------------------------===//
//===--------------------------------------------------------------------------- /// Multiway switch /// class SwitchInst : public Instruction { unsigned ReservedSpace;
// Operand[0] = Value to switch on // Operand[1] = Default basic block destination // Operand[2n ] = Value to match // Operand[2n+1] = BasicBlock to go to on match SwitchInst(const SwitchInst &SI);
/// Create a new switch instruction, specifying a value to switch on and a /// default destination. The number of additional cases can be specified here /// to make memory allocation more efficient. This constructor can also /// auto-insert before another instruction. SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, InsertPosition InsertBefore);
// allocate space for exactly zero operands void *operator new(size_t S) { return User::operator new(S); }
void init(Value *Value, BasicBlock *Default, unsigned NumReserved); void growOperands();
protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
SwitchInst *cloneImpl() const;
public: void operator delete(void *Ptr) { User::operator delete(Ptr); }
// -2 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
template <typename CaseHandleT> class CaseIteratorImpl;
/// A handle to a particular switch case. It exposes a convenient interface /// to both the case value and the successor block. /// /// We define this as a template and instantiate it to form both a const and /// non-const handle. template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT> class CaseHandleImpl { // Directly befriend both const and non-const iterators. friend class SwitchInst::CaseIteratorImpl< CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
protected: // Expose the switch type we're parameterized with to the iterator. using SwitchInstType = SwitchInstT;
SwitchInstT *SI; ptrdiff_t Index;
CaseHandleImpl() = default; CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
public: /// Resolves case value for current case. ConstantIntT *getCaseValue() const { assert((unsigned)Index < SI->getNumCases() && "Index out the number of cases."); return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2)); }
/// Resolves successor for current case. BasicBlockT *getCaseSuccessor() const { assert(((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && "Index out the number of cases."); return SI->getSuccessor(getSuccessorIndex()); }
/// Returns number of current case. unsigned getCaseIndex() const { return Index; }
/// Returns successor index for current case successor. unsigned getSuccessorIndex() const { assert(((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && "Index out the number of cases."); return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0; }
bool operator==(const CaseHandleImpl &RHS) const { assert(SI == RHS.SI && "Incompatible operators."); return Index == RHS.Index; } };
using ConstCaseHandle = CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
class CaseHandle : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> { friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
public: CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
/// Sets the new value for current case. void setValue(ConstantInt *V) const { assert((unsigned)Index < SI->getNumCases() && "Index out the number of cases."); SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V)); }
/// Sets the new successor for current case. void setSuccessor(BasicBlock *S) const { SI->setSuccessor(getSuccessorIndex(), S); } };
template <typename CaseHandleT> class CaseIteratorImpl : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>, std::random_access_iterator_tag, const CaseHandleT> { using SwitchInstT = typename CaseHandleT::SwitchInstType;
CaseHandleT Case;
public: /// Default constructed iterator is in an invalid state until assigned to /// a case for a particular switch. CaseIteratorImpl() = default;
/// Initializes case iterator for given SwitchInst and for given /// case number. CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
/// Initializes case iterator for given SwitchInst and for given /// successor index. static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI, unsigned SuccessorIndex) { assert(SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!"); return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1) : CaseIteratorImpl(SI, DefaultPseudoIndex); }
/// Support converting to the const variant. This will be a no-op for const /// variant. operator CaseIteratorImpl<ConstCaseHandle>() const { return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index); }
CaseIteratorImpl &operator+=(ptrdiff_t N) { // Check index correctness after addition. // Note: Index == getNumCases() means end(). assert(Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && "Case.Index out the number of cases."); Case.Index += N; return *this; } CaseIteratorImpl &operator-=(ptrdiff_t N) { // Check index correctness after subtraction. // Note: Case.Index == getNumCases() means end(). assert(Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && "Case.Index out the number of cases."); Case.Index -= N; return *this; } ptrdiff_t operator-(const CaseIteratorImpl &RHS) const { assert(Case.SI == RHS.Case.SI && "Incompatible operators."); return Case.Index - RHS.Case.Index; } bool operator==(const CaseIteratorImpl &RHS) const { return Case == RHS.Case; } bool operator<(const CaseIteratorImpl &RHS) const { assert(Case.SI == RHS.Case.SI && "Incompatible operators."); return Case.Index < RHS.Case.Index; } const CaseHandleT &operator*() const { return Case; } };
using CaseIt = CaseIteratorImpl<CaseHandle>; using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
static SwitchInst *Create(Value *Value, BasicBlock *Default, unsigned NumCases, InsertPosition InsertBefore = nullptr) { return new SwitchInst(Value, Default, NumCases, InsertBefore); }
/// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// Accessor Methods for Switch stmt Value *getCondition() const { return getOperand(0); } void setCondition(Value *V) { setOperand(0, V); }
BasicBlock *getDefaultDest() const { return cast<BasicBlock>(getOperand(1)); }
/// Returns true if the default branch must result in immediate undefined /// behavior, false otherwise. bool defaultDestUndefined() const { return isa<UnreachableInst>(getDefaultDest()->getFirstNonPHIOrDbg()); }
void setDefaultDest(BasicBlock *DefaultCase) { setOperand(1, reinterpret_cast<Value*>(DefaultCase)); }
/// Return the number of 'cases' in this switch instruction, excluding the /// default case. unsigned getNumCases() const { return getNumOperands()/2 - 1; }
/// Returns a read/write iterator that points to the first case in the /// SwitchInst. CaseIt case_begin() { return CaseIt(this, 0); }
