Viewing file: MachineInstr.h (83.04 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the declaration of the MachineInstr class, which is the // basic representation for all target dependent machine instructions used by // the back end. // //===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_MACHINEINSTR_H #define LLVM_CODEGEN_MACHINEINSTR_H
#include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/PointerSumType.h" #include "llvm/ADT/ilist.h" #include "llvm/ADT/ilist_node.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/InlineAsm.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/ArrayRecycler.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/TrailingObjects.h" #include <algorithm> #include <cassert> #include <cstdint> #include <utility>
namespace llvm {
class DILabel; class Instruction; class MDNode; class AAResults; template <typename T> class ArrayRef; class DIExpression; class DILocalVariable; class MachineBasicBlock; class MachineFunction; class MachineRegisterInfo; class ModuleSlotTracker; class raw_ostream; template <typename T> class SmallVectorImpl; class SmallBitVector; class StringRef; class TargetInstrInfo; class TargetRegisterClass; class TargetRegisterInfo;
//===----------------------------------------------------------------------===// /// Representation of each machine instruction. /// /// This class isn't a POD type, but it must have a trivial destructor. When a /// MachineFunction is deleted, all the contained MachineInstrs are deallocated /// without having their destructor called. /// class MachineInstr : public ilist_node_with_parent<MachineInstr, MachineBasicBlock, ilist_sentinel_tracking<true>> { public: using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator;
/// Flags to specify different kinds of comments to output in /// assembly code. These flags carry semantic information not /// otherwise easily derivable from the IR text. /// enum CommentFlag { ReloadReuse = 0x1, // higher bits are reserved for target dep comments. NoSchedComment = 0x2, TAsmComments = 0x4 // Target Asm comments should start from this value. };
enum MIFlag { NoFlags = 0, FrameSetup = 1 << 0, // Instruction is used as a part of // function frame setup code. FrameDestroy = 1 << 1, // Instruction is used as a part of // function frame destruction code. BundledPred = 1 << 2, // Instruction has bundled predecessors. BundledSucc = 1 << 3, // Instruction has bundled successors. FmNoNans = 1 << 4, // Instruction does not support Fast // math nan values. FmNoInfs = 1 << 5, // Instruction does not support Fast // math infinity values. FmNsz = 1 << 6, // Instruction is not required to retain // signed zero values. FmArcp = 1 << 7, // Instruction supports Fast math // reciprocal approximations. FmContract = 1 << 8, // Instruction supports Fast math // contraction operations like fma. FmAfn = 1 << 9, // Instruction may map to Fast math // intrinsic approximation. FmReassoc = 1 << 10, // Instruction supports Fast math // reassociation of operand order. NoUWrap = 1 << 11, // Instruction supports binary operator // no unsigned wrap. NoSWrap = 1 << 12, // Instruction supports binary operator // no signed wrap. IsExact = 1 << 13, // Instruction supports division is // known to be exact. NoFPExcept = 1 << 14, // Instruction does not raise // floatint-point exceptions. NoMerge = 1 << 15, // Passes that drop source location info // (e.g. branch folding) should skip // this instruction. Unpredictable = 1 << 16, // Instruction with unpredictable condition. NoConvergent = 1 << 17, // Call does not require convergence guarantees. NonNeg = 1 << 18, // The operand is non-negative. Disjoint = 1 << 19, // Each bit is zero in at least one of the inputs. NoUSWrap = 1 << 20, // Instruction supports geps // no unsigned signed wrap. };
private: const MCInstrDesc *MCID; // Instruction descriptor. MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block.
// Operands are allocated by an ArrayRecycler. MachineOperand *Operands = nullptr; // Pointer to the first operand.
#define LLVM_MI_NUMOPERANDS_BITS 24 #define LLVM_MI_FLAGS_BITS 24 #define LLVM_MI_ASMPRINTERFLAGS_BITS 8
/// Number of operands on instruction. uint32_t NumOperands : LLVM_MI_NUMOPERANDS_BITS;
// OperandCapacity has uint8_t size, so it should be next to NumOperands // to properly pack. using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity; OperandCapacity CapOperands; // Capacity of the Operands array.
/// Various bits of additional information about the machine instruction. uint32_t Flags : LLVM_MI_FLAGS_BITS;
/// Various bits of information used by the AsmPrinter to emit helpful /// comments. This is *not* semantic information. Do not use this for /// anything other than to convey comment information to AsmPrinter. uint8_t AsmPrinterFlags : LLVM_MI_ASMPRINTERFLAGS_BITS;
/// Internal implementation detail class that provides out-of-line storage for /// extra info used by the machine instruction when this info cannot be stored /// in-line within the instruction itself. /// /// This has to be defined eagerly due to the implementation constraints of /// `PointerSumType` where it is used. class ExtraInfo final : TrailingObjects<ExtraInfo, MachineMemOperand *, MCSymbol *, MDNode *, uint32_t> { public: static ExtraInfo *create(BumpPtrAllocator &Allocator, ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol = nullptr, MCSymbol *PostInstrSymbol = nullptr, MDNode *HeapAllocMarker = nullptr, MDNode *PCSections = nullptr, uint32_t CFIType = 0, MDNode *MMRAs = nullptr) { bool HasPreInstrSymbol = PreInstrSymbol != nullptr; bool HasPostInstrSymbol = PostInstrSymbol != nullptr; bool HasHeapAllocMarker = HeapAllocMarker != nullptr; bool HasMMRAs = MMRAs != nullptr; bool HasCFIType = CFIType != 0; bool HasPCSections = PCSections != nullptr; auto *Result = new (Allocator.Allocate( totalSizeToAlloc<MachineMemOperand *, MCSymbol *, MDNode *, uint32_t>( MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol, HasHeapAllocMarker + HasPCSections + HasMMRAs, HasCFIType), alignof(ExtraInfo))) ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol, HasHeapAllocMarker, HasPCSections, HasCFIType, HasMMRAs);
// Copy the actual data into the trailing objects. std::copy(MMOs.begin(), MMOs.end(), Result->getTrailingObjects<MachineMemOperand *>());
unsigned MDNodeIdx = 0;
if (HasPreInstrSymbol) Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol; if (HasPostInstrSymbol) Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] = PostInstrSymbol; if (HasHeapAllocMarker) Result->getTrailingObjects<MDNode *>()[MDNodeIdx++] = HeapAllocMarker; if (HasPCSections) Result->getTrailingObjects<MDNode *>()[MDNodeIdx++] = PCSections; if (HasCFIType) Result->getTrailingObjects<uint32_t>()[0] = CFIType; if (HasMMRAs) Result->getTrailingObjects<MDNode *>()[MDNodeIdx++] = MMRAs;
return Result; }
ArrayRef<MachineMemOperand *> getMMOs() const { return ArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs); }
MCSymbol *getPreInstrSymbol() const { return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr; }
MCSymbol *getPostInstrSymbol() const { return HasPostInstrSymbol ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] : nullptr; }
MDNode *getHeapAllocMarker() const { return HasHeapAllocMarker ? getTrailingObjects<MDNode *>()[0] : nullptr; }
MDNode *getPCSections() const { return HasPCSections ? getTrailingObjects<MDNode *>()[HasHeapAllocMarker] : nullptr; }
uint32_t getCFIType() const { return HasCFIType ? getTrailingObjects<uint32_t>()[0] : 0; }
MDNode *getMMRAMetadata() const { return HasMMRAs ? getTrailingObjects<MDNode *>()[HasHeapAllocMarker + HasPCSections] : nullptr; }
private: friend TrailingObjects;
// Description of the extra info, used to interpret the actual optional // data appended. // // Note that this is not terribly space optimized. This leaves a great deal // of flexibility to fit more in here later. const int NumMMOs; const bool HasPreInstrSymbol; const bool HasPostInstrSymbol; const bool HasHeapAllocMarker; const bool HasPCSections; const bool HasCFIType; const bool HasMMRAs;
// Implement the `TrailingObjects` internal API. size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const { return NumMMOs; } size_t numTrailingObjects(OverloadToken<MCSymbol *>) const { return HasPreInstrSymbol + HasPostInstrSymbol; } size_t numTrailingObjects(OverloadToken<MDNode *>) const { return HasHeapAllocMarker + HasPCSections; } size_t numTrailingObjects(OverloadToken<uint32_t>) const { return HasCFIType; }
// Just a boring constructor to allow us to initialize the sizes. Always use // the `create` routine above. ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol, bool HasHeapAllocMarker, bool HasPCSections, bool HasCFIType, bool HasMMRAs) : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol), HasPostInstrSymbol(HasPostInstrSymbol), HasHeapAllocMarker(HasHeapAllocMarker), HasPCSections(HasPCSections), HasCFIType(HasCFIType), HasMMRAs(HasMMRAs) {} };
/// Enumeration of the kinds of inline extra info available. It is important /// that the `MachineMemOperand` inline kind has a tag value of zero to make /// it accessible as an `ArrayRef`. enum ExtraInfoInlineKinds { EIIK_MMO = 0, EIIK_PreInstrSymbol, EIIK_PostInstrSymbol, EIIK_OutOfLine };
// We store extra information about the instruction here. The common case is // expected to be nothing or a single pointer (typically a MMO or a symbol). // We work to optimize this common case by storing it inline here rather than // requiring a separate allocation, but we fall back to an allocation when // multiple pointers are needed. PointerSumType<ExtraInfoInlineKinds, PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>, PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>, PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>, PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>> Info;
DebugLoc DbgLoc; // Source line information.
