Viewing file: MachineDominators.h (12.53 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//==- llvm/CodeGen/MachineDominators.h - Machine Dom Calculation -*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines classes mirroring those in llvm/Analysis/Dominators.h, // but for target-specific code rather than target-independent IR. // //===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_MACHINEDOMINATORS_H #define LLVM_CODEGEN_MACHINEDOMINATORS_H
#include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBundleIterator.h" #include "llvm/CodeGen/MachinePassManager.h" #include "llvm/Support/GenericDomTree.h" #include <cassert> #include <memory> #include <optional>
namespace llvm { class AnalysisUsage; class MachineFunction; class Module; class raw_ostream;
template <> inline void DominatorTreeBase<MachineBasicBlock, false>::addRoot( MachineBasicBlock *MBB) { this->Roots.push_back(MBB); }
extern template class DomTreeNodeBase<MachineBasicBlock>; extern template class DominatorTreeBase<MachineBasicBlock, false>; // DomTree
using MachineDomTreeNode = DomTreeNodeBase<MachineBasicBlock>;
namespace DomTreeBuilder { using MBBDomTree = DomTreeBase<MachineBasicBlock>; using MBBUpdates = ArrayRef<llvm::cfg::Update<MachineBasicBlock *>>; using MBBDomTreeGraphDiff = GraphDiff<MachineBasicBlock *, false>;
extern template void Calculate<MBBDomTree>(MBBDomTree &DT); extern template void CalculateWithUpdates<MBBDomTree>(MBBDomTree &DT, MBBUpdates U);
extern template void InsertEdge<MBBDomTree>(MBBDomTree &DT, MachineBasicBlock *From, MachineBasicBlock *To);
extern template void DeleteEdge<MBBDomTree>(MBBDomTree &DT, MachineBasicBlock *From, MachineBasicBlock *To);
extern template void ApplyUpdates<MBBDomTree>(MBBDomTree &DT, MBBDomTreeGraphDiff &, MBBDomTreeGraphDiff *);
extern template bool Verify<MBBDomTree>(const MBBDomTree &DT, MBBDomTree::VerificationLevel VL); } // namespace DomTreeBuilder
//===------------------------------------- /// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to /// compute a normal dominator tree. /// class MachineDominatorTree : public DomTreeBase<MachineBasicBlock> { /// Helper structure used to hold all the basic blocks /// involved in the split of a critical edge. struct CriticalEdge { MachineBasicBlock *FromBB; MachineBasicBlock *ToBB; MachineBasicBlock *NewBB; };
/// Pile up all the critical edges to be split. /// The splitting of a critical edge is local and thus, it is possible /// to apply several of those changes at the same time. mutable SmallVector<CriticalEdge, 32> CriticalEdgesToSplit;
/// Remember all the basic blocks that are inserted during /// edge splitting. /// Invariant: NewBBs == all the basic blocks contained in the NewBB /// field of all the elements of CriticalEdgesToSplit. /// I.e., forall elt in CriticalEdgesToSplit, it exists BB in NewBBs /// such as BB == elt.NewBB. mutable SmallSet<MachineBasicBlock *, 32> NewBBs;
/// Apply all the recorded critical edges to the DT. /// This updates the underlying DT information in a way that uses /// the fast query path of DT as much as possible. /// FIXME: This method should not be a const member! /// /// \post CriticalEdgesToSplit.empty(). void applySplitCriticalEdges() const;
public: using Base = DomTreeBase<MachineBasicBlock>;
MachineDominatorTree() = default; explicit MachineDominatorTree(MachineFunction &MF) { calculate(MF); }
/// Handle invalidation explicitly. bool invalidate(MachineFunction &, const PreservedAnalyses &PA, MachineFunctionAnalysisManager::Invalidator &);
// FIXME: If there is an updater for MachineDominatorTree, // migrate to this updater and remove these wrappers.
MachineDominatorTree &getBase() { applySplitCriticalEdges(); return *this; }
MachineBasicBlock *getRoot() const { applySplitCriticalEdges(); return Base::getRoot(); }
MachineDomTreeNode *getRootNode() const { applySplitCriticalEdges(); return const_cast<MachineDomTreeNode *>(Base::getRootNode()); }
void calculate(MachineFunction &F);
bool dominates(const MachineDomTreeNode *A, const MachineDomTreeNode *B) const { applySplitCriticalEdges(); return Base::dominates(A, B); }
void getDescendants(MachineBasicBlock *A, SmallVectorImpl<MachineBasicBlock *> &Result) { applySplitCriticalEdges(); Base::getDescendants(A, Result); }
bool dominates(const MachineBasicBlock *A, const MachineBasicBlock *B) const { applySplitCriticalEdges(); return Base::dominates(A, B); }
// dominates - Return true if A dominates B. This performs the // special checks necessary if A and B are in the same basic block. bool dominates(const MachineInstr *A, const MachineInstr *B) const { applySplitCriticalEdges(); const MachineBasicBlock *BBA = A->getParent(), *BBB = B->getParent(); if (BBA != BBB) return Base::dominates(BBA, BBB);
// Loop through the basic block until we find A or B. MachineBasicBlock::const_iterator I = BBA->begin(); for (; &*I != A && &*I != B; ++I) /*empty*/ ;
return &*I == A; }
bool properlyDominates(const MachineDomTreeNode *A, const MachineDomTreeNode *B) const { applySplitCriticalEdges(); return Base::properlyDominates(A, B); }
bool properlyDominates(const MachineBasicBlock *A, const MachineBasicBlock *B) const { applySplitCriticalEdges(); return Base::properlyDominates(A, B); }
/// findNearestCommonDominator - Find nearest common dominator basic block /// for basic block A and B. If there is no such block then return NULL. MachineBasicBlock *findNearestCommonDominator(MachineBasicBlock *A, MachineBasicBlock *B) { applySplitCriticalEdges(); return Base::findNearestCommonDominator(A, B); }