/// Returns a read-only iterator that points to the first case in the /// SwitchInst. ConstCaseIt case_begin() const { return ConstCaseIt(this, 0); }
/// Returns a read/write iterator that points one past the last in the /// SwitchInst. CaseIt case_end() { return CaseIt(this, getNumCases()); }
/// Returns a read-only iterator that points one past the last in the /// SwitchInst. ConstCaseIt case_end() const { return ConstCaseIt(this, getNumCases()); }
/// Iteration adapter for range-for loops. iterator_range<CaseIt> cases() { return make_range(case_begin(), case_end()); }
/// Constant iteration adapter for range-for loops. iterator_range<ConstCaseIt> cases() const { return make_range(case_begin(), case_end()); }
/// Returns an iterator that points to the default case. /// Note: this iterator allows to resolve successor only. Attempt /// to resolve case value causes an assertion. /// Also note, that increment and decrement also causes an assertion and /// makes iterator invalid. CaseIt case_default() { return CaseIt(this, DefaultPseudoIndex); } ConstCaseIt case_default() const { return ConstCaseIt(this, DefaultPseudoIndex); }
/// Search all of the case values for the specified constant. If it is /// explicitly handled, return the case iterator of it, otherwise return /// default case iterator to indicate that it is handled by the default /// handler. CaseIt findCaseValue(const ConstantInt *C) { return CaseIt( this, const_cast<const SwitchInst *>(this)->findCaseValue(C)->getCaseIndex()); } ConstCaseIt findCaseValue(const ConstantInt *C) const { ConstCaseIt I = llvm::find_if(cases(), [C](const ConstCaseHandle &Case) { return Case.getCaseValue() == C; }); if (I != case_end()) return I;
return case_default(); }
/// Finds the unique case value for a given successor. Returns null if the /// successor is not found, not unique, or is the default case. ConstantInt *findCaseDest(BasicBlock *BB) { if (BB == getDefaultDest()) return nullptr;
ConstantInt *CI = nullptr; for (auto Case : cases()) { if (Case.getCaseSuccessor() != BB) continue;
if (CI) return nullptr; // Multiple cases lead to BB.
CI = Case.getCaseValue(); }
return CI; }
/// Add an entry to the switch instruction. /// Note: /// This action invalidates case_end(). Old case_end() iterator will /// point to the added case. void addCase(ConstantInt *OnVal, BasicBlock *Dest);
/// This method removes the specified case and its successor from the switch /// instruction. Note that this operation may reorder the remaining cases at /// index idx and above. /// Note: /// This action invalidates iterators for all cases following the one removed, /// including the case_end() iterator. It returns an iterator for the next /// case. CaseIt removeCase(CaseIt I);
unsigned getNumSuccessors() const { return getNumOperands()/2; } BasicBlock *getSuccessor(unsigned idx) const { assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!"); return cast<BasicBlock>(getOperand(idx*2+1)); } void setSuccessor(unsigned idx, BasicBlock *NewSucc) { assert(idx < getNumSuccessors() && "Successor # out of range for switch!"); setOperand(idx * 2 + 1, NewSucc); }
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Switch; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
/// A wrapper class to simplify modification of SwitchInst cases along with /// their prof branch_weights metadata. class SwitchInstProfUpdateWrapper { SwitchInst &SI; std::optional<SmallVector<uint32_t, 8>> Weights; bool Changed = false;
protected: MDNode *buildProfBranchWeightsMD();
void init();
public: using CaseWeightOpt = std::optional<uint32_t>; SwitchInst *operator->() { return &SI; } SwitchInst &operator*() { return SI; } operator SwitchInst *() { return &SI; }
SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); }
~SwitchInstProfUpdateWrapper() { if (Changed) SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD()); }
/// Delegate the call to the underlying SwitchInst::removeCase() and remove /// correspondent branch weight. SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I);
/// Delegate the call to the underlying SwitchInst::addCase() and set the /// specified branch weight for the added case. void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
/// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark /// this object to not touch the underlying SwitchInst in destructor. Instruction::InstListType::iterator eraseFromParent();
void setSuccessorWeight(unsigned idx, CaseWeightOpt W); CaseWeightOpt getSuccessorWeight(unsigned idx);
static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx); };
template <> struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)
//===----------------------------------------------------------------------===// // IndirectBrInst Class //===----------------------------------------------------------------------===//
//===--------------------------------------------------------------------------- /// Indirect Branch Instruction. /// class IndirectBrInst : public Instruction { unsigned ReservedSpace;
// Operand[0] = Address to jump to // Operand[n+1] = n-th destination IndirectBrInst(const IndirectBrInst &IBI);
/// Create a new indirectbr instruction, specifying an /// Address to jump to. The number of expected destinations can be specified /// here to make memory allocation more efficient. This constructor can also /// autoinsert before another instruction. IndirectBrInst(Value *Address, unsigned NumDests, InsertPosition InsertBefore);
// allocate space for exactly zero operands void *operator new(size_t S) { return User::operator new(S); }
void init(Value *Address, unsigned NumDests); void growOperands();
protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
IndirectBrInst *cloneImpl() const;
public: void operator delete(void *Ptr) { User::operator delete(Ptr); }
/// Iterator type that casts an operand to a basic block. /// /// This only makes sense because the successors are stored as adjacent /// operands for indirectbr instructions. struct succ_op_iterator : iterator_adaptor_base<succ_op_iterator, value_op_iterator, std::random_access_iterator_tag, BasicBlock *, ptrdiff_t, BasicBlock *, BasicBlock *> { explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
BasicBlock *operator*() const { return cast<BasicBlock>(*I); } BasicBlock *operator->() const { return operator*(); } };
/// The const version of `succ_op_iterator`. struct const_succ_op_iterator : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator, std::random_access_iterator_tag, const BasicBlock *, ptrdiff_t, const BasicBlock *, const BasicBlock *> { explicit const_succ_op_iterator(const_value_op_iterator I) : iterator_adaptor_base(I) {}
const BasicBlock *operator*() const { return cast<BasicBlock>(*I); } const BasicBlock *operator->() const { return operator*(); } };