/// Unique instruction number. Used by DBG_INSTR_REFs to refer to the values /// defined by this instruction. unsigned DebugInstrNum;
/// Cached opcode from MCID. uint16_t Opcode;
// Intrusive list support friend struct ilist_traits<MachineInstr>; friend struct ilist_callback_traits<MachineBasicBlock>; void setParent(MachineBasicBlock *P) { Parent = P; }
/// This constructor creates a copy of the given /// MachineInstr in the given MachineFunction. MachineInstr(MachineFunction &, const MachineInstr &);
/// This constructor create a MachineInstr and add the implicit operands. /// It reserves space for number of operands specified by /// MCInstrDesc. An explicit DebugLoc is supplied. MachineInstr(MachineFunction &, const MCInstrDesc &TID, DebugLoc DL, bool NoImp = false);
// MachineInstrs are pool-allocated and owned by MachineFunction. friend class MachineFunction;
void dumprImpl(const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const;
static bool opIsRegDef(const MachineOperand &Op) { return Op.isReg() && Op.isDef(); }
static bool opIsRegUse(const MachineOperand &Op) { return Op.isReg() && Op.isUse(); }
public: MachineInstr(const MachineInstr &) = delete; MachineInstr &operator=(const MachineInstr &) = delete; // Use MachineFunction::DeleteMachineInstr() instead. ~MachineInstr() = delete;
const MachineBasicBlock* getParent() const { return Parent; } MachineBasicBlock* getParent() { return Parent; }
/// Move the instruction before \p MovePos. void moveBefore(MachineInstr *MovePos);
/// Return the function that contains the basic block that this instruction /// belongs to. /// /// Note: this is undefined behaviour if the instruction does not have a /// parent. const MachineFunction *getMF() const; MachineFunction *getMF() { return const_cast<MachineFunction *>( static_cast<const MachineInstr *>(this)->getMF()); }
/// Return the asm printer flags bitvector. uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
/// Clear the AsmPrinter bitvector. void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
/// Return whether an AsmPrinter flag is set. bool getAsmPrinterFlag(CommentFlag Flag) const { assert(isUInt<LLVM_MI_ASMPRINTERFLAGS_BITS>(unsigned(Flag)) && "Flag is out of range for the AsmPrinterFlags field"); return AsmPrinterFlags & Flag; }
/// Set a flag for the AsmPrinter. void setAsmPrinterFlag(uint8_t Flag) { assert(isUInt<LLVM_MI_ASMPRINTERFLAGS_BITS>(unsigned(Flag)) && "Flag is out of range for the AsmPrinterFlags field"); AsmPrinterFlags |= Flag; }
/// Clear specific AsmPrinter flags. void clearAsmPrinterFlag(CommentFlag Flag) { assert(isUInt<LLVM_MI_ASMPRINTERFLAGS_BITS>(unsigned(Flag)) && "Flag is out of range for the AsmPrinterFlags field"); AsmPrinterFlags &= ~Flag; }
/// Return the MI flags bitvector. uint32_t getFlags() const { return Flags; }
/// Return whether an MI flag is set. bool getFlag(MIFlag Flag) const { assert(isUInt<LLVM_MI_FLAGS_BITS>(unsigned(Flag)) && "Flag is out of range for the Flags field"); return Flags & Flag; }
/// Set a MI flag. void setFlag(MIFlag Flag) { assert(isUInt<LLVM_MI_FLAGS_BITS>(unsigned(Flag)) && "Flag is out of range for the Flags field"); Flags |= (uint32_t)Flag; }
void setFlags(unsigned flags) { assert(isUInt<LLVM_MI_FLAGS_BITS>(flags) && "flags to be set are out of range for the Flags field"); // Filter out the automatically maintained flags. unsigned Mask = BundledPred | BundledSucc; Flags = (Flags & Mask) | (flags & ~Mask); }
/// clearFlag - Clear a MI flag. void clearFlag(MIFlag Flag) { assert(isUInt<LLVM_MI_FLAGS_BITS>(unsigned(Flag)) && "Flag to clear is out of range for the Flags field"); Flags &= ~((uint32_t)Flag); }
void clearFlags(unsigned flags) { assert(isUInt<LLVM_MI_FLAGS_BITS>(flags) && "flags to be cleared are out of range for the Flags field"); Flags &= ~flags; }
/// Return true if MI is in a bundle (but not the first MI in a bundle). /// /// A bundle looks like this before it's finalized: /// ---------------- /// | MI | /// ---------------- /// | /// ---------------- /// | MI * | /// ---------------- /// | /// ---------------- /// | MI * | /// ---------------- /// In this case, the first MI starts a bundle but is not inside a bundle, the /// next 2 MIs are considered "inside" the bundle. /// /// After a bundle is finalized, it looks like this: /// ---------------- /// | Bundle | /// ---------------- /// | /// ---------------- /// | MI * | /// ---------------- /// | /// ---------------- /// | MI * | /// ---------------- /// | /// ---------------- /// | MI * | /// ---------------- /// The first instruction has the special opcode "BUNDLE". It's not "inside" /// a bundle, but the next three MIs are. bool isInsideBundle() const { return getFlag(BundledPred); }
/// Return true if this instruction part of a bundle. This is true /// if either itself or its following instruction is marked "InsideBundle". bool isBundled() const { return isBundledWithPred() || isBundledWithSucc(); }
/// Return true if this instruction is part of a bundle, and it is not the /// first instruction in the bundle. bool isBundledWithPred() const { return getFlag(BundledPred); }
/// Return true if this instruction is part of a bundle, and it is not the /// last instruction in the bundle. bool isBundledWithSucc() const { return getFlag(BundledSucc); }
/// Bundle this instruction with its predecessor. This can be an unbundled /// instruction, or it can be the first instruction in a bundle. void bundleWithPred();
/// Bundle this instruction with its successor. This can be an unbundled /// instruction, or it can be the last instruction in a bundle. void bundleWithSucc();
/// Break bundle above this instruction. void unbundleFromPred();
/// Break bundle below this instruction. void unbundleFromSucc();
/// Returns the debug location id of this MachineInstr. const DebugLoc &getDebugLoc() const { return DbgLoc; }
/// Return the operand containing the offset to be used if this DBG_VALUE /// instruction is indirect; will be an invalid register if this value is /// not indirect, and an immediate with value 0 otherwise. const MachineOperand &getDebugOffset() const { assert(isNonListDebugValue() && "not a DBG_VALUE"); return getOperand(1); } MachineOperand &getDebugOffset() { assert(isNonListDebugValue() && "not a DBG_VALUE"); return getOperand(1); }
/// Return the operand for the debug variable referenced by /// this DBG_VALUE instruction. const MachineOperand &getDebugVariableOp() const; MachineOperand &getDebugVariableOp();
/// Return the debug variable referenced by /// this DBG_VALUE instruction. const DILocalVariable *getDebugVariable() const;
/// Return the operand for the complex address expression referenced by /// this DBG_VALUE instruction. const MachineOperand &getDebugExpressionOp() const; MachineOperand &getDebugExpressionOp();
/// Return the complex address expression referenced by /// this DBG_VALUE instruction. const DIExpression *getDebugExpression() const;
/// Return the debug label referenced by /// this DBG_LABEL instruction. const DILabel *getDebugLabel() const;
/// Fetch the instruction number of this MachineInstr. If it does not have /// one already, a new and unique number will be assigned. unsigned getDebugInstrNum();
/// Fetch instruction number of this MachineInstr -- but before it's inserted /// into \p MF. Needed for transformations that create an instruction but /// don't immediately insert them. unsigned getDebugInstrNum(MachineFunction &MF);
/// Examine the instruction number of this MachineInstr. May be zero if /// it hasn't been assigned a number yet. unsigned peekDebugInstrNum() const { return DebugInstrNum; }
/// Set instruction number of this MachineInstr. Avoid using unless you're /// deserializing this information. void setDebugInstrNum(unsigned Num) { DebugInstrNum = Num; }
/// Drop any variable location debugging information associated with this /// instruction. Use when an instruction is modified in such a way that it no /// longer defines the value it used to. Variable locations using that value /// will be dropped. void dropDebugNumber() { DebugInstrNum = 0; }
/// Emit an error referring to the source location of this instruction. /// This should only be used for inline assembly that is somehow /// impossible to compile. Other errors should have been handled much /// earlier. /// /// If this method returns, the caller should try to recover from the error. void emitError(StringRef Msg) const;
/// Returns the target instruction descriptor of this MachineInstr. const MCInstrDesc &getDesc() const { return *MCID; }
/// Returns the opcode of this MachineInstr. unsigned getOpcode() const { return Opcode; }
/// Retuns the total number of operands. unsigned getNumOperands() const { return NumOperands; }
/// Returns the total number of operands which are debug locations. unsigned getNumDebugOperands() const { return std::distance(debug_operands().begin(), debug_operands().end()); }
const MachineOperand& getOperand(unsigned i) const { assert(i < getNumOperands() && "getOperand() out of range!"); return Operands[i]; } MachineOperand& getOperand(unsigned i) { assert(i < getNumOperands() && "getOperand() out of range!"); return Operands[i]; }
MachineOperand &getDebugOperand(unsigned Index) { assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!"); return *(debug_operands().begin() + Index); } const MachineOperand &getDebugOperand(unsigned Index) const { assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!"); return *(debug_operands().begin() + Index); }
