Viewing file: ScheduleDAGInstrs.h (15.11 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- ScheduleDAGInstrs.h - MachineInstr Scheduling ------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file Implements the ScheduleDAGInstrs class, which implements scheduling /// for a MachineInstr-based dependency graph. // //===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SCHEDULEDAGINSTRS_H #define LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
#include "llvm/ADT/DenseMap.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/SparseMultiSet.h" #include "llvm/ADT/identity.h" #include "llvm/CodeGen/LiveRegUnits.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSchedule.h" #include "llvm/MC/LaneBitmask.h" #include <cassert> #include <cstdint> #include <list> #include <string> #include <utility> #include <vector>
namespace llvm {
class AAResults; class LiveIntervals; class MachineFrameInfo; class MachineFunction; class MachineInstr; class MachineLoopInfo; class MachineOperand; struct MCSchedClassDesc; class PressureDiffs; class PseudoSourceValue; class RegPressureTracker; class UndefValue; class Value;
/// An individual mapping from virtual register number to SUnit. struct VReg2SUnit { unsigned VirtReg; LaneBitmask LaneMask; SUnit *SU;
VReg2SUnit(unsigned VReg, LaneBitmask LaneMask, SUnit *SU) : VirtReg(VReg), LaneMask(LaneMask), SU(SU) {}
unsigned getSparseSetIndex() const { return Register::virtReg2Index(VirtReg); } };
/// Mapping from virtual register to SUnit including an operand index. struct VReg2SUnitOperIdx : public VReg2SUnit { unsigned OperandIndex;
VReg2SUnitOperIdx(unsigned VReg, LaneBitmask LaneMask, unsigned OperandIndex, SUnit *SU) : VReg2SUnit(VReg, LaneMask, SU), OperandIndex(OperandIndex) {} };
/// Record a physical register access. /// For non-data-dependent uses, OpIdx == -1. struct PhysRegSUOper { SUnit *SU; int OpIdx; unsigned RegUnit;
PhysRegSUOper(SUnit *su, int op, unsigned R) : SU(su), OpIdx(op), RegUnit(R) {}
unsigned getSparseSetIndex() const { return RegUnit; } };
/// Use a SparseMultiSet to track physical registers. Storage is only /// allocated once for the pass. It can be cleared in constant time and reused /// without any frees. using RegUnit2SUnitsMap = SparseMultiSet<PhysRegSUOper, identity<unsigned>, uint16_t>;
/// Track local uses of virtual registers. These uses are gathered by the DAG /// builder and may be consulted by the scheduler to avoid iterating an entire /// vreg use list. using VReg2SUnitMultiMap = SparseMultiSet<VReg2SUnit, VirtReg2IndexFunctor>;
using VReg2SUnitOperIdxMultiMap = SparseMultiSet<VReg2SUnitOperIdx, VirtReg2IndexFunctor>;
using ValueType = PointerUnion<const Value *, const PseudoSourceValue *>;
struct UnderlyingObject : PointerIntPair<ValueType, 1, bool> { UnderlyingObject(ValueType V, bool MayAlias) : PointerIntPair<ValueType, 1, bool>(V, MayAlias) {}
ValueType getValue() const { return getPointer(); } bool mayAlias() const { return getInt(); } };
using UnderlyingObjectsVector = SmallVector<UnderlyingObject, 4>;
/// A ScheduleDAG for scheduling lists of MachineInstr. class ScheduleDAGInstrs : public ScheduleDAG { protected: const MachineLoopInfo *MLI = nullptr; const MachineFrameInfo &MFI;
/// TargetSchedModel provides an interface to the machine model. TargetSchedModel SchedModel;
/// True if the DAG builder should remove kill flags (in preparation for /// rescheduling). bool RemoveKillFlags;
/// The standard DAG builder does not normally include terminators as DAG /// nodes because it does not create the necessary dependencies to prevent /// reordering. A specialized scheduler can override /// TargetInstrInfo::isSchedulingBoundary then enable this flag to indicate /// it has taken responsibility for scheduling the terminator correctly. bool CanHandleTerminators = false;
/// Whether lane masks should get tracked. bool TrackLaneMasks = false;
// State specific to the current scheduling region. // ------------------------------------------------
/// The block in which to insert instructions MachineBasicBlock *BB = nullptr;
/// The beginning of the range to be scheduled. MachineBasicBlock::iterator RegionBegin;
/// The end of the range to be scheduled. MachineBasicBlock::iterator RegionEnd;
/// Instructions in this region (distance(RegionBegin, RegionEnd)). unsigned NumRegionInstrs = 0;
/// After calling BuildSchedGraph, each machine instruction in the current /// scheduling region is mapped to an SUnit. DenseMap<MachineInstr*, SUnit*> MISUnitMap;
// State internal to DAG building. // -------------------------------