static IndirectBrInst *Create(Value *Address, unsigned NumDests, InsertPosition InsertBefore = nullptr) { return new IndirectBrInst(Address, NumDests, InsertBefore); }
/// Provide fast operand accessors. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// Accessor Methods for IndirectBrInst instruction. Value *getAddress() { return getOperand(0); } const Value *getAddress() const { return getOperand(0); } void setAddress(Value *V) { setOperand(0, V); }
/// return the number of possible destinations in this /// indirectbr instruction. unsigned getNumDestinations() const { return getNumOperands()-1; }
/// Return the specified destination. BasicBlock *getDestination(unsigned i) { return getSuccessor(i); } const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
/// Add a destination. /// void addDestination(BasicBlock *Dest);
/// This method removes the specified successor from the /// indirectbr instruction. void removeDestination(unsigned i);
unsigned getNumSuccessors() const { return getNumOperands()-1; } BasicBlock *getSuccessor(unsigned i) const { return cast<BasicBlock>(getOperand(i+1)); } void setSuccessor(unsigned i, BasicBlock *NewSucc) { setOperand(i + 1, NewSucc); }
iterator_range<succ_op_iterator> successors() { return make_range(succ_op_iterator(std::next(value_op_begin())), succ_op_iterator(value_op_end())); }
iterator_range<const_succ_op_iterator> successors() const { return make_range(const_succ_op_iterator(std::next(value_op_begin())), const_succ_op_iterator(value_op_end())); }
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::IndirectBr; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
template <> struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)
//===----------------------------------------------------------------------===// // InvokeInst Class //===----------------------------------------------------------------------===//
/// Invoke instruction. The SubclassData field is used to hold the /// calling convention of the call. /// class InvokeInst : public CallBase { /// The number of operands for this call beyond the called function, /// arguments, and operand bundles. static constexpr int NumExtraOperands = 2;
/// The index from the end of the operand array to the normal destination. static constexpr int NormalDestOpEndIdx = -3;
/// The index from the end of the operand array to the unwind destination. static constexpr int UnwindDestOpEndIdx = -2;
InvokeInst(const InvokeInst &BI);
/// Construct an InvokeInst given a range of arguments. /// /// Construct an InvokeInst from a range of arguments inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef<Value *> Args, ArrayRef<OperandBundleDef> Bundles, int NumOperands, const Twine &NameStr, InsertPosition InsertBefore);
void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef<Value *> Args, ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
/// Compute the number of operands to allocate. static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { // We need one operand for the called function, plus our extra operands and // the input operand counts provided. return 1 + NumExtraOperands + NumArgs + NumBundleInputs; }
protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
InvokeInst *cloneImpl() const;
public: static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef<Value *> Args, const Twine &NameStr, InsertPosition InsertBefore = nullptr) { int NumOperands = ComputeNumOperands(Args.size()); return new (NumOperands) InvokeInst(Ty, Func, IfNormal, IfException, Args, std::nullopt, NumOperands, NameStr, InsertBefore); }
static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef<Value *> Args, ArrayRef<OperandBundleDef> Bundles = std::nullopt, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr) { int NumOperands = ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
return new (NumOperands, DescriptorBytes) InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands, NameStr, InsertBefore); }
static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef<Value *> Args, const Twine &NameStr, InsertPosition InsertBefore = nullptr) { return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, IfException, Args, std::nullopt, NameStr, InsertBefore); }
static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef<Value *> Args, ArrayRef<OperandBundleDef> Bundles = std::nullopt, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr) { return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, IfException, Args, Bundles, NameStr, InsertBefore); }
/// Create a clone of \p II with a different set of operand bundles and /// insert it before \p InsertBefore. /// /// The returned invoke instruction is identical to \p II in every way except /// that the operand bundles for the new instruction are set to the operand /// bundles in \p Bundles. static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles, InsertPosition InsertPt = nullptr);
// get*Dest - Return the destination basic blocks... BasicBlock *getNormalDest() const { return cast<BasicBlock>(Op<NormalDestOpEndIdx>()); } BasicBlock *getUnwindDest() const { return cast<BasicBlock>(Op<UnwindDestOpEndIdx>()); } void setNormalDest(BasicBlock *B) { Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B); } void setUnwindDest(BasicBlock *B) { Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B); }
/// Get the landingpad instruction from the landing pad /// block (the unwind destination). LandingPadInst *getLandingPadInst() const;
BasicBlock *getSuccessor(unsigned i) const { assert(i < 2 && "Successor # out of range for invoke!"); return i == 0 ? getNormalDest() : getUnwindDest(); }
void setSuccessor(unsigned i, BasicBlock *NewSucc) { assert(i < 2 && "Successor # out of range for invoke!"); if (i == 0) setNormalDest(NewSucc); else setUnwindDest(NewSucc); }
unsigned getNumSuccessors() const { return 2; }
/// Updates profile metadata by scaling it by \p S / \p T. void updateProfWeight(uint64_t S, uint64_t T);
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Invoke); } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); }
private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. template <typename Bitfield> void setSubclassData(typename Bitfield::Type Value) { Instruction::setSubclassData<Bitfield>(Value); } };
InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef<Value *> Args, ArrayRef<OperandBundleDef> Bundles, int NumOperands, const Twine &NameStr, InsertPosition InsertBefore) : CallBase(Ty->getReturnType(), Instruction::Invoke, OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, InsertBefore) { init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr); }