/// Returns whether this debug value has at least one debug operand with the /// register \p Reg. bool hasDebugOperandForReg(Register Reg) const { return any_of(debug_operands(), [Reg](const MachineOperand &Op) { return Op.isReg() && Op.getReg() == Reg; }); }
/// Returns a range of all of the operands that correspond to a debug use of /// \p Reg. template <typename Operand, typename Instruction> static iterator_range< filter_iterator<Operand *, std::function<bool(Operand &Op)>>> getDebugOperandsForReg(Instruction *MI, Register Reg) { std::function<bool(Operand & Op)> OpUsesReg( [Reg](Operand &Op) { return Op.isReg() && Op.getReg() == Reg; }); return make_filter_range(MI->debug_operands(), OpUsesReg); } iterator_range<filter_iterator<const MachineOperand *, std::function<bool(const MachineOperand &Op)>>> getDebugOperandsForReg(Register Reg) const { return MachineInstr::getDebugOperandsForReg<const MachineOperand, const MachineInstr>(this, Reg); } iterator_range<filter_iterator<MachineOperand *, std::function<bool(MachineOperand &Op)>>> getDebugOperandsForReg(Register Reg) { return MachineInstr::getDebugOperandsForReg<MachineOperand, MachineInstr>( this, Reg); }
bool isDebugOperand(const MachineOperand *Op) const { return Op >= adl_begin(debug_operands()) && Op <= adl_end(debug_operands()); }
unsigned getDebugOperandIndex(const MachineOperand *Op) const { assert(isDebugOperand(Op) && "Expected a debug operand."); return std::distance(adl_begin(debug_operands()), Op); }
/// Returns the total number of definitions. unsigned getNumDefs() const { return getNumExplicitDefs() + MCID->implicit_defs().size(); }
/// Returns true if the instruction has implicit definition. bool hasImplicitDef() const { for (const MachineOperand &MO : implicit_operands()) if (MO.isDef() && MO.isImplicit()) return true; return false; }
/// Returns the implicit operands number. unsigned getNumImplicitOperands() const { return getNumOperands() - getNumExplicitOperands(); }
/// Return true if operand \p OpIdx is a subregister index. bool isOperandSubregIdx(unsigned OpIdx) const { assert(getOperand(OpIdx).isImm() && "Expected MO_Immediate operand type."); if (isExtractSubreg() && OpIdx == 2) return true; if (isInsertSubreg() && OpIdx == 3) return true; if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0) return true; if (isSubregToReg() && OpIdx == 3) return true; return false; }
/// Returns the number of non-implicit operands. unsigned getNumExplicitOperands() const;
/// Returns the number of non-implicit definitions. unsigned getNumExplicitDefs() const;
/// iterator/begin/end - Iterate over all operands of a machine instruction. using mop_iterator = MachineOperand *; using const_mop_iterator = const MachineOperand *;
mop_iterator operands_begin() { return Operands; } mop_iterator operands_end() { return Operands + NumOperands; }
const_mop_iterator operands_begin() const { return Operands; } const_mop_iterator operands_end() const { return Operands + NumOperands; }
iterator_range<mop_iterator> operands() { return make_range(operands_begin(), operands_end()); } iterator_range<const_mop_iterator> operands() const { return make_range(operands_begin(), operands_end()); } iterator_range<mop_iterator> explicit_operands() { return make_range(operands_begin(), operands_begin() + getNumExplicitOperands()); } iterator_range<const_mop_iterator> explicit_operands() const { return make_range(operands_begin(), operands_begin() + getNumExplicitOperands()); } iterator_range<mop_iterator> implicit_operands() { return make_range(explicit_operands().end(), operands_end()); } iterator_range<const_mop_iterator> implicit_operands() const { return make_range(explicit_operands().end(), operands_end()); } /// Returns a range over all operands that are used to determine the variable /// location for this DBG_VALUE instruction. iterator_range<mop_iterator> debug_operands() { assert((isDebugValueLike()) && "Must be a debug value instruction."); return isNonListDebugValue() ? make_range(operands_begin(), operands_begin() + 1) : make_range(operands_begin() + 2, operands_end()); } /// \copydoc debug_operands() iterator_range<const_mop_iterator> debug_operands() const { assert((isDebugValueLike()) && "Must be a debug value instruction."); return isNonListDebugValue() ? make_range(operands_begin(), operands_begin() + 1) : make_range(operands_begin() + 2, operands_end()); } /// Returns a range over all explicit operands that are register definitions. /// Implicit definition are not included! iterator_range<mop_iterator> defs() { return make_range(operands_begin(), operands_begin() + getNumExplicitDefs()); } /// \copydoc defs() iterator_range<const_mop_iterator> defs() const { return make_range(operands_begin(), operands_begin() + getNumExplicitDefs()); } /// Returns a range that includes all operands that are register uses. /// This may include unrelated operands which are not register uses. iterator_range<mop_iterator> uses() { return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); } /// \copydoc uses() iterator_range<const_mop_iterator> uses() const { return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); } iterator_range<mop_iterator> explicit_uses() { return make_range(operands_begin() + getNumExplicitDefs(), operands_begin() + getNumExplicitOperands()); } iterator_range<const_mop_iterator> explicit_uses() const { return make_range(operands_begin() + getNumExplicitDefs(), operands_begin() + getNumExplicitOperands()); }
using filtered_mop_iterator = filter_iterator<mop_iterator, bool (*)(const MachineOperand &)>; using filtered_const_mop_iterator = filter_iterator<const_mop_iterator, bool (*)(const MachineOperand &)>;
/// Returns an iterator range over all operands that are (explicit or /// implicit) register defs. iterator_range<filtered_mop_iterator> all_defs() { return make_filter_range(operands(), opIsRegDef); } /// \copydoc all_defs() iterator_range<filtered_const_mop_iterator> all_defs() const { return make_filter_range(operands(), opIsRegDef); }
/// Returns an iterator range over all operands that are (explicit or /// implicit) register uses. iterator_range<filtered_mop_iterator> all_uses() { return make_filter_range(uses(), opIsRegUse); } /// \copydoc all_uses() iterator_range<filtered_const_mop_iterator> all_uses() const { return make_filter_range(uses(), opIsRegUse); }
/// Returns the number of the operand iterator \p I points to. unsigned getOperandNo(const_mop_iterator I) const { return I - operands_begin(); }
/// Access to memory operands of the instruction. If there are none, that does /// not imply anything about whether the function accesses memory. Instead, /// the caller must behave conservatively. ArrayRef<MachineMemOperand *> memoperands() const { if (!Info) return {};
if (Info.is<EIIK_MMO>()) return ArrayRef(Info.getAddrOfZeroTagPointer(), 1);
if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) return EI->getMMOs();
return {}; }
/// Access to memory operands of the instruction. /// /// If `memoperands_begin() == memoperands_end()`, that does not imply /// anything about whether the function accesses memory. Instead, the caller /// must behave conservatively. mmo_iterator memoperands_begin() const { return memoperands().begin(); }
/// Access to memory operands of the instruction. /// /// If `memoperands_begin() == memoperands_end()`, that does not imply /// anything about whether the function accesses memory. Instead, the caller /// must behave conservatively. mmo_iterator memoperands_end() const { return memoperands().end(); }
/// Return true if we don't have any memory operands which described the /// memory access done by this instruction. If this is true, calling code /// must be conservative. bool memoperands_empty() const { return memoperands().empty(); }
/// Return true if this instruction has exactly one MachineMemOperand. bool hasOneMemOperand() const { return memoperands().size() == 1; }
/// Return the number of memory operands. unsigned getNumMemOperands() const { return memoperands().size(); }
/// Helper to extract a pre-instruction symbol if one has been added. MCSymbol *getPreInstrSymbol() const { if (!Info) return nullptr; if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>()) return S; if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) return EI->getPreInstrSymbol();
return nullptr; }
/// Helper to extract a post-instruction symbol if one has been added. MCSymbol *getPostInstrSymbol() const { if (!Info) return nullptr; if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>()) return S; if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) return EI->getPostInstrSymbol();
return nullptr; }
/// Helper to extract a heap alloc marker if one has been added. MDNode *getHeapAllocMarker() const { if (!Info) return nullptr; if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) return EI->getHeapAllocMarker();
return nullptr; }
/// Helper to extract PCSections metadata target sections. MDNode *getPCSections() const { if (!Info) return nullptr; if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) return EI->getPCSections();
return nullptr; }
/// Helper to extract mmra.op metadata. MDNode *getMMRAMetadata() const { if (!Info) return nullptr; if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) return EI->getMMRAMetadata(); return nullptr; }
/// Helper to extract a CFI type hash if one has been added. uint32_t getCFIType() const { if (!Info) return 0; if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) return EI->getCFIType();
return 0; }
/// API for querying MachineInstr properties. They are the same as MCInstrDesc /// queries but they are bundle aware.
