Viewing file: Constants.h (56.78 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// @file /// This file contains the declarations for the subclasses of Constant, /// which represent the different flavors of constant values that live in LLVM. /// Note that Constants are immutable (once created they never change) and are /// fully shared by structural equivalence. This means that two structurally /// equivalent constants will always have the same address. Constants are /// created on demand as needed and never deleted: thus clients don't have to /// worry about the lifetime of the objects. // //===----------------------------------------------------------------------===//
#ifndef LLVM_IR_CONSTANTS_H #define LLVM_IR_CONSTANTS_H
#include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/IR/Constant.h" #include "llvm/IR/ConstantRange.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/GEPNoWrapFlags.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/OperandTraits.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include <cassert> #include <cstddef> #include <cstdint> #include <optional>
namespace llvm {
template <class ConstantClass> struct ConstantAggrKeyType;
/// Base class for constants with no operands. /// /// These constants have no operands; they represent their data directly. /// Since they can be in use by unrelated modules (and are never based on /// GlobalValues), it never makes sense to RAUW them. class ConstantData : public Constant { friend class Constant;
Value *handleOperandChangeImpl(Value *From, Value *To) { llvm_unreachable("Constant data does not have operands!"); }
protected: explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {}
void *operator new(size_t S) { return User::operator new(S, 0); }
public: void operator delete(void *Ptr) { User::operator delete(Ptr); }
ConstantData(const ConstantData &) = delete;
/// Methods to support type inquiry through isa, cast, and dyn_cast. static bool classof(const Value *V) { return V->getValueID() >= ConstantDataFirstVal && V->getValueID() <= ConstantDataLastVal; } };
//===----------------------------------------------------------------------===// /// This is the shared class of boolean and integer constants. This class /// represents both boolean and integral constants. /// Class for constant integers. class ConstantInt final : public ConstantData { friend class Constant; friend class ConstantVector;
APInt Val;
ConstantInt(Type *Ty, const APInt &V);
void destroyConstantImpl();
/// Return a ConstantInt with the specified value and an implied Type. The /// type is the vector type whose integer element type corresponds to the bit /// width of the value. static ConstantInt *get(LLVMContext &Context, ElementCount EC, const APInt &V);
public: ConstantInt(const ConstantInt &) = delete;
static ConstantInt *getTrue(LLVMContext &Context); static ConstantInt *getFalse(LLVMContext &Context); static ConstantInt *getBool(LLVMContext &Context, bool V); static Constant *getTrue(Type *Ty); static Constant *getFalse(Type *Ty); static Constant *getBool(Type *Ty, bool V);
/// If Ty is a vector type, return a Constant with a splat of the given /// value. Otherwise return a ConstantInt for the given value. static Constant *get(Type *Ty, uint64_t V, bool IsSigned = false);
/// Return a ConstantInt with the specified integer value for the specified /// type. If the type is wider than 64 bits, the value will be zero-extended /// to fit the type, unless IsSigned is true, in which case the value will /// be interpreted as a 64-bit signed integer and sign-extended to fit /// the type. /// Get a ConstantInt for a specific value. static ConstantInt *get(IntegerType *Ty, uint64_t V, bool IsSigned = false);
/// Return a ConstantInt with the specified value for the specified type. The /// value V will be canonicalized to a an unsigned APInt. Accessing it with /// either getSExtValue() or getZExtValue() will yield a correctly sized and /// signed value for the type Ty. /// Get a ConstantInt for a specific signed value. static ConstantInt *getSigned(IntegerType *Ty, int64_t V) { return get(Ty, V, true); } static Constant *getSigned(Type *Ty, int64_t V) { return get(Ty, V, true); }
/// Return a ConstantInt with the specified value and an implied Type. The /// type is the integer type that corresponds to the bit width of the value. static ConstantInt *get(LLVMContext &Context, const APInt &V);
/// Return a ConstantInt constructed from the string strStart with the given /// radix. static ConstantInt *get(IntegerType *Ty, StringRef Str, uint8_t Radix);
/// If Ty is a vector type, return a Constant with a splat of the given /// value. Otherwise return a ConstantInt for the given value. static Constant *get(Type *Ty, const APInt &V);
/// Return the constant as an APInt value reference. This allows clients to /// obtain a full-precision copy of the value. /// Return the constant's value. inline const APInt &getValue() const { return Val; }
/// getBitWidth - Return the scalar bitwidth of this constant. unsigned getBitWidth() const { return Val.getBitWidth(); }
/// Return the constant as a 64-bit unsigned integer value after it /// has been zero extended as appropriate for the type of this constant. Note /// that this method can assert if the value does not fit in 64 bits. /// Return the zero extended value. inline uint64_t getZExtValue() const { return Val.getZExtValue(); }
/// Return the constant as a 64-bit integer value after it has been sign /// extended as appropriate for the type of this constant. Note that /// this method can assert if the value does not fit in 64 bits. /// Return the sign extended value. inline int64_t getSExtValue() const { return Val.getSExtValue(); }
/// Return the constant as an llvm::MaybeAlign. /// Note that this method can assert if the value does not fit in 64 bits or /// is not a power of two. inline MaybeAlign getMaybeAlignValue() const { return MaybeAlign(getZExtValue()); }
/// Return the constant as an llvm::Align, interpreting `0` as `Align(1)`. /// Note that this method can assert if the value does not fit in 64 bits or /// is not a power of two. inline Align getAlignValue() const { return getMaybeAlignValue().valueOrOne(); }
/// A helper method that can be used to determine if the constant contained /// within is equal to a constant. This only works for very small values, /// because this is all that can be represented with all types. /// Determine if this constant's value is same as an unsigned char. bool equalsInt(uint64_t V) const { return Val == V; }