//===----------------------------------------------------------------------===// // CallBrInst Class //===----------------------------------------------------------------------===//
/// CallBr instruction, tracking function calls that may not return control but /// instead transfer it to a third location. The SubclassData field is used to /// hold the calling convention of the call. /// class CallBrInst : public CallBase {
unsigned NumIndirectDests;
CallBrInst(const CallBrInst &BI);
/// Construct a CallBrInst given a range of arguments. /// /// Construct a CallBrInst from a range of arguments inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args, ArrayRef<OperandBundleDef> Bundles, int NumOperands, const Twine &NameStr, InsertPosition InsertBefore);
void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest, ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args, ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
/// Compute the number of operands to allocate. static int ComputeNumOperands(int NumArgs, int NumIndirectDests, int NumBundleInputs = 0) { // We need one operand for the called function, plus our extra operands and // the input operand counts provided. return 2 + NumIndirectDests + NumArgs + NumBundleInputs; }
protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
CallBrInst *cloneImpl() const;
public: static CallBrInst *Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args, const Twine &NameStr, InsertPosition InsertBefore = nullptr) { int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size()); return new (NumOperands) CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, std::nullopt, NumOperands, NameStr, InsertBefore); }
static CallBrInst * Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args, ArrayRef<OperandBundleDef> Bundles = std::nullopt, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr) { int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(), CountBundleInputs(Bundles)); unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
return new (NumOperands, DescriptorBytes) CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NumOperands, NameStr, InsertBefore); }
static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args, const Twine &NameStr, InsertPosition InsertBefore = nullptr) { return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, IndirectDests, Args, NameStr, InsertBefore); }
static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args, ArrayRef<OperandBundleDef> Bundles = std::nullopt, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr) { return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, IndirectDests, Args, Bundles, NameStr, InsertBefore); }
/// Create a clone of \p CBI with a different set of operand bundles and /// insert it before \p InsertBefore. /// /// The returned callbr instruction is identical to \p CBI in every way /// except that the operand bundles for the new instruction are set to the /// operand bundles in \p Bundles. static CallBrInst *Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> Bundles, InsertPosition InsertBefore = nullptr);
/// Return the number of callbr indirect dest labels. /// unsigned getNumIndirectDests() const { return NumIndirectDests; }
/// getIndirectDestLabel - Return the i-th indirect dest label. /// Value *getIndirectDestLabel(unsigned i) const { assert(i < getNumIndirectDests() && "Out of bounds!"); return getOperand(i + arg_size() + getNumTotalBundleOperands() + 1); }
Value *getIndirectDestLabelUse(unsigned i) const { assert(i < getNumIndirectDests() && "Out of bounds!"); return getOperandUse(i + arg_size() + getNumTotalBundleOperands() + 1); }
// Return the destination basic blocks... BasicBlock *getDefaultDest() const { return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1)); } BasicBlock *getIndirectDest(unsigned i) const { return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i)); } SmallVector<BasicBlock *, 16> getIndirectDests() const { SmallVector<BasicBlock *, 16> IndirectDests; for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i) IndirectDests.push_back(getIndirectDest(i)); return IndirectDests; } void setDefaultDest(BasicBlock *B) { *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B); } void setIndirectDest(unsigned i, BasicBlock *B) { *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B); }
BasicBlock *getSuccessor(unsigned i) const { assert(i < getNumSuccessors() + 1 && "Successor # out of range for callbr!"); return i == 0 ? getDefaultDest() : getIndirectDest(i - 1); }
void setSuccessor(unsigned i, BasicBlock *NewSucc) { assert(i < getNumIndirectDests() + 1 && "Successor # out of range for callbr!"); return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc); }
unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::CallBr); } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); }
private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. template <typename Bitfield> void setSubclassData(typename Bitfield::Type Value) { Instruction::setSubclassData<Bitfield>(Value); } };
CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args, ArrayRef<OperandBundleDef> Bundles, int NumOperands, const Twine &NameStr, InsertPosition InsertBefore) : CallBase(Ty->getReturnType(), Instruction::CallBr, OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, InsertBefore) { init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr); }
//===----------------------------------------------------------------------===// // ResumeInst Class //===----------------------------------------------------------------------===//
//===--------------------------------------------------------------------------- /// Resume the propagation of an exception. /// class ResumeInst : public Instruction { ResumeInst(const ResumeInst &RI);
explicit ResumeInst(Value *Exn, InsertPosition InsertBefore = nullptr);
protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
ResumeInst *cloneImpl() const;
public: static ResumeInst *Create(Value *Exn, InsertPosition InsertBefore = nullptr) { return new(1) ResumeInst(Exn, InsertBefore); }
/// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// Convenience accessor. Value *getValue() const { return Op<0>(); }
unsigned getNumSuccessors() const { return 0; }
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Resume; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); }
private: BasicBlock *getSuccessor(unsigned idx) const { llvm_unreachable("ResumeInst has no successors!"); }
void setSuccessor(unsigned idx, BasicBlock *NewSucc) { llvm_unreachable("ResumeInst has no successors!"); } };
template <> struct OperandTraits<ResumeInst> : public FixedNumOperandTraits<ResumeInst, 1> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)