enum QueryType { IgnoreBundle, // Ignore bundles AnyInBundle, // Return true if any instruction in bundle has property AllInBundle // Return true if all instructions in bundle have property };
/// Return true if the instruction (or in the case of a bundle, /// the instructions inside the bundle) has the specified property. /// The first argument is the property being queried. /// The second argument indicates whether the query should look inside /// instruction bundles. bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const { assert(MCFlag < 64 && "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle."); // Inline the fast path for unbundled or bundle-internal instructions. if (Type == IgnoreBundle || !isBundled() || isBundledWithPred()) return getDesc().getFlags() & (1ULL << MCFlag);
// If this is the first instruction in a bundle, take the slow path. return hasPropertyInBundle(1ULL << MCFlag, Type); }
/// Return true if this is an instruction that should go through the usual /// legalization steps. bool isPreISelOpcode(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::PreISelOpcode, Type); }
/// Return true if this instruction can have a variable number of operands. /// In this case, the variable operands will be after the normal /// operands but before the implicit definitions and uses (if any are /// present). bool isVariadic(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::Variadic, Type); }
/// Set if this instruction has an optional definition, e.g. /// ARM instructions which can set condition code if 's' bit is set. bool hasOptionalDef(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::HasOptionalDef, Type); }
/// Return true if this is a pseudo instruction that doesn't /// correspond to a real machine instruction. bool isPseudo(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::Pseudo, Type); }
/// Return true if this instruction doesn't produce any output in the form of /// executable instructions. bool isMetaInstruction(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::Meta, Type); }
bool isReturn(QueryType Type = AnyInBundle) const { return hasProperty(MCID::Return, Type); }
/// Return true if this is an instruction that marks the end of an EH scope, /// i.e., a catchpad or a cleanuppad instruction. bool isEHScopeReturn(QueryType Type = AnyInBundle) const { return hasProperty(MCID::EHScopeReturn, Type); }
bool isCall(QueryType Type = AnyInBundle) const { return hasProperty(MCID::Call, Type); }
/// Return true if this is a call instruction that may have an associated /// call site entry in the debug info. bool isCandidateForCallSiteEntry(QueryType Type = IgnoreBundle) const; /// Return true if copying, moving, or erasing this instruction requires /// updating Call Site Info (see \ref copyCallSiteInfo, \ref moveCallSiteInfo, /// \ref eraseCallSiteInfo). bool shouldUpdateCallSiteInfo() const;
/// Returns true if the specified instruction stops control flow /// from executing the instruction immediately following it. Examples include /// unconditional branches and return instructions. bool isBarrier(QueryType Type = AnyInBundle) const { return hasProperty(MCID::Barrier, Type); }
/// Returns true if this instruction part of the terminator for a basic block. /// Typically this is things like return and branch instructions. /// /// Various passes use this to insert code into the bottom of a basic block, /// but before control flow occurs. bool isTerminator(QueryType Type = AnyInBundle) const { return hasProperty(MCID::Terminator, Type); }
/// Returns true if this is a conditional, unconditional, or indirect branch. /// Predicates below can be used to discriminate between /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to /// get more information. bool isBranch(QueryType Type = AnyInBundle) const { return hasProperty(MCID::Branch, Type); }
/// Return true if this is an indirect branch, such as a /// branch through a register. bool isIndirectBranch(QueryType Type = AnyInBundle) const { return hasProperty(MCID::IndirectBranch, Type); }
/// Return true if this is a branch which may fall /// through to the next instruction or may transfer control flow to some other /// block. The TargetInstrInfo::analyzeBranch method can be used to get more /// information about this branch. bool isConditionalBranch(QueryType Type = AnyInBundle) const { return isBranch(Type) && !isBarrier(Type) && !isIndirectBranch(Type); }
/// Return true if this is a branch which always /// transfers control flow to some other block. The /// TargetInstrInfo::analyzeBranch method can be used to get more information /// about this branch. bool isUnconditionalBranch(QueryType Type = AnyInBundle) const { return isBranch(Type) && isBarrier(Type) && !isIndirectBranch(Type); }
/// Return true if this instruction has a predicate operand that /// controls execution. It may be set to 'always', or may be set to other /// values. There are various methods in TargetInstrInfo that can be used to /// control and modify the predicate in this instruction. bool isPredicable(QueryType Type = AllInBundle) const { // If it's a bundle than all bundled instructions must be predicable for this // to return true. return hasProperty(MCID::Predicable, Type); }
/// Return true if this instruction is a comparison. bool isCompare(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::Compare, Type); }
/// Return true if this instruction is a move immediate /// (including conditional moves) instruction. bool isMoveImmediate(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::MoveImm, Type); }
/// Return true if this instruction is a register move. /// (including moving values from subreg to reg) bool isMoveReg(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::MoveReg, Type); }
/// Return true if this instruction is a bitcast instruction. bool isBitcast(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::Bitcast, Type); }
/// Return true if this instruction is a select instruction. bool isSelect(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::Select, Type); }
/// Return true if this instruction cannot be safely duplicated. /// For example, if the instruction has a unique labels attached /// to it, duplicating it would cause multiple definition errors. bool isNotDuplicable(QueryType Type = AnyInBundle) const { if (getPreInstrSymbol() || getPostInstrSymbol()) return true; return hasProperty(MCID::NotDuplicable, Type); }
/// Return true if this instruction is convergent. /// Convergent instructions can not be made control-dependent on any /// additional values. bool isConvergent(QueryType Type = AnyInBundle) const { if (isInlineAsm()) { unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); if (ExtraInfo & InlineAsm::Extra_IsConvergent) return true; } if (getFlag(NoConvergent)) return false; return hasProperty(MCID::Convergent, Type); }
/// Returns true if the specified instruction has a delay slot /// which must be filled by the code generator. bool hasDelaySlot(QueryType Type = AnyInBundle) const { return hasProperty(MCID::DelaySlot, Type); }
/// Return true for instructions that can be folded as /// memory operands in other instructions. The most common use for this /// is instructions that are simple loads from memory that don't modify /// the loaded value in any way, but it can also be used for instructions /// that can be expressed as constant-pool loads, such as V_SETALLONES /// on x86, to allow them to be folded when it is beneficial. /// This should only be set on instructions that return a value in their /// only virtual register definition. bool canFoldAsLoad(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::FoldableAsLoad, Type); }
/// Return true if this instruction behaves /// the same way as the generic REG_SEQUENCE instructions. /// E.g., on ARM, /// dX VMOVDRR rY, rZ /// is equivalent to /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1. /// /// Note that for the optimizers to be able to take advantage of /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be /// override accordingly. bool isRegSequenceLike(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::RegSequence, Type); }
/// Return true if this instruction behaves /// the same way as the generic EXTRACT_SUBREG instructions. /// E.g., on ARM, /// rX, rY VMOVRRD dZ /// is equivalent to two EXTRACT_SUBREG: /// rX = EXTRACT_SUBREG dZ, ssub_0 /// rY = EXTRACT_SUBREG dZ, ssub_1 /// /// Note that for the optimizers to be able to take advantage of /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be /// override accordingly. bool isExtractSubregLike(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::ExtractSubreg, Type); }
/// Return true if this instruction behaves /// the same way as the generic INSERT_SUBREG instructions. /// E.g., on ARM, /// dX = VSETLNi32 dY, rZ, Imm /// is equivalent to a INSERT_SUBREG: /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm) /// /// Note that for the optimizers to be able to take advantage of /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be /// override accordingly. bool isInsertSubregLike(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::InsertSubreg, Type); }
//===--------------------------------------------------------------------===// // Side Effect Analysis //===--------------------------------------------------------------------===//