/// Variant of the getType() method to always return an IntegerType, which /// reduces the amount of casting needed in parts of the compiler. inline IntegerType *getIntegerType() const { return cast<IntegerType>(Value::getType()); }
/// This static method returns true if the type Ty is big enough to /// represent the value V. This can be used to avoid having the get method /// assert when V is larger than Ty can represent. Note that there are two /// versions of this method, one for unsigned and one for signed integers. /// Although ConstantInt canonicalizes everything to an unsigned integer, /// the signed version avoids callers having to convert a signed quantity /// to the appropriate unsigned type before calling the method. /// @returns true if V is a valid value for type Ty /// Determine if the value is in range for the given type. static bool isValueValidForType(Type *Ty, uint64_t V); static bool isValueValidForType(Type *Ty, int64_t V);
bool isNegative() const { return Val.isNegative(); }
/// This is just a convenience method to make client code smaller for a /// common code. It also correctly performs the comparison without the /// potential for an assertion from getZExtValue(). bool isZero() const { return Val.isZero(); }
/// This is just a convenience method to make client code smaller for a /// common case. It also correctly performs the comparison without the /// potential for an assertion from getZExtValue(). /// Determine if the value is one. bool isOne() const { return Val.isOne(); }
/// This function will return true iff every bit in this constant is set /// to true. /// @returns true iff this constant's bits are all set to true. /// Determine if the value is all ones. bool isMinusOne() const { return Val.isAllOnes(); }
/// This function will return true iff this constant represents the largest /// value that may be represented by the constant's type. /// @returns true iff this is the largest value that may be represented /// by this type. /// Determine if the value is maximal. bool isMaxValue(bool IsSigned) const { if (IsSigned) return Val.isMaxSignedValue(); else return Val.isMaxValue(); }
/// This function will return true iff this constant represents the smallest /// value that may be represented by this constant's type. /// @returns true if this is the smallest value that may be represented by /// this type. /// Determine if the value is minimal. bool isMinValue(bool IsSigned) const { if (IsSigned) return Val.isMinSignedValue(); else return Val.isMinValue(); }
/// This function will return true iff this constant represents a value with /// active bits bigger than 64 bits or a value greater than the given uint64_t /// value. /// @returns true iff this constant is greater or equal to the given number. /// Determine if the value is greater or equal to the given number. bool uge(uint64_t Num) const { return Val.uge(Num); }
/// getLimitedValue - If the value is smaller than the specified limit, /// return it, otherwise return the limit value. This causes the value /// to saturate to the limit. /// @returns the min of the value of the constant and the specified value /// Get the constant's value with a saturation limit uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const { return Val.getLimitedValue(Limit); }
/// Methods to support type inquiry through isa, cast, and dyn_cast. static bool classof(const Value *V) { return V->getValueID() == ConstantIntVal; } };
//===----------------------------------------------------------------------===// /// ConstantFP - Floating Point Values [float, double] /// class ConstantFP final : public ConstantData { friend class Constant; friend class ConstantVector;
APFloat Val;
ConstantFP(Type *Ty, const APFloat &V);
void destroyConstantImpl();
/// Return a ConstantFP with the specified value and an implied Type. The /// type is the vector type whose element type has the same floating point /// semantics as the value. static ConstantFP *get(LLVMContext &Context, ElementCount EC, const APFloat &V);
public: ConstantFP(const ConstantFP &) = delete;
/// This returns a ConstantFP, or a vector containing a splat of a ConstantFP, /// for the specified value in the specified type. This should only be used /// for simple constant values like 2.0/1.0 etc, that are known-valid both as /// host double and as the target format. static Constant *get(Type *Ty, double V);
/// If Ty is a vector type, return a Constant with a splat of the given /// value. Otherwise return a ConstantFP for the given value. static Constant *get(Type *Ty, const APFloat &V);
static Constant *get(Type *Ty, StringRef Str); static ConstantFP *get(LLVMContext &Context, const APFloat &V); static Constant *getNaN(Type *Ty, bool Negative = false, uint64_t Payload = 0); static Constant *getQNaN(Type *Ty, bool Negative = false, APInt *Payload = nullptr); static Constant *getSNaN(Type *Ty, bool Negative = false, APInt *Payload = nullptr); static Constant *getZero(Type *Ty, bool Negative = false); static Constant *getNegativeZero(Type *Ty) { return getZero(Ty, true); } static Constant *getInfinity(Type *Ty, bool Negative = false);
/// Return true if Ty is big enough to represent V. static bool isValueValidForType(Type *Ty, const APFloat &V); inline const APFloat &getValueAPF() const { return Val; } inline const APFloat &getValue() const { return Val; }
/// Return true if the value is positive or negative zero. bool isZero() const { return Val.isZero(); }
/// Return true if the sign bit is set. bool isNegative() const { return Val.isNegative(); }
/// Return true if the value is infinity bool isInfinity() const { return Val.isInfinity(); }
/// Return true if the value is a NaN. bool isNaN() const { return Val.isNaN(); }
/// We don't rely on operator== working on double values, as it returns true /// for things that are clearly not equal, like -0.0 and 0.0. /// As such, this method can be used to do an exact bit-for-bit comparison of /// two floating point values. The version with a double operand is retained /// because it's so convenient to write isExactlyValue(2.0), but please use /// it only for simple constants. bool isExactlyValue(const APFloat &V) const;
bool isExactlyValue(double V) const { bool ignored; APFloat FV(V); FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored); return isExactlyValue(FV); }