MachineDomTreeNode *operator[](MachineBasicBlock *BB) const { applySplitCriticalEdges(); return Base::getNode(BB); }
/// getNode - return the (Post)DominatorTree node for the specified basic /// block. This is the same as using operator[] on this class. /// MachineDomTreeNode *getNode(MachineBasicBlock *BB) const { applySplitCriticalEdges(); return Base::getNode(BB); }
/// addNewBlock - Add a new node to the dominator tree information. This /// creates a new node as a child of DomBB dominator node,linking it into /// the children list of the immediate dominator. MachineDomTreeNode *addNewBlock(MachineBasicBlock *BB, MachineBasicBlock *DomBB) { applySplitCriticalEdges(); return Base::addNewBlock(BB, DomBB); }
/// changeImmediateDominator - This method is used to update the dominator /// tree information when a node's immediate dominator changes. /// void changeImmediateDominator(MachineBasicBlock *N, MachineBasicBlock *NewIDom) { applySplitCriticalEdges(); Base::changeImmediateDominator(N, NewIDom); }
void changeImmediateDominator(MachineDomTreeNode *N, MachineDomTreeNode *NewIDom) { applySplitCriticalEdges(); Base::changeImmediateDominator(N, NewIDom); }
/// eraseNode - Removes a node from the dominator tree. Block must not /// dominate any other blocks. Removes node from its immediate dominator's /// children list. Deletes dominator node associated with basic block BB. void eraseNode(MachineBasicBlock *BB) { applySplitCriticalEdges(); Base::eraseNode(BB); }
/// splitBlock - BB is split and now it has one successor. Update dominator /// tree to reflect this change. void splitBlock(MachineBasicBlock* NewBB) { applySplitCriticalEdges(); Base::splitBlock(NewBB); }
/// isReachableFromEntry - Return true if A is dominated by the entry /// block of the function containing it. bool isReachableFromEntry(const MachineBasicBlock *A) { applySplitCriticalEdges(); return Base::isReachableFromEntry(A); }
/// Record that the critical edge (FromBB, ToBB) has been /// split with NewBB. /// This is best to use this method instead of directly update the /// underlying information, because this helps mitigating the /// number of time the DT information is invalidated. /// /// \note Do not use this method with regular edges. /// /// \note To benefit from the compile time improvement incurred by this /// method, the users of this method have to limit the queries to the DT /// interface between two edges splitting. In other words, they have to /// pack the splitting of critical edges as much as possible. void recordSplitCriticalEdge(MachineBasicBlock *FromBB, MachineBasicBlock *ToBB, MachineBasicBlock *NewBB) { bool Inserted = NewBBs.insert(NewBB).second; (void)Inserted; assert(Inserted && "A basic block inserted via edge splitting cannot appear twice"); CriticalEdgesToSplit.push_back({FromBB, ToBB, NewBB}); } };
/// \brief Analysis pass which computes a \c MachineDominatorTree. class MachineDominatorTreeAnalysis : public AnalysisInfoMixin<MachineDominatorTreeAnalysis> { friend AnalysisInfoMixin<MachineDominatorTreeAnalysis>;
static AnalysisKey Key;
public: using Result = MachineDominatorTree;
Result run(MachineFunction &MF, MachineFunctionAnalysisManager &); };
/// \brief Machine function pass which print \c MachineDominatorTree. class MachineDominatorTreePrinterPass : public PassInfoMixin<MachineDominatorTreePrinterPass> { raw_ostream &OS;
public: explicit MachineDominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {} PreservedAnalyses run(MachineFunction &MF, MachineFunctionAnalysisManager &MFAM); static bool isRequired() { return true; } };
/// \brief Analysis pass which computes a \c MachineDominatorTree. class MachineDominatorTreeWrapperPass : public MachineFunctionPass { // MachineFunctionPass may verify the analysis result without running pass, // e.g. when `F.hasAvailableExternallyLinkage` is true. std::optional<MachineDominatorTree> DT;
public: static char ID;
MachineDominatorTreeWrapperPass();
MachineDominatorTree &getDomTree() { return *DT; } const MachineDominatorTree &getDomTree() const { return *DT; }
bool runOnMachineFunction(MachineFunction &MF) override;
void verifyAnalysis() const override;
void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); }
void releaseMemory() override;
void print(raw_ostream &OS, const Module *M = nullptr) const override; };
//===------------------------------------- /// DominatorTree GraphTraits specialization so the DominatorTree can be /// iterable by generic graph iterators. ///
template <class Node, class ChildIterator> struct MachineDomTreeGraphTraitsBase { using NodeRef = Node *; using ChildIteratorType = ChildIterator;
static NodeRef getEntryNode(NodeRef N) { return N; } static ChildIteratorType child_begin(NodeRef N) { return N->begin(); } static ChildIteratorType child_end(NodeRef N) { return N->end(); } };
template <class T> struct GraphTraits;
template <> struct GraphTraits<MachineDomTreeNode *> : public MachineDomTreeGraphTraitsBase<MachineDomTreeNode, MachineDomTreeNode::const_iterator> { };
template <> struct GraphTraits<const MachineDomTreeNode *> : public MachineDomTreeGraphTraitsBase<const MachineDomTreeNode, MachineDomTreeNode::const_iterator> { };
template <> struct GraphTraits<MachineDominatorTree*> : public GraphTraits<MachineDomTreeNode *> { static NodeRef getEntryNode(MachineDominatorTree *DT) { return DT->getRootNode(); } };
} // end namespace llvm
#endif // LLVM_CODEGEN_MACHINEDOMINATORS_H
|