/// Defs, Uses - Remember where defs and uses of each register are as we /// iterate upward through the instructions. This is allocated here instead /// of inside BuildSchedGraph to avoid the need for it to be initialized and /// destructed for each block. RegUnit2SUnitsMap Defs; RegUnit2SUnitsMap Uses;
/// Tracks the last instruction(s) in this region defining each virtual /// register. There may be multiple current definitions for a register with /// disjunct lanemasks. VReg2SUnitMultiMap CurrentVRegDefs; /// Tracks the last instructions in this region using each virtual register. VReg2SUnitOperIdxMultiMap CurrentVRegUses;
AAResults *AAForDep = nullptr;
/// Remember a generic side-effecting instruction as we proceed. /// No other SU ever gets scheduled around it (except in the special /// case of a huge region that gets reduced). SUnit *BarrierChain = nullptr;
public: /// A list of SUnits, used in Value2SUsMap, during DAG construction. /// Note: to gain speed it might be worth investigating an optimized /// implementation of this data structure, such as a singly linked list /// with a memory pool (SmallVector was tried but slow and SparseSet is not /// applicable). using SUList = std::list<SUnit *>;
/// The direction that should be used to dump the scheduled Sequence. enum DumpDirection { TopDown, BottomUp, Bidirectional, NotSet, };
void setDumpDirection(DumpDirection D) { DumpDir = D; }
protected: DumpDirection DumpDir = NotSet;
/// A map from ValueType to SUList, used during DAG construction, as /// a means of remembering which SUs depend on which memory locations. class Value2SUsMap;
/// Reduces maps in FIFO order, by N SUs. This is better than turning /// every Nth memory SU into BarrierChain in buildSchedGraph(), since /// it avoids unnecessary edges between seen SUs above the new BarrierChain, /// and those below it. void reduceHugeMemNodeMaps(Value2SUsMap &stores, Value2SUsMap &loads, unsigned N);
/// Adds a chain edge between SUa and SUb, but only if both /// AAResults and Target fail to deny the dependency. void addChainDependency(SUnit *SUa, SUnit *SUb, unsigned Latency = 0);
/// Adds dependencies as needed from all SUs in list to SU. void addChainDependencies(SUnit *SU, SUList &SUs, unsigned Latency) { for (SUnit *Entry : SUs) addChainDependency(SU, Entry, Latency); }
/// Adds dependencies as needed from all SUs in map, to SU. void addChainDependencies(SUnit *SU, Value2SUsMap &Val2SUsMap);
/// Adds dependencies as needed to SU, from all SUs mapped to V. void addChainDependencies(SUnit *SU, Value2SUsMap &Val2SUsMap, ValueType V);
/// Adds barrier chain edges from all SUs in map, and then clear the map. /// This is equivalent to insertBarrierChain(), but optimized for the common /// case where the new BarrierChain (a global memory object) has a higher /// NodeNum than all SUs in map. It is assumed BarrierChain has been set /// before calling this. void addBarrierChain(Value2SUsMap &map);
/// Inserts a barrier chain in a huge region, far below current SU. /// Adds barrier chain edges from all SUs in map with higher NodeNums than /// this new BarrierChain, and remove them from map. It is assumed /// BarrierChain has been set before calling this. void insertBarrierChain(Value2SUsMap &map);
/// For an unanalyzable memory access, this Value is used in maps. UndefValue *UnknownValue;
/// Topo - A topological ordering for SUnits which permits fast IsReachable /// and similar queries. ScheduleDAGTopologicalSort Topo;
using DbgValueVector = std::vector<std::pair<MachineInstr *, MachineInstr *>>; /// Remember instruction that precedes DBG_VALUE. /// These are generated by buildSchedGraph but persist so they can be /// referenced when emitting the final schedule. DbgValueVector DbgValues; MachineInstr *FirstDbgValue = nullptr;
/// Set of live physical registers for updating kill flags. LiveRegUnits LiveRegs;
public: explicit ScheduleDAGInstrs(MachineFunction &mf, const MachineLoopInfo *mli, bool RemoveKillFlags = false);
~ScheduleDAGInstrs() override = default;
/// Gets the machine model for instruction scheduling. const TargetSchedModel *getSchedModel() const { return &SchedModel; }
/// Resolves and cache a resolved scheduling class for an SUnit. const MCSchedClassDesc *getSchedClass(SUnit *SU) const { if (!SU->SchedClass && SchedModel.hasInstrSchedModel()) SU->SchedClass = SchedModel.resolveSchedClass(SU->getInstr()); return SU->SchedClass; }
/// IsReachable - Checks if SU is reachable from TargetSU. bool IsReachable(SUnit *SU, SUnit *TargetSU) { return Topo.IsReachable(SU, TargetSU); }