/// Return true if this instruction could possibly read memory. /// Instructions with this flag set are not necessarily simple load /// instructions, they may load a value and modify it, for example. bool mayLoad(QueryType Type = AnyInBundle) const { if (isInlineAsm()) { unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); if (ExtraInfo & InlineAsm::Extra_MayLoad) return true; } return hasProperty(MCID::MayLoad, Type); }
/// Return true if this instruction could possibly modify memory. /// Instructions with this flag set are not necessarily simple store /// instructions, they may store a modified value based on their operands, or /// may not actually modify anything, for example. bool mayStore(QueryType Type = AnyInBundle) const { if (isInlineAsm()) { unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); if (ExtraInfo & InlineAsm::Extra_MayStore) return true; } return hasProperty(MCID::MayStore, Type); }
/// Return true if this instruction could possibly read or modify memory. bool mayLoadOrStore(QueryType Type = AnyInBundle) const { return mayLoad(Type) || mayStore(Type); }
/// Return true if this instruction could possibly raise a floating-point /// exception. This is the case if the instruction is a floating-point /// instruction that can in principle raise an exception, as indicated /// by the MCID::MayRaiseFPException property, *and* at the same time, /// the instruction is used in a context where we expect floating-point /// exceptions are not disabled, as indicated by the NoFPExcept MI flag. bool mayRaiseFPException() const { return hasProperty(MCID::MayRaiseFPException) && !getFlag(MachineInstr::MIFlag::NoFPExcept); }
//===--------------------------------------------------------------------===// // Flags that indicate whether an instruction can be modified by a method. //===--------------------------------------------------------------------===//
/// Return true if this may be a 2- or 3-address /// instruction (of the form "X = op Y, Z, ..."), which produces the same /// result if Y and Z are exchanged. If this flag is set, then the /// TargetInstrInfo::commuteInstruction method may be used to hack on the /// instruction. /// /// Note that this flag may be set on instructions that are only commutable /// sometimes. In these cases, the call to commuteInstruction will fail. /// Also note that some instructions require non-trivial modification to /// commute them. bool isCommutable(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::Commutable, Type); }
/// Return true if this is a 2-address instruction /// which can be changed into a 3-address instruction if needed. Doing this /// transformation can be profitable in the register allocator, because it /// means that the instruction can use a 2-address form if possible, but /// degrade into a less efficient form if the source and dest register cannot /// be assigned to the same register. For example, this allows the x86 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which /// is the same speed as the shift but has bigger code size. /// /// If this returns true, then the target must implement the /// TargetInstrInfo::convertToThreeAddress method for this instruction, which /// is allowed to fail if the transformation isn't valid for this specific /// instruction (e.g. shl reg, 4 on x86). /// bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::ConvertibleTo3Addr, Type); }
/// Return true if this instruction requires /// custom insertion support when the DAG scheduler is inserting it into a /// machine basic block. If this is true for the instruction, it basically /// means that it is a pseudo instruction used at SelectionDAG time that is /// expanded out into magic code by the target when MachineInstrs are formed. /// /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method /// is used to insert this into the MachineBasicBlock. bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::UsesCustomInserter, Type); }
/// Return true if this instruction requires *adjustment* /// after instruction selection by calling a target hook. For example, this /// can be used to fill in ARM 's' optional operand depending on whether /// the conditional flag register is used. bool hasPostISelHook(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::HasPostISelHook, Type); }
/// Returns true if this instruction is a candidate for remat. /// This flag is deprecated, please don't use it anymore. If this /// flag is set, the isReallyTriviallyReMaterializable() method is called to /// verify the instruction is really rematerializable. bool isRematerializable(QueryType Type = AllInBundle) const { // It's only possible to re-mat a bundle if all bundled instructions are // re-materializable. return hasProperty(MCID::Rematerializable, Type); }
/// Returns true if this instruction has the same cost (or less) than a move /// instruction. This is useful during certain types of optimizations /// (e.g., remat during two-address conversion or machine licm) /// where we would like to remat or hoist the instruction, but not if it costs /// more than moving the instruction into the appropriate register. Note, we /// are not marking copies from and to the same register class with this flag. bool isAsCheapAsAMove(QueryType Type = AllInBundle) const { // Only returns true for a bundle if all bundled instructions are cheap. return hasProperty(MCID::CheapAsAMove, Type); }
/// Returns true if this instruction source operands /// have special register allocation requirements that are not captured by the /// operand register classes. e.g. ARM::STRD's two source registers must be an /// even / odd pair, ARM::STM registers have to be in ascending order. /// Post-register allocation passes should not attempt to change allocations /// for sources of instructions with this flag. bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const { return hasProperty(MCID::ExtraSrcRegAllocReq, Type); }
/// Returns true if this instruction def operands /// have special register allocation requirements that are not captured by the /// operand register classes. e.g. ARM::LDRD's two def registers must be an /// even / odd pair, ARM::LDM registers have to be in ascending order. /// Post-register allocation passes should not attempt to change allocations /// for definitions of instructions with this flag. bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const { return hasProperty(MCID::ExtraDefRegAllocReq, Type); }
enum MICheckType { CheckDefs, // Check all operands for equality CheckKillDead, // Check all operands including kill / dead markers IgnoreDefs, // Ignore all definitions IgnoreVRegDefs // Ignore virtual register definitions };
/// Return true if this instruction is identical to \p Other. /// Two instructions are identical if they have the same opcode and all their /// operands are identical (with respect to MachineOperand::isIdenticalTo()). /// Note that this means liveness related flags (dead, undef, kill) do not /// affect the notion of identical. bool isIdenticalTo(const MachineInstr &Other, MICheckType Check = CheckDefs) const;
/// Returns true if this instruction is a debug instruction that represents an /// identical debug value to \p Other. /// This function considers these debug instructions equivalent if they have /// identical variables, debug locations, and debug operands, and if the /// DIExpressions combined with the directness flags are equivalent. bool isEquivalentDbgInstr(const MachineInstr &Other) const;
/// Unlink 'this' from the containing basic block, and return it without /// deleting it. /// /// This function can not be used on bundled instructions, use /// removeFromBundle() to remove individual instructions from a bundle. MachineInstr *removeFromParent();
/// Unlink this instruction from its basic block and return it without /// deleting it. /// /// If the instruction is part of a bundle, the other instructions in the /// bundle remain bundled. MachineInstr *removeFromBundle();
/// Unlink 'this' from the containing basic block and delete it. /// /// If this instruction is the header of a bundle, the whole bundle is erased. /// This function can not be used for instructions inside a bundle, use /// eraseFromBundle() to erase individual bundled instructions. void eraseFromParent();
/// Unlink 'this' from its basic block and delete it. /// /// If the instruction is part of a bundle, the other instructions in the /// bundle remain bundled. void eraseFromBundle();
bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; } bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; } bool isAnnotationLabel() const { return getOpcode() == TargetOpcode::ANNOTATION_LABEL; }
/// Returns true if the MachineInstr represents a label. bool isLabel() const { return isEHLabel() || isGCLabel() || isAnnotationLabel(); }
bool isCFIInstruction() const { return getOpcode() == TargetOpcode::CFI_INSTRUCTION; }
bool isPseudoProbe() const { return getOpcode() == TargetOpcode::PSEUDO_PROBE; }
// True if the instruction represents a position in the function. bool isPosition() const { return isLabel() || isCFIInstruction(); }