//===----------------------------------------------------------------------===// // CatchSwitchInst Class //===----------------------------------------------------------------------===// class CatchSwitchInst : public Instruction { using UnwindDestField = BoolBitfieldElementT<0>;
/// The number of operands actually allocated. NumOperands is /// the number actually in use. unsigned ReservedSpace;
// Operand[0] = Outer scope // Operand[1] = Unwind block destination // Operand[n] = BasicBlock to go to on match CatchSwitchInst(const CatchSwitchInst &CSI);
/// Create a new switch instruction, specifying a /// default destination. The number of additional handlers can be specified /// here to make memory allocation more efficient. /// This constructor can also autoinsert before another instruction. CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumHandlers, const Twine &NameStr, InsertPosition InsertBefore);
// allocate space for exactly zero operands void *operator new(size_t S) { return User::operator new(S); }
void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved); void growOperands(unsigned Size);
protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
CatchSwitchInst *cloneImpl() const;
public: void operator delete(void *Ptr) { return User::operator delete(Ptr); }
static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumHandlers, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr) { return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr, InsertBefore); }
/// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// Accessor Methods for CatchSwitch stmt Value *getParentPad() const { return getOperand(0); } void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
// Accessor Methods for CatchSwitch stmt bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); } bool unwindsToCaller() const { return !hasUnwindDest(); } BasicBlock *getUnwindDest() const { if (hasUnwindDest()) return cast<BasicBlock>(getOperand(1)); return nullptr; } void setUnwindDest(BasicBlock *UnwindDest) { assert(UnwindDest); assert(hasUnwindDest()); setOperand(1, UnwindDest); }
/// return the number of 'handlers' in this catchswitch /// instruction, except the default handler unsigned getNumHandlers() const { if (hasUnwindDest()) return getNumOperands() - 2; return getNumOperands() - 1; }
private: static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); } static const BasicBlock *handler_helper(const Value *V) { return cast<BasicBlock>(V); }
public: using DerefFnTy = BasicBlock *(*)(Value *); using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>; using handler_range = iterator_range<handler_iterator>; using ConstDerefFnTy = const BasicBlock *(*)(const Value *); using const_handler_iterator = mapped_iterator<const_op_iterator, ConstDerefFnTy>; using const_handler_range = iterator_range<const_handler_iterator>;
/// Returns an iterator that points to the first handler in CatchSwitchInst. handler_iterator handler_begin() { op_iterator It = op_begin() + 1; if (hasUnwindDest()) ++It; return handler_iterator(It, DerefFnTy(handler_helper)); }
/// Returns an iterator that points to the first handler in the /// CatchSwitchInst. const_handler_iterator handler_begin() const { const_op_iterator It = op_begin() + 1; if (hasUnwindDest()) ++It; return const_handler_iterator(It, ConstDerefFnTy(handler_helper)); }
/// Returns a read-only iterator that points one past the last /// handler in the CatchSwitchInst. handler_iterator handler_end() { return handler_iterator(op_end(), DerefFnTy(handler_helper)); }
/// Returns an iterator that points one past the last handler in the /// CatchSwitchInst. const_handler_iterator handler_end() const { return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper)); }
/// iteration adapter for range-for loops. handler_range handlers() { return make_range(handler_begin(), handler_end()); }
/// iteration adapter for range-for loops. const_handler_range handlers() const { return make_range(handler_begin(), handler_end()); }
/// Add an entry to the switch instruction... /// Note: /// This action invalidates handler_end(). Old handler_end() iterator will /// point to the added handler. void addHandler(BasicBlock *Dest);
void removeHandler(handler_iterator HI);
unsigned getNumSuccessors() const { return getNumOperands() - 1; } BasicBlock *getSuccessor(unsigned Idx) const { assert(Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"); return cast<BasicBlock>(getOperand(Idx + 1)); } void setSuccessor(unsigned Idx, BasicBlock *NewSucc) { assert(Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"); setOperand(Idx + 1, NewSucc); }
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::CatchSwitch; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
template <> struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)
//===----------------------------------------------------------------------===// // CleanupPadInst Class //===----------------------------------------------------------------------===// class CleanupPadInst : public FuncletPadInst { private: explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args, unsigned Values, const Twine &NameStr, InsertPosition InsertBefore) : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values, NameStr, InsertBefore) {}
public: static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = std::nullopt, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr) { unsigned Values = 1 + Args.size(); return new (Values) CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore); }
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::CleanupPad; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===// // CatchPadInst Class //===----------------------------------------------------------------------===// class CatchPadInst : public FuncletPadInst { private: explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args, unsigned Values, const Twine &NameStr, InsertPosition InsertBefore) : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values, NameStr, InsertBefore) {}
public: static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr) { unsigned Values = 1 + Args.size(); return new (Values) CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore); }
/// Convenience accessors CatchSwitchInst *getCatchSwitch() const { return cast<CatchSwitchInst>(Op<-1>()); } void setCatchSwitch(Value *CatchSwitch) { assert(CatchSwitch); Op<-1>() = CatchSwitch; }
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::CatchPad; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===// // CatchReturnInst Class //===----------------------------------------------------------------------===//
class CatchReturnInst : public Instruction { CatchReturnInst(const CatchReturnInst &RI); CatchReturnInst(Value *CatchPad, BasicBlock *BB, InsertPosition InsertBefore);