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == ConstantFPVal; } };
//===----------------------------------------------------------------------===// /// All zero aggregate value /// class ConstantAggregateZero final : public ConstantData { friend class Constant;
explicit ConstantAggregateZero(Type *Ty) : ConstantData(Ty, ConstantAggregateZeroVal) {}
void destroyConstantImpl();
public: ConstantAggregateZero(const ConstantAggregateZero &) = delete;
static ConstantAggregateZero *get(Type *Ty);
/// If this CAZ has array or vector type, return a zero with the right element /// type. Constant *getSequentialElement() const;
/// If this CAZ has struct type, return a zero with the right element type for /// the specified element. Constant *getStructElement(unsigned Elt) const;
/// Return a zero of the right value for the specified GEP index if we can, /// otherwise return null (e.g. if C is a ConstantExpr). Constant *getElementValue(Constant *C) const;
/// Return a zero of the right value for the specified GEP index. Constant *getElementValue(unsigned Idx) const;
/// Return the number of elements in the array, vector, or struct. ElementCount getElementCount() const;
/// Methods for support type inquiry through isa, cast, and dyn_cast: /// static bool classof(const Value *V) { return V->getValueID() == ConstantAggregateZeroVal; } };
/// Base class for aggregate constants (with operands). /// /// These constants are aggregates of other constants, which are stored as /// operands. /// /// Subclasses are \a ConstantStruct, \a ConstantArray, and \a /// ConstantVector. /// /// \note Some subclasses of \a ConstantData are semantically aggregates -- /// such as \a ConstantDataArray -- but are not subclasses of this because they /// use operands. class ConstantAggregate : public Constant { protected: ConstantAggregate(Type *T, ValueTy VT, ArrayRef<Constant *> V);
public: /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() >= ConstantAggregateFirstVal && V->getValueID() <= ConstantAggregateLastVal; } };
template <> struct OperandTraits<ConstantAggregate> : public VariadicOperandTraits<ConstantAggregate> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant)
//===----------------------------------------------------------------------===// /// ConstantArray - Constant Array Declarations /// class ConstantArray final : public ConstantAggregate { friend struct ConstantAggrKeyType<ConstantArray>; friend class Constant;
ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);
void destroyConstantImpl(); Value *handleOperandChangeImpl(Value *From, Value *To);
public: // ConstantArray accessors static Constant *get(ArrayType *T, ArrayRef<Constant *> V);
private: static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V);
public: /// Specialize the getType() method to always return an ArrayType, /// which reduces the amount of casting needed in parts of the compiler. inline ArrayType *getType() const { return cast<ArrayType>(Value::getType()); }
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == ConstantArrayVal; } };
//===----------------------------------------------------------------------===// // Constant Struct Declarations // class ConstantStruct final : public ConstantAggregate { friend struct ConstantAggrKeyType<ConstantStruct>; friend class Constant;
ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
void destroyConstantImpl(); Value *handleOperandChangeImpl(Value *From, Value *To);
public: // ConstantStruct accessors static Constant *get(StructType *T, ArrayRef<Constant *> V);
template <typename... Csts> static std::enable_if_t<are_base_of<Constant, Csts...>::value, Constant *> get(StructType *T, Csts *...Vs) { return get(T, ArrayRef<Constant *>({Vs...})); }
/// Return an anonymous struct that has the specified elements. /// If the struct is possibly empty, then you must specify a context. static Constant *getAnon(ArrayRef<Constant *> V, bool Packed = false) { return get(getTypeForElements(V, Packed), V); } static Constant *getAnon(LLVMContext &Ctx, ArrayRef<Constant *> V, bool Packed = false) { return get(getTypeForElements(Ctx, V, Packed), V); }
/// Return an anonymous struct type to use for a constant with the specified /// set of elements. The list must not be empty. static StructType *getTypeForElements(ArrayRef<Constant *> V, bool Packed = false); /// This version of the method allows an empty list. static StructType *getTypeForElements(LLVMContext &Ctx, ArrayRef<Constant *> V, bool Packed = false);
/// Specialization - reduce amount of casting. inline StructType *getType() const { return cast<StructType>(Value::getType()); }
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == ConstantStructVal; } };
//===----------------------------------------------------------------------===// /// Constant Vector Declarations /// class ConstantVector final : public ConstantAggregate { friend struct ConstantAggrKeyType<ConstantVector>; friend class Constant;
ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
void destroyConstantImpl(); Value *handleOperandChangeImpl(Value *From, Value *To);
public: // ConstantVector accessors static Constant *get(ArrayRef<Constant *> V);
private: static Constant *getImpl(ArrayRef<Constant *> V);
public: /// Return a ConstantVector with the specified constant in each element. /// Note that this might not return an instance of ConstantVector static Constant *getSplat(ElementCount EC, Constant *Elt);
/// Specialize the getType() method to always return a FixedVectorType, /// which reduces the amount of casting needed in parts of the compiler. inline FixedVectorType *getType() const { return cast<FixedVectorType>(Value::getType()); }
/// If all elements of the vector constant have the same value, return that /// value. Otherwise, return nullptr. Ignore poison elements by setting /// AllowPoison to true. Constant *getSplatValue(bool AllowPoison = false) const;
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == ConstantVectorVal; } };
//===----------------------------------------------------------------------===// /// A constant pointer value that points to null /// class ConstantPointerNull final : public ConstantData { friend class Constant;
explicit ConstantPointerNull(PointerType *T) : ConstantData(T, Value::ConstantPointerNullVal) {}
void destroyConstantImpl();
public: ConstantPointerNull(const ConstantPointerNull &) = delete;