bool isNonListDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; } bool isDebugValueList() const { return getOpcode() == TargetOpcode::DBG_VALUE_LIST; } bool isDebugValue() const { return isNonListDebugValue() || isDebugValueList(); } bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; } bool isDebugRef() const { return getOpcode() == TargetOpcode::DBG_INSTR_REF; } bool isDebugValueLike() const { return isDebugValue() || isDebugRef(); } bool isDebugPHI() const { return getOpcode() == TargetOpcode::DBG_PHI; } bool isDebugInstr() const { return isDebugValue() || isDebugLabel() || isDebugRef() || isDebugPHI(); } bool isDebugOrPseudoInstr() const { return isDebugInstr() || isPseudoProbe(); }
bool isDebugOffsetImm() const { return isNonListDebugValue() && getDebugOffset().isImm(); }
/// A DBG_VALUE is indirect iff the location operand is a register and /// the offset operand is an immediate. bool isIndirectDebugValue() const { return isDebugOffsetImm() && getDebugOperand(0).isReg(); }
/// A DBG_VALUE is an entry value iff its debug expression contains the /// DW_OP_LLVM_entry_value operation. bool isDebugEntryValue() const;
/// Return true if the instruction is a debug value which describes a part of /// a variable as unavailable. bool isUndefDebugValue() const { if (!isDebugValue()) return false; // If any $noreg locations are given, this DV is undef. for (const MachineOperand &Op : debug_operands()) if (Op.isReg() && !Op.getReg().isValid()) return true; return false; }
bool isJumpTableDebugInfo() const { return getOpcode() == TargetOpcode::JUMP_TABLE_DEBUG_INFO; }
bool isPHI() const { return getOpcode() == TargetOpcode::PHI || getOpcode() == TargetOpcode::G_PHI; } bool isKill() const { return getOpcode() == TargetOpcode::KILL; } bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; } bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM || getOpcode() == TargetOpcode::INLINEASM_BR; } /// Returns true if the register operand can be folded with a load or store /// into a frame index. Does so by checking the InlineAsm::Flag immediate /// operand at OpId - 1. bool mayFoldInlineAsmRegOp(unsigned OpId) const;
bool isStackAligningInlineAsm() const; InlineAsm::AsmDialect getInlineAsmDialect() const;
bool isInsertSubreg() const { return getOpcode() == TargetOpcode::INSERT_SUBREG; }
bool isSubregToReg() const { return getOpcode() == TargetOpcode::SUBREG_TO_REG; }
bool isRegSequence() const { return getOpcode() == TargetOpcode::REG_SEQUENCE; }
bool isBundle() const { return getOpcode() == TargetOpcode::BUNDLE; }
bool isCopy() const { return getOpcode() == TargetOpcode::COPY; }
bool isFullCopy() const { return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg(); }
bool isExtractSubreg() const { return getOpcode() == TargetOpcode::EXTRACT_SUBREG; }
/// Return true if the instruction behaves like a copy. /// This does not include native copy instructions. bool isCopyLike() const { return isCopy() || isSubregToReg(); }
/// Return true is the instruction is an identity copy. bool isIdentityCopy() const { return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() && getOperand(0).getSubReg() == getOperand(1).getSubReg(); }
/// Return true if this is a transient instruction that is either very likely /// to be eliminated during register allocation (such as copy-like /// instructions), or if this instruction doesn't have an execution-time cost. bool isTransient() const { switch (getOpcode()) { default: return isMetaInstruction(); // Copy-like instructions are usually eliminated during register allocation. case TargetOpcode::PHI: case TargetOpcode::G_PHI: case TargetOpcode::COPY: case TargetOpcode::INSERT_SUBREG: case TargetOpcode::SUBREG_TO_REG: case TargetOpcode::REG_SEQUENCE: return true; } }
/// Return the number of instructions inside the MI bundle, excluding the /// bundle header. /// /// This is the number of instructions that MachineBasicBlock::iterator /// skips, 0 for unbundled instructions. unsigned getBundleSize() const;
/// Return true if the MachineInstr reads the specified register. /// If TargetRegisterInfo is non-null, then it also checks if there /// is a read of a super-register. /// This does not count partial redefines of virtual registers as reads: /// %reg1024:6 = OP. bool readsRegister(Register Reg, const TargetRegisterInfo *TRI) const { return findRegisterUseOperandIdx(Reg, TRI, false) != -1; }
/// Return true if the MachineInstr reads the specified virtual register. /// Take into account that a partial define is a /// read-modify-write operation. bool readsVirtualRegister(Register Reg) const { return readsWritesVirtualRegister(Reg).first; }
/// Return a pair of bools (reads, writes) indicating if this instruction /// reads or writes Reg. This also considers partial defines. /// If Ops is not null, all operand indices for Reg are added. std::pair<bool,bool> readsWritesVirtualRegister(Register Reg, SmallVectorImpl<unsigned> *Ops = nullptr) const;
/// Return true if the MachineInstr kills the specified register. /// If TargetRegisterInfo is non-null, then it also checks if there is /// a kill of a super-register. bool killsRegister(Register Reg, const TargetRegisterInfo *TRI) const { return findRegisterUseOperandIdx(Reg, TRI, true) != -1; }
/// Return true if the MachineInstr fully defines the specified register. /// If TargetRegisterInfo is non-null, then it also checks /// if there is a def of a super-register. /// NOTE: It's ignoring subreg indices on virtual registers. bool definesRegister(Register Reg, const TargetRegisterInfo *TRI) const { return findRegisterDefOperandIdx(Reg, TRI, false, false) != -1; }
/// Return true if the MachineInstr modifies (fully define or partially /// define) the specified register. /// NOTE: It's ignoring subreg indices on virtual registers. bool modifiesRegister(Register Reg, const TargetRegisterInfo *TRI) const { return findRegisterDefOperandIdx(Reg, TRI, false, true) != -1; }
/// Returns true if the register is dead in this machine instruction. /// If TargetRegisterInfo is non-null, then it also checks /// if there is a dead def of a super-register. bool registerDefIsDead(Register Reg, const TargetRegisterInfo *TRI) const { return findRegisterDefOperandIdx(Reg, TRI, true, false) != -1; }
/// Returns true if the MachineInstr has an implicit-use operand of exactly /// the given register (not considering sub/super-registers). bool hasRegisterImplicitUseOperand(Register Reg) const;
/// Returns the operand index that is a use of the specific register or -1 /// if it is not found. It further tightens the search criteria to a use /// that kills the register if isKill is true. int findRegisterUseOperandIdx(Register Reg, const TargetRegisterInfo *TRI, bool isKill = false) const;
/// Wrapper for findRegisterUseOperandIdx, it returns /// a pointer to the MachineOperand rather than an index. MachineOperand *findRegisterUseOperand(Register Reg, const TargetRegisterInfo *TRI, bool isKill = false) { int Idx = findRegisterUseOperandIdx(Reg, TRI, isKill); return (Idx == -1) ? nullptr : &getOperand(Idx); }
const MachineOperand *findRegisterUseOperand(Register Reg, const TargetRegisterInfo *TRI, bool isKill = false) const { return const_cast<MachineInstr *>(this)->findRegisterUseOperand(Reg, TRI, isKill); }
/// Returns the operand index that is a def of the specified register or /// -1 if it is not found. If isDead is true, defs that are not dead are /// skipped. If Overlap is true, then it also looks for defs that merely /// overlap the specified register. If TargetRegisterInfo is non-null, /// then it also checks if there is a def of a super-register. /// This may also return a register mask operand when Overlap is true. int findRegisterDefOperandIdx(Register Reg, const TargetRegisterInfo *TRI, bool isDead = false, bool Overlap = false) const;
/// Wrapper for findRegisterDefOperandIdx, it returns /// a pointer to the MachineOperand rather than an index. MachineOperand *findRegisterDefOperand(Register Reg, const TargetRegisterInfo *TRI, bool isDead = false, bool Overlap = false) { int Idx = findRegisterDefOperandIdx(Reg, TRI, isDead, Overlap); return (Idx == -1) ? nullptr : &getOperand(Idx); }
const MachineOperand *findRegisterDefOperand(Register Reg, const TargetRegisterInfo *TRI, bool isDead = false, bool Overlap = false) const { return const_cast<MachineInstr *>(this)->findRegisterDefOperand( Reg, TRI, isDead, Overlap); }
/// Find the index of the first operand in the /// operand list that is used to represent the predicate. It returns -1 if /// none is found. int findFirstPredOperandIdx() const;
/// Find the index of the flag word operand that /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if /// getOperand(OpIdx) does not belong to an inline asm operand group. /// /// If GroupNo is not NULL, it will receive the number of the operand group /// containing OpIdx. int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
/// Compute the static register class constraint for operand OpIdx. /// For normal instructions, this is derived from the MCInstrDesc. /// For inline assembly it is derived from the flag words. /// /// Returns NULL if the static register class constraint cannot be /// determined. const TargetRegisterClass* getRegClassConstraint(unsigned OpIdx, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