void init(Value *CatchPad, BasicBlock *BB);
protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
CatchReturnInst *cloneImpl() const;
public: static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB, InsertPosition InsertBefore = nullptr) { assert(CatchPad); assert(BB); return new (2) CatchReturnInst(CatchPad, BB, InsertBefore); }
/// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// Convenience accessors. CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); } void setCatchPad(CatchPadInst *CatchPad) { assert(CatchPad); Op<0>() = CatchPad; }
BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); } void setSuccessor(BasicBlock *NewSucc) { assert(NewSucc); Op<1>() = NewSucc; } unsigned getNumSuccessors() const { return 1; }
/// Get the parentPad of this catchret's catchpad's catchswitch. /// The successor block is implicitly a member of this funclet. Value *getCatchSwitchParentPad() const { return getCatchPad()->getCatchSwitch()->getParentPad(); }
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::CatchRet); } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); }
private: BasicBlock *getSuccessor(unsigned Idx) const { assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!"); return getSuccessor(); }
void setSuccessor(unsigned Idx, BasicBlock *B) { assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!"); setSuccessor(B); } };
template <> struct OperandTraits<CatchReturnInst> : public FixedNumOperandTraits<CatchReturnInst, 2> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)
//===----------------------------------------------------------------------===// // CleanupReturnInst Class //===----------------------------------------------------------------------===//
class CleanupReturnInst : public Instruction { using UnwindDestField = BoolBitfieldElementT<0>;
private: CleanupReturnInst(const CleanupReturnInst &RI); CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values, InsertPosition InsertBefore = nullptr);
void init(Value *CleanupPad, BasicBlock *UnwindBB);
protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
CleanupReturnInst *cloneImpl() const;
public: static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB = nullptr, InsertPosition InsertBefore = nullptr) { assert(CleanupPad); unsigned Values = 1; if (UnwindBB) ++Values; return new (Values) CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore); }
/// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); } bool unwindsToCaller() const { return !hasUnwindDest(); }
/// Convenience accessor. CleanupPadInst *getCleanupPad() const { return cast<CleanupPadInst>(Op<0>()); } void setCleanupPad(CleanupPadInst *CleanupPad) { assert(CleanupPad); Op<0>() = CleanupPad; }
unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
BasicBlock *getUnwindDest() const { return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr; } void setUnwindDest(BasicBlock *NewDest) { assert(NewDest); assert(hasUnwindDest()); Op<1>() = NewDest; }
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::CleanupRet); } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); }
private: BasicBlock *getSuccessor(unsigned Idx) const { assert(Idx == 0); return getUnwindDest(); }
void setSuccessor(unsigned Idx, BasicBlock *B) { assert(Idx == 0); setUnwindDest(B); }
// Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. template <typename Bitfield> void setSubclassData(typename Bitfield::Type Value) { Instruction::setSubclassData<Bitfield>(Value); } };
template <> struct OperandTraits<CleanupReturnInst> : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)
//===----------------------------------------------------------------------===// // UnreachableInst Class //===----------------------------------------------------------------------===//
//===--------------------------------------------------------------------------- /// This function has undefined behavior. In particular, the /// presence of this instruction indicates some higher level knowledge that the /// end of the block cannot be reached. /// class UnreachableInst : public Instruction { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
UnreachableInst *cloneImpl() const;
public: explicit UnreachableInst(LLVMContext &C, InsertPosition InsertBefore = nullptr);
// allocate space for exactly zero operands void *operator new(size_t S) { return User::operator new(S, 0); } void operator delete(void *Ptr) { User::operator delete(Ptr); }
unsigned getNumSuccessors() const { return 0; }
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Unreachable; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); }
private: BasicBlock *getSuccessor(unsigned idx) const { llvm_unreachable("UnreachableInst has no successors!"); }
void setSuccessor(unsigned idx, BasicBlock *B) { llvm_unreachable("UnreachableInst has no successors!"); } };
//===----------------------------------------------------------------------===// // TruncInst Class //===----------------------------------------------------------------------===//
/// This class represents a truncation of integer types. class TruncInst : public CastInst { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
/// Clone an identical TruncInst TruncInst *cloneImpl() const;
public: enum { AnyWrap = 0, NoUnsignedWrap = (1 << 0), NoSignedWrap = (1 << 1) };
/// Constructor with insert-before-instruction semantics TruncInst(Value *S, ///< The value to be truncated Type *Ty, ///< The (smaller) type to truncate to const Twine &NameStr = "", ///< A name for the new instruction InsertPosition InsertBefore = nullptr ///< Where to insert the new instruction );
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Trunc; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); }
void setHasNoUnsignedWrap(bool B) { SubclassOptionalData = (SubclassOptionalData & ~NoUnsignedWrap) | (B * NoUnsignedWrap); } void setHasNoSignedWrap(bool B) { SubclassOptionalData = (SubclassOptionalData & ~NoSignedWrap) | (B * NoSignedWrap); }
/// Test whether this operation is known to never /// undergo unsigned overflow, aka the nuw property. bool hasNoUnsignedWrap() const { return SubclassOptionalData & NoUnsignedWrap; }
/// Test whether this operation is known to never /// undergo signed overflow, aka the nsw property. bool hasNoSignedWrap() const { return (SubclassOptionalData & NoSignedWrap) != 0; }
/// Returns the no-wrap kind of the operation. unsigned getNoWrapKind() const { unsigned NoWrapKind = 0; if (hasNoUnsignedWrap()) NoWrapKind |= NoUnsignedWrap;
if (hasNoSignedWrap()) NoWrapKind |= NoSignedWrap;
return NoWrapKind; } };
//===----------------------------------------------------------------------===// // ZExtInst Class //===----------------------------------------------------------------------===//