/// Static factory methods - Return objects of the specified value static ConstantPointerNull *get(PointerType *T);
/// Specialize the getType() method to always return an PointerType, /// which reduces the amount of casting needed in parts of the compiler. inline PointerType *getType() const { return cast<PointerType>(Value::getType()); }
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == ConstantPointerNullVal; } };
//===----------------------------------------------------------------------===// /// ConstantDataSequential - A vector or array constant whose element type is a /// simple 1/2/4/8-byte integer or half/bfloat/float/double, and whose elements /// are just simple data values (i.e. ConstantInt/ConstantFP). This Constant /// node has no operands because it stores all of the elements of the constant /// as densely packed data, instead of as Value*'s. /// /// This is the common base class of ConstantDataArray and ConstantDataVector. /// class ConstantDataSequential : public ConstantData { friend class LLVMContextImpl; friend class Constant;
/// A pointer to the bytes underlying this constant (which is owned by the /// uniquing StringMap). const char *DataElements;
/// This forms a link list of ConstantDataSequential nodes that have /// the same value but different type. For example, 0,0,0,1 could be a 4 /// element array of i8, or a 1-element array of i32. They'll both end up in /// the same StringMap bucket, linked up. std::unique_ptr<ConstantDataSequential> Next;
void destroyConstantImpl();
protected: explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data) : ConstantData(ty, VT), DataElements(Data) {}
static Constant *getImpl(StringRef Bytes, Type *Ty);
public: ConstantDataSequential(const ConstantDataSequential &) = delete;
/// Return true if a ConstantDataSequential can be formed with a vector or /// array of the specified element type. /// ConstantDataArray only works with normal float and int types that are /// stored densely in memory, not with things like i42 or x86_f80. static bool isElementTypeCompatible(Type *Ty);
/// If this is a sequential container of integers (of any size), return the /// specified element in the low bits of a uint64_t. uint64_t getElementAsInteger(unsigned i) const;
/// If this is a sequential container of integers (of any size), return the /// specified element as an APInt. APInt getElementAsAPInt(unsigned i) const;
/// If this is a sequential container of floating point type, return the /// specified element as an APFloat. APFloat getElementAsAPFloat(unsigned i) const;
/// If this is an sequential container of floats, return the specified element /// as a float. float getElementAsFloat(unsigned i) const;
/// If this is an sequential container of doubles, return the specified /// element as a double. double getElementAsDouble(unsigned i) const;
/// Return a Constant for a specified index's element. /// Note that this has to compute a new constant to return, so it isn't as /// efficient as getElementAsInteger/Float/Double. Constant *getElementAsConstant(unsigned i) const;
/// Return the element type of the array/vector. Type *getElementType() const;
/// Return the number of elements in the array or vector. unsigned getNumElements() const;
/// Return the size (in bytes) of each element in the array/vector. /// The size of the elements is known to be a multiple of one byte. uint64_t getElementByteSize() const;
/// This method returns true if this is an array of \p CharSize integers. bool isString(unsigned CharSize = 8) const;
/// This method returns true if the array "isString", ends with a null byte, /// and does not contains any other null bytes. bool isCString() const;
/// If this array is isString(), then this method returns the array as a /// StringRef. Otherwise, it asserts out. StringRef getAsString() const { assert(isString() && "Not a string"); return getRawDataValues(); }
/// If this array is isCString(), then this method returns the array (without /// the trailing null byte) as a StringRef. Otherwise, it asserts out. StringRef getAsCString() const { assert(isCString() && "Isn't a C string"); StringRef Str = getAsString(); return Str.substr(0, Str.size() - 1); }
/// Return the raw, underlying, bytes of this data. Note that this is an /// extremely tricky thing to work with, as it exposes the host endianness of /// the data elements. StringRef getRawDataValues() const;
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == ConstantDataArrayVal || V->getValueID() == ConstantDataVectorVal; }
private: const char *getElementPointer(unsigned Elt) const; };
//===----------------------------------------------------------------------===// /// An array constant whose element type is a simple 1/2/4/8-byte integer or /// float/double, and whose elements are just simple data values /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it /// stores all of the elements of the constant as densely packed data, instead /// of as Value*'s. class ConstantDataArray final : public ConstantDataSequential { friend class ConstantDataSequential;
explicit ConstantDataArray(Type *ty, const char *Data) : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {}
public: ConstantDataArray(const ConstantDataArray &) = delete;
/// get() constructor - Return a constant with array type with an element /// count and element type matching the ArrayRef passed in. Note that this /// can return a ConstantAggregateZero object. template <typename ElementTy> static Constant *get(LLVMContext &Context, ArrayRef<ElementTy> Elts) { const char *Data = reinterpret_cast<const char *>(Elts.data()); return getRaw(StringRef(Data, Elts.size() * sizeof(ElementTy)), Elts.size(), Type::getScalarTy<ElementTy>(Context)); }
/// get() constructor - ArrayTy needs to be compatible with /// ArrayRef<ElementTy>. Calls get(LLVMContext, ArrayRef<ElementTy>). template <typename ArrayTy> static Constant *get(LLVMContext &Context, ArrayTy &Elts) { return ConstantDataArray::get(Context, ArrayRef(Elts)); }
/// getRaw() constructor - Return a constant with array type with an element /// count and element type matching the NumElements and ElementTy parameters /// passed in. Note that this can return a ConstantAggregateZero object. /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is /// the buffer containing the elements. Be careful to make sure Data uses the /// right endianness, the buffer will be used as-is. static Constant *getRaw(StringRef Data, uint64_t NumElements, Type *ElementTy) { Type *Ty = ArrayType::get(ElementTy, NumElements); return getImpl(Data, Ty); }