/// Applies the constraints (def/use) implied by this MI on \p Reg to /// the given \p CurRC. /// If \p ExploreBundle is set and MI is part of a bundle, all the /// instructions inside the bundle will be taken into account. In other words, /// this method accumulates all the constraints of the operand of this MI and /// the related bundle if MI is a bundle or inside a bundle. /// /// Returns the register class that satisfies both \p CurRC and the /// constraints set by MI. Returns NULL if such a register class does not /// exist. /// /// \pre CurRC must not be NULL. const TargetRegisterClass *getRegClassConstraintEffectForVReg( Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, bool ExploreBundle = false) const;
/// Applies the constraints (def/use) implied by the \p OpIdx operand /// to the given \p CurRC. /// /// Returns the register class that satisfies both \p CurRC and the /// constraints set by \p OpIdx MI. Returns NULL if such a register class /// does not exist. /// /// \pre CurRC must not be NULL. /// \pre The operand at \p OpIdx must be a register. const TargetRegisterClass * getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
/// Add a tie between the register operands at DefIdx and UseIdx. /// The tie will cause the register allocator to ensure that the two /// operands are assigned the same physical register. /// /// Tied operands are managed automatically for explicit operands in the /// MCInstrDesc. This method is for exceptional cases like inline asm. void tieOperands(unsigned DefIdx, unsigned UseIdx);
/// Given the index of a tied register operand, find the /// operand it is tied to. Defs are tied to uses and vice versa. Returns the /// index of the tied operand which must exist. unsigned findTiedOperandIdx(unsigned OpIdx) const;
/// Given the index of a register def operand, /// check if the register def is tied to a source operand, due to either /// two-address elimination or inline assembly constraints. Returns the /// first tied use operand index by reference if UseOpIdx is not null. bool isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx = nullptr) const { const MachineOperand &MO = getOperand(DefOpIdx); if (!MO.isReg() || !MO.isDef() || !MO.isTied()) return false; if (UseOpIdx) *UseOpIdx = findTiedOperandIdx(DefOpIdx); return true; }
/// Return true if the use operand of the specified index is tied to a def /// operand. It also returns the def operand index by reference if DefOpIdx /// is not null. bool isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx = nullptr) const { const MachineOperand &MO = getOperand(UseOpIdx); if (!MO.isReg() || !MO.isUse() || !MO.isTied()) return false; if (DefOpIdx) *DefOpIdx = findTiedOperandIdx(UseOpIdx); return true; }
/// Clears kill flags on all operands. void clearKillInfo();
/// Replace all occurrences of FromReg with ToReg:SubIdx, /// properly composing subreg indices where necessary. void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx, const TargetRegisterInfo &RegInfo);
/// We have determined MI kills a register. Look for the /// operand that uses it and mark it as IsKill. If AddIfNotFound is true, /// add a implicit operand if it's not found. Returns true if the operand /// exists / is added. bool addRegisterKilled(Register IncomingReg, const TargetRegisterInfo *RegInfo, bool AddIfNotFound = false);
/// Clear all kill flags affecting Reg. If RegInfo is provided, this includes /// all aliasing registers. void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo);
/// We have determined MI defined a register without a use. /// Look for the operand that defines it and mark it as IsDead. If /// AddIfNotFound is true, add a implicit operand if it's not found. Returns /// true if the operand exists / is added. bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo, bool AddIfNotFound = false);
/// Clear all dead flags on operands defining register @p Reg. void clearRegisterDeads(Register Reg);
/// Mark all subregister defs of register @p Reg with the undef flag. /// This function is used when we determined to have a subregister def in an /// otherwise undefined super register. void setRegisterDefReadUndef(Register Reg, bool IsUndef = true);
/// We have determined MI defines a register. Make sure there is an operand /// defining Reg. void addRegisterDefined(Register Reg, const TargetRegisterInfo *RegInfo = nullptr);
/// Mark every physreg used by this instruction as /// dead except those in the UsedRegs list. /// /// On instructions with register mask operands, also add implicit-def /// operands for all registers in UsedRegs. void setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, const TargetRegisterInfo &TRI);
/// Return true if it is safe to move this instruction. If /// SawStore is set to true, it means that there is a store (or call) between /// the instruction's location and its intended destination. bool isSafeToMove(AAResults *AA, bool &SawStore) const;
/// Returns true if this instruction's memory access aliases the memory /// access of Other. // /// Assumes any physical registers used to compute addresses /// have the same value for both instructions. Returns false if neither /// instruction writes to memory. /// /// @param AA Optional alias analysis, used to compare memory operands. /// @param Other MachineInstr to check aliasing against. /// @param UseTBAA Whether to pass TBAA information to alias analysis. bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const;
/// Return true if this instruction may have an ordered /// or volatile memory reference, or if the information describing the memory /// reference is not available. Return false if it is known to have no /// ordered or volatile memory references. bool hasOrderedMemoryRef() const;
/// Return true if this load instruction never traps and points to a memory /// location whose value doesn't change during the execution of this function. /// /// Examples include loading a value from the constant pool or from the /// argument area of a function (if it does not change). If the instruction /// does multiple loads, this returns true only if all of the loads are /// dereferenceable and invariant. bool isDereferenceableInvariantLoad() const;
/// If the specified instruction is a PHI that always merges together the /// same virtual register, return the register, otherwise return 0. unsigned isConstantValuePHI() const;
/// Return true if this instruction has side effects that are not modeled /// by mayLoad / mayStore, etc. /// For all instructions, the property is encoded in MCInstrDesc::Flags /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is /// INLINEASM instruction, in which case the side effect property is encoded /// in one of its operands (see InlineAsm::Extra_HasSideEffect). /// bool hasUnmodeledSideEffects() const;
/// Returns true if it is illegal to fold a load across this instruction. bool isLoadFoldBarrier() const;
/// Return true if all the defs of this instruction are dead. bool allDefsAreDead() const;
/// Return true if all the implicit defs of this instruction are dead. bool allImplicitDefsAreDead() const;
/// Return a valid size if the instruction is a spill instruction. std::optional<LocationSize> getSpillSize(const TargetInstrInfo *TII) const;
/// Return a valid size if the instruction is a folded spill instruction. std::optional<LocationSize> getFoldedSpillSize(const TargetInstrInfo *TII) const;
/// Return a valid size if the instruction is a restore instruction. std::optional<LocationSize> getRestoreSize(const TargetInstrInfo *TII) const;
/// Return a valid size if the instruction is a folded restore instruction. std::optional<LocationSize> getFoldedRestoreSize(const TargetInstrInfo *TII) const;
/// Copy implicit register operands from specified /// instruction to this instruction. void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
/// Debugging support /// @{ /// Determine the generic type to be printed (if needed) on uses and defs. LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, const MachineRegisterInfo &MRI) const;
/// Return true when an instruction has tied register that can't be determined /// by the instruction's descriptor. This is useful for MIR printing, to /// determine whether we need to print the ties or not. bool hasComplexRegisterTies() const;
/// Print this MI to \p OS. /// Don't print information that can be inferred from other instructions if /// \p IsStandalone is false. It is usually true when only a fragment of the /// function is printed. /// Only print the defs and the opcode if \p SkipOpers is true. /// Otherwise, also print operands if \p SkipDebugLoc is true. /// Otherwise, also print the debug loc, with a terminating newline. /// \p TII is used to print the opcode name. If it's not present, but the /// MI is in a function, the opcode will be printed using the function's TII. void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false, bool SkipDebugLoc = false, bool AddNewLine = true, const TargetInstrInfo *TII = nullptr) const; void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true, bool SkipOpers = false, bool SkipDebugLoc = false, bool AddNewLine = true, const TargetInstrInfo *TII = nullptr) const; void dump() const; /// Print on dbgs() the current instruction and the instructions defining its /// operands and so on until we reach \p MaxDepth. void dumpr(const MachineRegisterInfo &MRI, unsigned MaxDepth = UINT_MAX) const; /// @}
//===--------------------------------------------------------------------===// // Accessors used to build up machine instructions.