/// This class represents zero extension of integer types. class ZExtInst : public CastInst { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
/// Clone an identical ZExtInst ZExtInst *cloneImpl() const;
public: /// Constructor with insert-before-instruction semantics ZExtInst(Value *S, ///< The value to be zero extended Type *Ty, ///< The type to zero extend to const Twine &NameStr = "", ///< A name for the new instruction InsertPosition InsertBefore = nullptr ///< Where to insert the new instruction );
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == ZExt; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===// // SExtInst Class //===----------------------------------------------------------------------===//
/// This class represents a sign extension of integer types. class SExtInst : public CastInst { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
/// Clone an identical SExtInst SExtInst *cloneImpl() const;
public: /// Constructor with insert-before-instruction semantics SExtInst(Value *S, ///< The value to be sign extended Type *Ty, ///< The type to sign extend to const Twine &NameStr = "", ///< A name for the new instruction InsertPosition InsertBefore = nullptr ///< Where to insert the new instruction );
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == SExt; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===// // FPTruncInst Class //===----------------------------------------------------------------------===//
/// This class represents a truncation of floating point types. class FPTruncInst : public CastInst { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
/// Clone an identical FPTruncInst FPTruncInst *cloneImpl() const;
public: /// Constructor with insert-before-instruction semantics FPTruncInst(Value *S, ///< The value to be truncated Type *Ty, ///< The type to truncate to const Twine &NameStr = "", ///< A name for the new instruction InsertPosition InsertBefore = nullptr ///< Where to insert the new instruction );
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == FPTrunc; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===// // FPExtInst Class //===----------------------------------------------------------------------===//
/// This class represents an extension of floating point types. class FPExtInst : public CastInst { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
/// Clone an identical FPExtInst FPExtInst *cloneImpl() const;
public: /// Constructor with insert-before-instruction semantics FPExtInst(Value *S, ///< The value to be extended Type *Ty, ///< The type to extend to const Twine &NameStr = "", ///< A name for the new instruction InsertPosition InsertBefore = nullptr ///< Where to insert the new instruction );
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == FPExt; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===// // UIToFPInst Class //===----------------------------------------------------------------------===//
/// This class represents a cast unsigned integer to floating point. class UIToFPInst : public CastInst { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
/// Clone an identical UIToFPInst UIToFPInst *cloneImpl() const;
public: /// Constructor with insert-before-instruction semantics UIToFPInst(Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr = "", ///< A name for the new instruction InsertPosition InsertBefore = nullptr ///< Where to insert the new instruction );
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == UIToFP; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===// // SIToFPInst Class //===----------------------------------------------------------------------===//
/// This class represents a cast from signed integer to floating point. class SIToFPInst : public CastInst { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
/// Clone an identical SIToFPInst SIToFPInst *cloneImpl() const;
public: /// Constructor with insert-before-instruction semantics SIToFPInst(Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr = "", ///< A name for the new instruction InsertPosition InsertBefore = nullptr ///< Where to insert the new instruction );
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == SIToFP; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===// // FPToUIInst Class //===----------------------------------------------------------------------===//
/// This class represents a cast from floating point to unsigned integer class FPToUIInst : public CastInst { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
/// Clone an identical FPToUIInst FPToUIInst *cloneImpl() const;
public: /// Constructor with insert-before-instruction semantics FPToUIInst(Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr = "", ///< A name for the new instruction InsertPosition InsertBefore = nullptr ///< Where to insert the new instruction );
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == FPToUI; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===// // FPToSIInst Class //===----------------------------------------------------------------------===//
/// This class represents a cast from floating point to signed integer. class FPToSIInst : public CastInst { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
/// Clone an identical FPToSIInst FPToSIInst *cloneImpl() const;
public: /// Constructor with insert-before-instruction semantics FPToSIInst(Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr = "", ///< A name for the new instruction InsertPosition InsertBefore = nullptr ///< Where to insert the new instruction );
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == FPToSI; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===// // IntToPtrInst Class //===----------------------------------------------------------------------===//
/// This class represents a cast from an integer to a pointer. class IntToPtrInst : public CastInst { public: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
/// Constructor with insert-before-instruction semantics IntToPtrInst(Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr = "", ///< A name for the new instruction InsertPosition InsertBefore = nullptr ///< Where to insert the new instruction );
/// Clone an identical IntToPtrInst. IntToPtrInst *cloneImpl() const;
/// Returns the address space of this instruction's pointer type. unsigned getAddressSpace() const { return getType()->getPointerAddressSpace(); }
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == IntToPtr; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===// // PtrToIntInst Class //===----------------------------------------------------------------------===//
/// This class represents a cast from a pointer to an integer. class PtrToIntInst : public CastInst { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