/// getFP() constructors - Return a constant of array type with a float /// element type taken from argument `ElementType', and count taken from /// argument `Elts'. The amount of bits of the contained type must match the /// number of bits of the type contained in the passed in ArrayRef. /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note /// that this can return a ConstantAggregateZero object. static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts); static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts); static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts);
/// This method constructs a CDS and initializes it with a text string. /// The default behavior (AddNull==true) causes a null terminator to /// be placed at the end of the array (increasing the length of the string by /// one more than the StringRef would normally indicate. Pass AddNull=false /// to disable this behavior. static Constant *getString(LLVMContext &Context, StringRef Initializer, bool AddNull = true);
/// Specialize the getType() method to always return an ArrayType, /// which reduces the amount of casting needed in parts of the compiler. inline ArrayType *getType() const { return cast<ArrayType>(Value::getType()); }
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == ConstantDataArrayVal; } };
//===----------------------------------------------------------------------===// /// A vector constant whose element type is a simple 1/2/4/8-byte integer or /// float/double, and whose elements are just simple data values /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it /// stores all of the elements of the constant as densely packed data, instead /// of as Value*'s. class ConstantDataVector final : public ConstantDataSequential { friend class ConstantDataSequential;
explicit ConstantDataVector(Type *ty, const char *Data) : ConstantDataSequential(ty, ConstantDataVectorVal, Data), IsSplatSet(false) {} // Cache whether or not the constant is a splat. mutable bool IsSplatSet : 1; mutable bool IsSplat : 1; bool isSplatData() const;
public: ConstantDataVector(const ConstantDataVector &) = delete;
/// get() constructors - Return a constant with vector type with an element /// count and element type matching the ArrayRef passed in. Note that this /// can return a ConstantAggregateZero object. static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts); static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts); static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts); static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts); static Constant *get(LLVMContext &Context, ArrayRef<float> Elts); static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
/// getRaw() constructor - Return a constant with vector type with an element /// count and element type matching the NumElements and ElementTy parameters /// passed in. Note that this can return a ConstantAggregateZero object. /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is /// the buffer containing the elements. Be careful to make sure Data uses the /// right endianness, the buffer will be used as-is. static Constant *getRaw(StringRef Data, uint64_t NumElements, Type *ElementTy) { Type *Ty = VectorType::get(ElementTy, ElementCount::getFixed(NumElements)); return getImpl(Data, Ty); }
/// getFP() constructors - Return a constant of vector type with a float /// element type taken from argument `ElementType', and count taken from /// argument `Elts'. The amount of bits of the contained type must match the /// number of bits of the type contained in the passed in ArrayRef. /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note /// that this can return a ConstantAggregateZero object. static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts); static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts); static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts);
/// Return a ConstantVector with the specified constant in each element. /// The specified constant has to be a of a compatible type (i8/i16/ /// i32/i64/half/bfloat/float/double) and must be a ConstantFP or ConstantInt. static Constant *getSplat(unsigned NumElts, Constant *Elt);
/// Returns true if this is a splat constant, meaning that all elements have /// the same value. bool isSplat() const;
/// If this is a splat constant, meaning that all of the elements have the /// same value, return that value. Otherwise return NULL. Constant *getSplatValue() const;
/// Specialize the getType() method to always return a FixedVectorType, /// which reduces the amount of casting needed in parts of the compiler. inline FixedVectorType *getType() const { return cast<FixedVectorType>(Value::getType()); }
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == ConstantDataVectorVal; } };
//===----------------------------------------------------------------------===// /// A constant token which is empty /// class ConstantTokenNone final : public ConstantData { friend class Constant;
explicit ConstantTokenNone(LLVMContext &Context) : ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {}
void destroyConstantImpl();
public: ConstantTokenNone(const ConstantTokenNone &) = delete;
/// Return the ConstantTokenNone. static ConstantTokenNone *get(LLVMContext &Context);
/// Methods to support type inquiry through isa, cast, and dyn_cast. static bool classof(const Value *V) { return V->getValueID() == ConstantTokenNoneVal; } };
/// A constant target extension type default initializer class ConstantTargetNone final : public ConstantData { friend class Constant;
explicit ConstantTargetNone(TargetExtType *T) : ConstantData(T, Value::ConstantTargetNoneVal) {}
void destroyConstantImpl();
public: ConstantTargetNone(const ConstantTargetNone &) = delete;
/// Static factory methods - Return objects of the specified value. static ConstantTargetNone *get(TargetExtType *T);
/// Specialize the getType() method to always return an TargetExtType, /// which reduces the amount of casting needed in parts of the compiler. inline TargetExtType *getType() const { return cast<TargetExtType>(Value::getType()); }
/// Methods for support type inquiry through isa, cast, and dyn_cast. static bool classof(const Value *V) { return V->getValueID() == ConstantTargetNoneVal; } };