/// Add the specified operand to the instruction. If it is an implicit /// operand, it is added to the end of the operand list. If it is an /// explicit operand it is added at the end of the explicit operand list /// (before the first implicit operand). /// /// MF must be the machine function that was used to allocate this /// instruction. /// /// MachineInstrBuilder provides a more convenient interface for creating /// instructions and adding operands. void addOperand(MachineFunction &MF, const MachineOperand &Op);
/// Add an operand without providing an MF reference. This only works for /// instructions that are inserted in a basic block. /// /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be /// preferred. void addOperand(const MachineOperand &Op);
/// Inserts Ops BEFORE It. Can untie/retie tied operands. void insert(mop_iterator InsertBefore, ArrayRef<MachineOperand> Ops);
/// Replace the instruction descriptor (thus opcode) of /// the current instruction with a new one. void setDesc(const MCInstrDesc &TID);
/// Replace current source information with new such. /// Avoid using this, the constructor argument is preferable. void setDebugLoc(DebugLoc DL) { DbgLoc = std::move(DL); assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); }
/// Erase an operand from an instruction, leaving it with one /// fewer operand than it started with. void removeOperand(unsigned OpNo);
/// Clear this MachineInstr's memory reference descriptor list. This resets /// the memrefs to their most conservative state. This should be used only /// as a last resort since it greatly pessimizes our knowledge of the memory /// access performed by the instruction. void dropMemRefs(MachineFunction &MF);
/// Assign this MachineInstr's memory reference descriptor list. /// /// Unlike other methods, this *will* allocate them into a new array /// associated with the provided `MachineFunction`. void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs);
/// Add a MachineMemOperand to the machine instruction. /// This function should be used only occasionally. The setMemRefs function /// is the primary method for setting up a MachineInstr's MemRefs list. void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
/// Clone another MachineInstr's memory reference descriptor list and replace /// ours with it. /// /// Note that `*this` may be the incoming MI! /// /// Prefer this API whenever possible as it can avoid allocations in common /// cases. void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI);
/// Clone the merge of multiple MachineInstrs' memory reference descriptors /// list and replace ours with it. /// /// Note that `*this` may be one of the incoming MIs! /// /// Prefer this API whenever possible as it can avoid allocations in common /// cases. void cloneMergedMemRefs(MachineFunction &MF, ArrayRef<const MachineInstr *> MIs);
/// Set a symbol that will be emitted just prior to the instruction itself. /// /// Setting this to a null pointer will remove any such symbol. /// /// FIXME: This is not fully implemented yet. void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
/// Set a symbol that will be emitted just after the instruction itself. /// /// Setting this to a null pointer will remove any such symbol. /// /// FIXME: This is not fully implemented yet. void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
/// Clone another MachineInstr's pre- and post- instruction symbols and /// replace ours with it. void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI);
/// Set a marker on instructions that denotes where we should create and emit /// heap alloc site labels. This waits until after instruction selection and /// optimizations to create the label, so it should still work if the /// instruction is removed or duplicated. void setHeapAllocMarker(MachineFunction &MF, MDNode *MD);
// Set metadata on instructions that say which sections to emit instruction // addresses into. void setPCSections(MachineFunction &MF, MDNode *MD);
void setMMRAMetadata(MachineFunction &MF, MDNode *MMRAs);
/// Set the CFI type for the instruction. void setCFIType(MachineFunction &MF, uint32_t Type);
/// Return the MIFlags which represent both MachineInstrs. This /// should be used when merging two MachineInstrs into one. This routine does /// not modify the MIFlags of this MachineInstr. uint32_t mergeFlagsWith(const MachineInstr& Other) const;
static uint32_t copyFlagsFromInstruction(const Instruction &I);
/// Copy all flags to MachineInst MIFlags void copyIRFlags(const Instruction &I);
/// Break any tie involving OpIdx. void untieRegOperand(unsigned OpIdx) { MachineOperand &MO = getOperand(OpIdx); if (MO.isReg() && MO.isTied()) { getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0; MO.TiedTo = 0; } }
/// Add all implicit def and use operands to this instruction. void addImplicitDefUseOperands(MachineFunction &MF);
/// Scan instructions immediately following MI and collect any matching /// DBG_VALUEs. void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues);
/// Find all DBG_VALUEs that point to the register def in this instruction /// and point them to \p Reg instead. void changeDebugValuesDefReg(Register Reg);
/// Sets all register debug operands in this debug value instruction to be /// undef. void setDebugValueUndef() { assert(isDebugValue() && "Must be a debug value instruction."); for (MachineOperand &MO : debug_operands()) { if (MO.isReg()) { MO.setReg(0); MO.setSubReg(0); } } }
std::tuple<Register, Register> getFirst2Regs() const { return std::tuple(getOperand(0).getReg(), getOperand(1).getReg()); }
std::tuple<Register, Register, Register> getFirst3Regs() const { return std::tuple(getOperand(0).getReg(), getOperand(1).getReg(), getOperand(2).getReg()); }
std::tuple<Register, Register, Register, Register> getFirst4Regs() const { return std::tuple(getOperand(0).getReg(), getOperand(1).getReg(), getOperand(2).getReg(), getOperand(3).getReg()); }
std::tuple<Register, Register, Register, Register, Register> getFirst5Regs() const { return std::tuple(getOperand(0).getReg(), getOperand(1).getReg(), getOperand(2).getReg(), getOperand(3).getReg(), getOperand(4).getReg()); }
std::tuple<LLT, LLT> getFirst2LLTs() const; std::tuple<LLT, LLT, LLT> getFirst3LLTs() const; std::tuple<LLT, LLT, LLT, LLT> getFirst4LLTs() const; std::tuple<LLT, LLT, LLT, LLT, LLT> getFirst5LLTs() const;
std::tuple<Register, LLT, Register, LLT> getFirst2RegLLTs() const; std::tuple<Register, LLT, Register, LLT, Register, LLT> getFirst3RegLLTs() const; std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT> getFirst4RegLLTs() const; std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT, Register, LLT> getFirst5RegLLTs() const;
private: /// If this instruction is embedded into a MachineFunction, return the /// MachineRegisterInfo object for the current function, otherwise /// return null. MachineRegisterInfo *getRegInfo(); const MachineRegisterInfo *getRegInfo() const;
/// Unlink all of the register operands in this instruction from their /// respective use lists. This requires that the operands already be on their /// use lists. void removeRegOperandsFromUseLists(MachineRegisterInfo&);
/// Add all of the register operands in this instruction from their /// respective use lists. This requires that the operands not be on their /// use lists yet. void addRegOperandsToUseLists(MachineRegisterInfo&);
/// Slow path for hasProperty when we're dealing with a bundle. bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const;
/// Implements the logic of getRegClassConstraintEffectForVReg for the /// this MI and the given operand index \p OpIdx. /// If the related operand does not constrained Reg, this returns CurRC. const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl( unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
/// Stores extra instruction information inline or allocates as ExtraInfo /// based on the number of pointers. void setExtraInfo(MachineFunction &MF, ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections, uint32_t CFIType, MDNode *MMRAs); };
/// Special DenseMapInfo traits to compare MachineInstr* by *value* of the /// instruction rather than by pointer value. /// The hashing and equality testing functions ignore definitions so this is /// useful for CSE, etc. struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> { static inline MachineInstr *getEmptyKey() { return nullptr; }
static inline MachineInstr *getTombstoneKey() { return reinterpret_cast<MachineInstr*>(-1); }
static unsigned getHashValue(const MachineInstr* const &MI);
static bool isEqual(const MachineInstr* const &LHS, const MachineInstr* const &RHS) { if (RHS == getEmptyKey() || RHS == getTombstoneKey() || LHS == getEmptyKey() || LHS == getTombstoneKey()) return LHS == RHS; return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs); } };
//===----------------------------------------------------------------------===// // Debugging Support
inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) { MI.print(OS); return OS; }
} // end namespace llvm
#endif // LLVM_CODEGEN_MACHINEINSTR_H
|