/// Clone an identical PtrToIntInst. PtrToIntInst *cloneImpl() const;
public: /// Constructor with insert-before-instruction semantics PtrToIntInst(Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr = "", ///< A name for the new instruction InsertPosition InsertBefore = nullptr ///< Where to insert the new instruction );
/// Gets the pointer operand. Value *getPointerOperand() { return getOperand(0); } /// Gets the pointer operand. const Value *getPointerOperand() const { return getOperand(0); } /// Gets the operand index of the pointer operand. static unsigned getPointerOperandIndex() { return 0U; }
/// Returns the address space of the pointer operand. unsigned getPointerAddressSpace() const { return getPointerOperand()->getType()->getPointerAddressSpace(); }
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == PtrToInt; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===// // BitCastInst Class //===----------------------------------------------------------------------===//
/// This class represents a no-op cast from one type to another. class BitCastInst : public CastInst { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
/// Clone an identical BitCastInst. BitCastInst *cloneImpl() const;
public: /// Constructor with insert-before-instruction semantics BitCastInst(Value *S, ///< The value to be casted Type *Ty, ///< The type to casted to const Twine &NameStr = "", ///< A name for the new instruction InsertPosition InsertBefore = nullptr ///< Where to insert the new instruction );
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == BitCast; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===// // AddrSpaceCastInst Class //===----------------------------------------------------------------------===//
/// This class represents a conversion between pointers from one address space /// to another. class AddrSpaceCastInst : public CastInst { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
/// Clone an identical AddrSpaceCastInst. AddrSpaceCastInst *cloneImpl() const;
public: /// Constructor with insert-before-instruction semantics AddrSpaceCastInst( Value *S, ///< The value to be casted Type *Ty, ///< The type to casted to const Twine &NameStr = "", ///< A name for the new instruction InsertPosition InsertBefore = nullptr ///< Where to insert the new instruction );
// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == AddrSpaceCast; } static bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); }
/// Gets the pointer operand. Value *getPointerOperand() { return getOperand(0); }
/// Gets the pointer operand. const Value *getPointerOperand() const { return getOperand(0); }
/// Gets the operand index of the pointer operand. static unsigned getPointerOperandIndex() { return 0U; }
/// Returns the address space of the pointer operand. unsigned getSrcAddressSpace() const { return getPointerOperand()->getType()->getPointerAddressSpace(); }
/// Returns the address space of the result. unsigned getDestAddressSpace() const { return getType()->getPointerAddressSpace(); } };
//===----------------------------------------------------------------------===// // Helper functions //===----------------------------------------------------------------------===//
/// A helper function that returns the pointer operand of a load or store /// instruction. Returns nullptr if not load or store. inline const Value *getLoadStorePointerOperand(const Value *V) { if (auto *Load = dyn_cast<LoadInst>(V)) return Load->getPointerOperand(); if (auto *Store = dyn_cast<StoreInst>(V)) return Store->getPointerOperand(); return nullptr; } inline Value *getLoadStorePointerOperand(Value *V) { return const_cast<Value *>( getLoadStorePointerOperand(static_cast<const Value *>(V))); }
/// A helper function that returns the pointer operand of a load, store /// or GEP instruction. Returns nullptr if not load, store, or GEP. inline const Value *getPointerOperand(const Value *V) { if (auto *Ptr = getLoadStorePointerOperand(V)) return Ptr; if (auto *Gep = dyn_cast<GetElementPtrInst>(V)) return Gep->getPointerOperand(); return nullptr; } inline Value *getPointerOperand(Value *V) { return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V))); }
/// A helper function that returns the alignment of load or store instruction. inline Align getLoadStoreAlignment(Value *I) { assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && "Expected Load or Store instruction"); if (auto *LI = dyn_cast<LoadInst>(I)) return LI->getAlign(); return cast<StoreInst>(I)->getAlign(); }
/// A helper function that returns the address space of the pointer operand of /// load or store instruction. inline unsigned getLoadStoreAddressSpace(Value *I) { assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && "Expected Load or Store instruction"); if (auto *LI = dyn_cast<LoadInst>(I)) return LI->getPointerAddressSpace(); return cast<StoreInst>(I)->getPointerAddressSpace(); }
/// A helper function that returns the type of a load or store instruction. inline Type *getLoadStoreType(Value *I) { assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && "Expected Load or Store instruction"); if (auto *LI = dyn_cast<LoadInst>(I)) return LI->getType(); return cast<StoreInst>(I)->getValueOperand()->getType(); }
/// A helper function that returns an atomic operation's sync scope; returns /// std::nullopt if it is not an atomic operation. inline std::optional<SyncScope::ID> getAtomicSyncScopeID(const Instruction *I) { if (!I->isAtomic()) return std::nullopt; if (auto *AI = dyn_cast<LoadInst>(I)) return AI->getSyncScopeID(); if (auto *AI = dyn_cast<StoreInst>(I)) return AI->getSyncScopeID(); if (auto *AI = dyn_cast<FenceInst>(I)) return AI->getSyncScopeID(); if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I)) return AI->getSyncScopeID(); if (auto *AI = dyn_cast<AtomicRMWInst>(I)) return AI->getSyncScopeID(); llvm_unreachable("unhandled atomic operation"); }
//===----------------------------------------------------------------------===// // FreezeInst Class //===----------------------------------------------------------------------===//
/// This class represents a freeze function that returns random concrete /// value if an operand is either a poison value or an undef value class FreezeInst : public UnaryInstruction { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction;
/// Clone an identical FreezeInst FreezeInst *cloneImpl() const;
public: explicit FreezeInst(Value *S, const Twine &NameStr = "", InsertPosition InsertBefore = nullptr);
// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == Freeze; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
} // end namespace llvm
#endif // LLVM_IR_INSTRUCTIONS_H
|