/// The address of a basic block. /// class BlockAddress final : public Constant { friend class Constant;
BlockAddress(Function *F, BasicBlock *BB);
void *operator new(size_t S) { return User::operator new(S, 2); }
void destroyConstantImpl(); Value *handleOperandChangeImpl(Value *From, Value *To);
public: void operator delete(void *Ptr) { User::operator delete(Ptr); }
/// Return a BlockAddress for the specified function and basic block. static BlockAddress *get(Function *F, BasicBlock *BB);
/// Return a BlockAddress for the specified basic block. The basic /// block must be embedded into a function. static BlockAddress *get(BasicBlock *BB);
/// Lookup an existing \c BlockAddress constant for the given BasicBlock. /// /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress. static BlockAddress *lookup(const BasicBlock *BB);
/// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
Function *getFunction() const { return (Function *)Op<0>().get(); } BasicBlock *getBasicBlock() const { return (BasicBlock *)Op<1>().get(); }
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == BlockAddressVal; } };
template <> struct OperandTraits<BlockAddress> : public FixedNumOperandTraits<BlockAddress, 2> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)
/// Wrapper for a function that represents a value that /// functionally represents the original function. This can be a function, /// global alias to a function, or an ifunc. class DSOLocalEquivalent final : public Constant { friend class Constant;
DSOLocalEquivalent(GlobalValue *GV);
void *operator new(size_t S) { return User::operator new(S, 1); }
void destroyConstantImpl(); Value *handleOperandChangeImpl(Value *From, Value *To);
public: void operator delete(void *Ptr) { User::operator delete(Ptr); }
/// Return a DSOLocalEquivalent for the specified global value. static DSOLocalEquivalent *get(GlobalValue *GV);
/// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
GlobalValue *getGlobalValue() const { return cast<GlobalValue>(Op<0>().get()); }
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == DSOLocalEquivalentVal; } };
template <> struct OperandTraits<DSOLocalEquivalent> : public FixedNumOperandTraits<DSOLocalEquivalent, 1> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(DSOLocalEquivalent, Value)
/// Wrapper for a value that won't be replaced with a CFI jump table /// pointer in LowerTypeTestsModule. class NoCFIValue final : public Constant { friend class Constant;
NoCFIValue(GlobalValue *GV);
void *operator new(size_t S) { return User::operator new(S, 1); }
void destroyConstantImpl(); Value *handleOperandChangeImpl(Value *From, Value *To);
public: /// Return a NoCFIValue for the specified function. static NoCFIValue *get(GlobalValue *GV);
/// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
GlobalValue *getGlobalValue() const { return cast<GlobalValue>(Op<0>().get()); }
/// NoCFIValue is always a pointer. PointerType *getType() const { return cast<PointerType>(Value::getType()); }
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == NoCFIValueVal; } };
template <> struct OperandTraits<NoCFIValue> : public FixedNumOperandTraits<NoCFIValue, 1> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(NoCFIValue, Value)
/// A signed pointer, in the ptrauth sense. class ConstantPtrAuth final : public Constant { friend struct ConstantPtrAuthKeyType; friend class Constant;
ConstantPtrAuth(Constant *Ptr, ConstantInt *Key, ConstantInt *Disc, Constant *AddrDisc);
void *operator new(size_t s) { return User::operator new(s, 4); }
void destroyConstantImpl(); Value *handleOperandChangeImpl(Value *From, Value *To);
public: /// Return a pointer signed with the specified parameters. static ConstantPtrAuth *get(Constant *Ptr, ConstantInt *Key, ConstantInt *Disc, Constant *AddrDisc);
/// Produce a new ptrauth expression signing the given value using /// the same schema as is stored in one. ConstantPtrAuth *getWithSameSchema(Constant *Pointer) const;
/// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
/// The pointer that is signed in this ptrauth signed pointer. Constant *getPointer() const { return cast<Constant>(Op<0>().get()); }
/// The Key ID, an i32 constant. ConstantInt *getKey() const { return cast<ConstantInt>(Op<1>().get()); }
/// The integer discriminator, an i64 constant, or 0. ConstantInt *getDiscriminator() const { return cast<ConstantInt>(Op<2>().get()); }
/// The address discriminator if any, or the null constant. /// If present, this must be a value equivalent to the storage location of /// the only global-initializer user of the ptrauth signed pointer. Constant *getAddrDiscriminator() const { return cast<Constant>(Op<3>().get()); }
/// Whether there is any non-null address discriminator. bool hasAddressDiscriminator() const { return !getAddrDiscriminator()->isNullValue(); }
/// Check whether an authentication operation with key \p Key and (possibly /// blended) discriminator \p Discriminator is known to be compatible with /// this ptrauth signed pointer. bool isKnownCompatibleWith(const Value *Key, const Value *Discriminator, const DataLayout &DL) const;
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == ConstantPtrAuthVal; } };
template <> struct OperandTraits<ConstantPtrAuth> : public FixedNumOperandTraits<ConstantPtrAuth, 4> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPtrAuth, Constant)
//===----------------------------------------------------------------------===// /// A constant value that is initialized with an expression using /// other constant values. /// /// This class uses the standard Instruction opcodes to define the various /// constant expressions. The Opcode field for the ConstantExpr class is /// maintained in the Value::SubclassData field. class ConstantExpr : public Constant { friend struct ConstantExprKeyType; friend class Constant;
void destroyConstantImpl(); Value *handleOperandChangeImpl(Value *From, Value *To);
protected: ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps) : Constant(ty, ConstantExprVal, Ops, NumOps) { // Operation type (an Instruction opcode) is stored as the SubclassData. setValueSubclassData(Opcode); }
~ConstantExpr() = default;
public: // Static methods to construct a ConstantExpr of different kinds. Note that // these methods may return a object that is not an instance of the // ConstantExpr class, because they will attempt to fold the constant // expression into something simpler if possible.
