Viewing file: LiveInterval.h (37.8 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- llvm/CodeGen/LiveInterval.h - Interval representation ----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the LiveRange and LiveInterval classes. Given some // numbering of each the machine instructions an interval [i, j) is said to be a // live range for register v if there is no instruction with number j' >= j // such that v is live at j' and there is no instruction with number i' < i such // that v is live at i'. In this implementation ranges can have holes, // i.e. a range might look like [1,20), [50,65), [1000,1001). Each // individual segment is represented as an instance of LiveRange::Segment, // and the whole range is represented as an instance of LiveRange. // //===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_LIVEINTERVAL_H #define LLVM_CODEGEN_LIVEINTERVAL_H
#include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/IntEqClasses.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/iterator_range.h" #include "llvm/CodeGen/Register.h" #include "llvm/CodeGen/SlotIndexes.h" #include "llvm/MC/LaneBitmask.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/MathExtras.h" #include <algorithm> #include <cassert> #include <cstddef> #include <functional> #include <memory> #include <set> #include <tuple> #include <utility>
namespace llvm {
class CoalescerPair; class LiveIntervals; class MachineRegisterInfo; class raw_ostream;
/// VNInfo - Value Number Information. /// This class holds information about a machine level values, including /// definition and use points. /// class VNInfo { public: using Allocator = BumpPtrAllocator;
/// The ID number of this value. unsigned id;
/// The index of the defining instruction. SlotIndex def;
/// VNInfo constructor. VNInfo(unsigned i, SlotIndex d) : id(i), def(d) {}
/// VNInfo constructor, copies values from orig, except for the value number. VNInfo(unsigned i, const VNInfo &orig) : id(i), def(orig.def) {}
/// Copy from the parameter into this VNInfo. void copyFrom(VNInfo &src) { def = src.def; }
/// Returns true if this value is defined by a PHI instruction (or was, /// PHI instructions may have been eliminated). /// PHI-defs begin at a block boundary, all other defs begin at register or /// EC slots. bool isPHIDef() const { return def.isBlock(); }
/// Returns true if this value is unused. bool isUnused() const { return !def.isValid(); }
/// Mark this value as unused. void markUnused() { def = SlotIndex(); } };
/// Result of a LiveRange query. This class hides the implementation details /// of live ranges, and it should be used as the primary interface for /// examining live ranges around instructions. class LiveQueryResult { VNInfo *const EarlyVal; VNInfo *const LateVal; const SlotIndex EndPoint; const bool Kill;
public: LiveQueryResult(VNInfo *EarlyVal, VNInfo *LateVal, SlotIndex EndPoint, bool Kill) : EarlyVal(EarlyVal), LateVal(LateVal), EndPoint(EndPoint), Kill(Kill) {}
/// Return the value that is live-in to the instruction. This is the value /// that will be read by the instruction's use operands. Return NULL if no /// value is live-in. VNInfo *valueIn() const { return EarlyVal; }
/// Return true if the live-in value is killed by this instruction. This /// means that either the live range ends at the instruction, or it changes /// value. bool isKill() const { return Kill; }
/// Return true if this instruction has a dead def. bool isDeadDef() const { return EndPoint.isDead(); }
/// Return the value leaving the instruction, if any. This can be a /// live-through value, or a live def. A dead def returns NULL. VNInfo *valueOut() const { return isDeadDef() ? nullptr : LateVal; }
/// Returns the value alive at the end of the instruction, if any. This can /// be a live-through value, a live def or a dead def. VNInfo *valueOutOrDead() const { return LateVal; }
/// Return the value defined by this instruction, if any. This includes /// dead defs, it is the value created by the instruction's def operands. VNInfo *valueDefined() const { return EarlyVal == LateVal ? nullptr : LateVal; }
/// Return the end point of the last live range segment to interact with /// the instruction, if any. /// /// The end point is an invalid SlotIndex only if the live range doesn't /// intersect the instruction at all. /// /// The end point may be at or past the end of the instruction's basic /// block. That means the value was live out of the block. SlotIndex endPoint() const { return EndPoint; } };
/// This class represents the liveness of a register, stack slot, etc. /// It manages an ordered list of Segment objects. /// The Segments are organized in a static single assignment form: At places /// where a new value is defined or different values reach a CFG join a new /// segment with a new value number is used. class LiveRange { public: /// This represents a simple continuous liveness interval for a value. /// The start point is inclusive, the end point exclusive. These intervals /// are rendered as [start,end). struct Segment { SlotIndex start; // Start point of the interval (inclusive) SlotIndex end; // End point of the interval (exclusive) VNInfo *valno = nullptr; // identifier for the value contained in this // segment.