/// Returns an iterator to the top of the current scheduling region. MachineBasicBlock::iterator begin() const { return RegionBegin; }
/// Returns an iterator to the bottom of the current scheduling region. MachineBasicBlock::iterator end() const { return RegionEnd; }
/// Creates a new SUnit and return a ptr to it. SUnit *newSUnit(MachineInstr *MI);
/// Returns an existing SUnit for this MI, or nullptr. SUnit *getSUnit(MachineInstr *MI) const;
/// If this method returns true, handling of the scheduling regions /// themselves (in case of a scheduling boundary in MBB) will be done /// beginning with the topmost region of MBB. virtual bool doMBBSchedRegionsTopDown() const { return false; }
/// Prepares to perform scheduling in the given block. virtual void startBlock(MachineBasicBlock *BB);
/// Cleans up after scheduling in the given block. virtual void finishBlock();
/// Initialize the DAG and common scheduler state for a new /// scheduling region. This does not actually create the DAG, only clears /// it. The scheduling driver may call BuildSchedGraph multiple times per /// scheduling region. virtual void enterRegion(MachineBasicBlock *bb, MachineBasicBlock::iterator begin, MachineBasicBlock::iterator end, unsigned regioninstrs);
/// Called when the scheduler has finished scheduling the current region. virtual void exitRegion();
/// Builds SUnits for the current region. /// If \p RPTracker is non-null, compute register pressure as a side effect. /// The DAG builder is an efficient place to do it because it already visits /// operands. void buildSchedGraph(AAResults *AA, RegPressureTracker *RPTracker = nullptr, PressureDiffs *PDiffs = nullptr, LiveIntervals *LIS = nullptr, bool TrackLaneMasks = false);
/// Adds dependencies from instructions in the current list of /// instructions being scheduled to scheduling barrier. We want to make sure /// instructions which define registers that are either used by the /// terminator or are live-out are properly scheduled. This is especially /// important when the definition latency of the return value(s) are too /// high to be hidden by the branch or when the liveout registers used by /// instructions in the fallthrough block. void addSchedBarrierDeps();
/// Orders nodes according to selected style. /// /// Typically, a scheduling algorithm will implement schedule() without /// overriding enterRegion() or exitRegion(). virtual void schedule() = 0;
/// Allow targets to perform final scheduling actions at the level of the /// whole MachineFunction. By default does nothing. virtual void finalizeSchedule() {}
void dumpNode(const SUnit &SU) const override; void dump() const override;
/// Returns a label for a DAG node that points to an instruction. std::string getGraphNodeLabel(const SUnit *SU) const override;
/// Returns a label for the region of code covered by the DAG. std::string getDAGName() const override;
/// Fixes register kill flags that scheduling has made invalid. void fixupKills(MachineBasicBlock &MBB);
/// True if an edge can be added from PredSU to SuccSU without creating /// a cycle. bool canAddEdge(SUnit *SuccSU, SUnit *PredSU);
/// Add a DAG edge to the given SU with the given predecessor /// dependence data. /// /// \returns true if the edge may be added without creating a cycle OR if an /// equivalent edge already existed (false indicates failure). bool addEdge(SUnit *SuccSU, const SDep &PredDep);
protected: void initSUnits(); void addPhysRegDataDeps(SUnit *SU, unsigned OperIdx); void addPhysRegDeps(SUnit *SU, unsigned OperIdx); void addVRegDefDeps(SUnit *SU, unsigned OperIdx); void addVRegUseDeps(SUnit *SU, unsigned OperIdx);
/// Returns a mask for which lanes get read/written by the given (register) /// machine operand. LaneBitmask getLaneMaskForMO(const MachineOperand &MO) const;
/// Returns true if the def register in \p MO has no uses. bool deadDefHasNoUse(const MachineOperand &MO); };
/// Creates a new SUnit and return a ptr to it. inline SUnit *ScheduleDAGInstrs::newSUnit(MachineInstr *MI) { #ifndef NDEBUG const SUnit *Addr = SUnits.empty() ? nullptr : &SUnits[0]; #endif SUnits.emplace_back(MI, (unsigned)SUnits.size()); assert((Addr == nullptr || Addr == &SUnits[0]) && "SUnits std::vector reallocated on the fly!"); return &SUnits.back(); }
/// Returns an existing SUnit for this MI, or nullptr. inline SUnit *ScheduleDAGInstrs::getSUnit(MachineInstr *MI) const { return MISUnitMap.lookup(MI); }
} // end namespace llvm
#endif // LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
|