/// getAlignOf constant expr - computes the alignment of a type in a target /// independent way (Note: the return type is an i64). static Constant *getAlignOf(Type *Ty);
/// getSizeOf constant expr - computes the (alloc) size of a type (in /// address-units, not bits) in a target independent way (Note: the return /// type is an i64). /// static Constant *getSizeOf(Type *Ty);
static Constant *getNeg(Constant *C, bool HasNSW = false); static Constant *getNot(Constant *C); static Constant *getAdd(Constant *C1, Constant *C2, bool HasNUW = false, bool HasNSW = false); static Constant *getSub(Constant *C1, Constant *C2, bool HasNUW = false, bool HasNSW = false); static Constant *getMul(Constant *C1, Constant *C2, bool HasNUW = false, bool HasNSW = false); static Constant *getXor(Constant *C1, Constant *C2); static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false); static Constant *getPtrToInt(Constant *C, Type *Ty, bool OnlyIfReduced = false); static Constant *getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced = false); static Constant *getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced = false); static Constant *getAddrSpaceCast(Constant *C, Type *Ty, bool OnlyIfReduced = false);
static Constant *getNSWNeg(Constant *C) { return getNeg(C, /*HasNSW=*/true); }
static Constant *getNSWAdd(Constant *C1, Constant *C2) { return getAdd(C1, C2, false, true); }
static Constant *getNUWAdd(Constant *C1, Constant *C2) { return getAdd(C1, C2, true, false); }
static Constant *getNSWSub(Constant *C1, Constant *C2) { return getSub(C1, C2, false, true); }
static Constant *getNUWSub(Constant *C1, Constant *C2) { return getSub(C1, C2, true, false); }
static Constant *getNSWMul(Constant *C1, Constant *C2) { return getMul(C1, C2, false, true); }
static Constant *getNUWMul(Constant *C1, Constant *C2) { return getMul(C1, C2, true, false); }
/// If C is a scalar/fixed width vector of known powers of 2, then this /// function returns a new scalar/fixed width vector obtained from logBase2 /// of C. Undef vector elements are set to zero. /// Return a null pointer otherwise. static Constant *getExactLogBase2(Constant *C);
/// Return the identity constant for a binary opcode. /// If the binop is not commutative, callers can acquire the operand 1 /// identity constant by setting AllowRHSConstant to true. For example, any /// shift has a zero identity constant for operand 1: X shift 0 = X. If this /// is a fadd/fsub operation and we don't care about signed zeros, then /// setting NSZ to true returns the identity +0.0 instead of -0.0. Return /// nullptr if the operator does not have an identity constant. static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant = false, bool NSZ = false);
static Constant *getIntrinsicIdentity(Intrinsic::ID, Type *Ty);
/// Return the identity constant for a binary or intrinsic Instruction. /// The identity constant C is defined as X op C = X and C op X = X where C /// and X are the first two operands, and the operation is commutative. static Constant *getIdentity(Instruction *I, Type *Ty, bool AllowRHSConstant = false, bool NSZ = false);
/// Return the absorbing element for the given binary /// operation, i.e. a constant C such that X op C = C and C op X = C for /// every X. For example, this returns zero for integer multiplication. /// It returns null if the operator doesn't have an absorbing element. static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty);
/// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
/// Convenience function for getting a Cast operation. /// /// \param ops The opcode for the conversion /// \param C The constant to be converted /// \param Ty The type to which the constant is converted /// \param OnlyIfReduced see \a getWithOperands() docs. static Constant *getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced = false);
// Create a Trunc or BitCast cast constant expression static Constant * getTruncOrBitCast(Constant *C, ///< The constant to trunc or bitcast Type *Ty ///< The type to trunc or bitcast C to );
/// Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant /// expression. static Constant * getPointerCast(Constant *C, ///< The pointer value to be casted (operand 0) Type *Ty ///< The type to which cast should be made );
/// Create a BitCast or AddrSpaceCast for a pointer type depending on /// the address space. static Constant *getPointerBitCastOrAddrSpaceCast( Constant *C, ///< The constant to addrspacecast or bitcast Type *Ty ///< The type to bitcast or addrspacecast C to );
/// Return true if this is a convert constant expression bool isCast() const;
/// get - Return a binary or shift operator constant expression, /// folding if possible. /// /// \param OnlyIfReducedTy see \a getWithOperands() docs. static Constant *get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr);
/// Getelementptr form. Value* is only accepted for convenience; /// all elements must be Constants. /// /// \param InRange the inrange range if present or std::nullopt. /// \param OnlyIfReducedTy see \a getWithOperands() docs. static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef<Constant *> IdxList, GEPNoWrapFlags NW = GEPNoWrapFlags::none(), std::optional<ConstantRange> InRange = std::nullopt, Type *OnlyIfReducedTy = nullptr) { return getGetElementPtr( Ty, C, ArrayRef((Value *const *)IdxList.data(), IdxList.size()), NW, InRange, OnlyIfReducedTy); } static Constant * getGetElementPtr(Type *Ty, Constant *C, Constant *Idx, GEPNoWrapFlags NW = GEPNoWrapFlags::none(), std::optional<ConstantRange> InRange = std::nullopt, Type *OnlyIfReducedTy = nullptr) { // This form of the function only exists to avoid ambiguous overload // warnings about whether to convert Idx to ArrayRef<Constant *> or // ArrayRef<Value *>. return getGetElementPtr(Ty, C, cast<Value>(Idx), NW, InRange, OnlyIfReducedTy); } static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef<Value *> IdxList, GEPNoWrapFlags NW = GEPNoWrapFlags::none(), std::optional<ConstantRange> InRange = std::nullopt, Type *OnlyIfReducedTy = nullptr);
/// Create an "inbounds" getelementptr. See the documentation for the /// "inbounds" flag in LangRef.html for details. static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, ArrayRef<Constant *> IdxList) { return getGetElementPtr(Ty, C, IdxList, GEPNoWrapFlags::inBounds()); } static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, Constant *Idx) { // This form of the function only exists to avoid ambiguous overload // warnings about whether to convert Idx to ArrayRef<Constant *> or // ArrayRef<Value *>. return getGetElementPtr(Ty, C, Idx, GEPNoWrapFlags::inBounds()); } static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, ArrayRef<Value *> IdxList) { return getGetElementPtr(Ty, C, IdxList, GEPNoWrapFlags::inBounds()); }
static Constant *getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy = nullptr); static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy = nullptr); static Constant *getShuffleVector(Constant *V1, Constant *V2, ArrayRef<int> Mask, Type *OnlyIfReducedTy = nullptr);
/// Return the opcode at the root of this constant expression unsigned getOpcode() const { return getSubclassDataFromValue(); }
/// Assert that this is a shufflevector and return the mask. See class /// ShuffleVectorInst for a description of the mask representation. ArrayRef<int> getShuffleMask() const;
/// Assert that this is a shufflevector and return the mask. /// /// TODO: This is a temporary hack until we update the bitcode format for /// shufflevector. Constant *getShuffleMaskForBitcode() const;
/// Return a string representation for an opcode. const char *getOpcodeName() const;
/// This returns the current constant expression with the operands replaced /// with the specified values. The specified array must have the same number /// of operands as our current one. Constant *getWithOperands(ArrayRef<Constant *> Ops) const { return getWithOperands(Ops, getType()); }
/// Get the current expression with the operands replaced. /// /// Return the current constant expression with the operands replaced with \c /// Ops and the type with \c Ty. The new operands must have the same number /// as the current ones. /// /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something /// gets constant-folded, the type changes, or the expression is otherwise /// canonicalized. This parameter should almost always be \c false. Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty, bool OnlyIfReduced = false, Type *SrcTy = nullptr) const;
/// Returns an Instruction which implements the same operation as this /// ConstantExpr. It is not inserted into any basic block. /// /// A better approach to this could be to have a constructor for Instruction /// which would take a ConstantExpr parameter, but that would have spread /// implementation details of ConstantExpr outside of Constants.cpp, which /// would make it harder to remove ConstantExprs altogether. Instruction *getAsInstruction() const;
/// Whether creating a constant expression for this binary operator is /// desirable. static bool isDesirableBinOp(unsigned Opcode);
/// Whether creating a constant expression for this binary operator is /// supported. static bool isSupportedBinOp(unsigned Opcode);
/// Whether creating a constant expression for this cast is desirable. static bool isDesirableCastOp(unsigned Opcode);
/// Whether creating a constant expression for this cast is supported. static bool isSupportedCastOp(unsigned Opcode);
/// Whether creating a constant expression for this getelementptr type is /// supported. static bool isSupportedGetElementPtr(const Type *SrcElemTy) { return !SrcElemTy->isScalableTy(); }
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == ConstantExprVal; }
private: // Shadow Value::setValueSubclassData with a private forwarding method so that // subclasses cannot accidentally use it. void setValueSubclassData(unsigned short D) { Value::setValueSubclassData(D); } };
template <> struct OperandTraits<ConstantExpr> : public VariadicOperandTraits<ConstantExpr, 1> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)
//===----------------------------------------------------------------------===// /// 'undef' values are things that do not have specified contents. /// These are used for a variety of purposes, including global variable /// initializers and operands to instructions. 'undef' values can occur with /// any first-class type. /// /// Undef values aren't exactly constants; if they have multiple uses, they /// can appear to have different bit patterns at each use. See /// LangRef.html#undefvalues for details. /// class UndefValue : public ConstantData { friend class Constant;
explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {}
void destroyConstantImpl();
protected: explicit UndefValue(Type *T, ValueTy vty) : ConstantData(T, vty) {}
public: UndefValue(const UndefValue &) = delete;
/// Static factory methods - Return an 'undef' object of the specified type. static UndefValue *get(Type *T);
/// If this Undef has array or vector type, return a undef with the right /// element type. UndefValue *getSequentialElement() const;
/// If this undef has struct type, return a undef with the right element type /// for the specified element. UndefValue *getStructElement(unsigned Elt) const;
/// Return an undef of the right value for the specified GEP index if we can, /// otherwise return null (e.g. if C is a ConstantExpr). UndefValue *getElementValue(Constant *C) const;
/// Return an undef of the right value for the specified GEP index. UndefValue *getElementValue(unsigned Idx) const;
/// Return the number of elements in the array, vector, or struct. unsigned getNumElements() const;
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == UndefValueVal || V->getValueID() == PoisonValueVal; } };
//===----------------------------------------------------------------------===// /// In order to facilitate speculative execution, many instructions do not /// invoke immediate undefined behavior when provided with illegal operands, /// and return a poison value instead. /// /// see LangRef.html#poisonvalues for details. /// class PoisonValue final : public UndefValue { friend class Constant;
explicit PoisonValue(Type *T) : UndefValue(T, PoisonValueVal) {}
void destroyConstantImpl();
public: PoisonValue(const PoisonValue &) = delete;
/// Static factory methods - Return an 'poison' object of the specified type. static PoisonValue *get(Type *T);
/// If this poison has array or vector type, return a poison with the right /// element type. PoisonValue *getSequentialElement() const;
/// If this poison has struct type, return a poison with the right element /// type for the specified element. PoisonValue *getStructElement(unsigned Elt) const;
/// Return an poison of the right value for the specified GEP index if we can, /// otherwise return null (e.g. if C is a ConstantExpr). PoisonValue *getElementValue(Constant *C) const;
/// Return an poison of the right value for the specified GEP index. PoisonValue *getElementValue(unsigned Idx) const;
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == PoisonValueVal; } };
} // end namespace llvm
#endif // LLVM_IR_CONSTANTS_H
|