Segment() = default;
Segment(SlotIndex S, SlotIndex E, VNInfo *V) : start(S), end(E), valno(V) { assert(S < E && "Cannot create empty or backwards segment"); }
/// Return true if the index is covered by this segment. bool contains(SlotIndex I) const { return start <= I && I < end; }
/// Return true if the given interval, [S, E), is covered by this segment. bool containsInterval(SlotIndex S, SlotIndex E) const { assert((S < E) && "Backwards interval?"); return (start <= S && S < end) && (start < E && E <= end); }
bool operator<(const Segment &Other) const { return std::tie(start, end) < std::tie(Other.start, Other.end); } bool operator==(const Segment &Other) const { return start == Other.start && end == Other.end; }
bool operator!=(const Segment &Other) const { return !(*this == Other); }
void dump() const; };
using Segments = SmallVector<Segment, 2>; using VNInfoList = SmallVector<VNInfo *, 2>;
Segments segments; // the liveness segments VNInfoList valnos; // value#'s
// The segment set is used temporarily to accelerate initial computation // of live ranges of physical registers in computeRegUnitRange. // After that the set is flushed to the segment vector and deleted. using SegmentSet = std::set<Segment>; std::unique_ptr<SegmentSet> segmentSet;
using iterator = Segments::iterator; using const_iterator = Segments::const_iterator;
iterator begin() { return segments.begin(); } iterator end() { return segments.end(); }
const_iterator begin() const { return segments.begin(); } const_iterator end() const { return segments.end(); }
using vni_iterator = VNInfoList::iterator; using const_vni_iterator = VNInfoList::const_iterator;
vni_iterator vni_begin() { return valnos.begin(); } vni_iterator vni_end() { return valnos.end(); }
const_vni_iterator vni_begin() const { return valnos.begin(); } const_vni_iterator vni_end() const { return valnos.end(); }
iterator_range<vni_iterator> vnis() { return make_range(vni_begin(), vni_end()); }
iterator_range<const_vni_iterator> vnis() const { return make_range(vni_begin(), vni_end()); }
/// Constructs a new LiveRange object. LiveRange(bool UseSegmentSet = false) : segmentSet(UseSegmentSet ? std::make_unique<SegmentSet>() : nullptr) {}
/// Constructs a new LiveRange object by copying segments and valnos from /// another LiveRange. LiveRange(const LiveRange &Other, BumpPtrAllocator &Allocator) { assert(Other.segmentSet == nullptr && "Copying of LiveRanges with active SegmentSets is not supported"); assign(Other, Allocator); }
/// Copies values numbers and live segments from \p Other into this range. void assign(const LiveRange &Other, BumpPtrAllocator &Allocator) { if (this == &Other) return;
assert(Other.segmentSet == nullptr && "Copying of LiveRanges with active SegmentSets is not supported"); // Duplicate valnos. for (const VNInfo *VNI : Other.valnos) createValueCopy(VNI, Allocator); // Now we can copy segments and remap their valnos. for (const Segment &S : Other.segments) segments.push_back(Segment(S.start, S.end, valnos[S.valno->id])); }
/// advanceTo - Advance the specified iterator to point to the Segment /// containing the specified position, or end() if the position is past the /// end of the range. If no Segment contains this position, but the /// position is in a hole, this method returns an iterator pointing to the /// Segment immediately after the hole. iterator advanceTo(iterator I, SlotIndex Pos) { assert(I != end()); if (Pos >= endIndex()) return end(); while (I->end <= Pos) ++I; return I; }
const_iterator advanceTo(const_iterator I, SlotIndex Pos) const { assert(I != end()); if (Pos >= endIndex()) return end(); while (I->end <= Pos) ++I; return I; }
/// find - Return an iterator pointing to the first segment that ends after /// Pos, or end(). This is the same as advanceTo(begin(), Pos), but faster /// when searching large ranges. /// /// If Pos is contained in a Segment, that segment is returned. /// If Pos is in a hole, the following Segment is returned. /// If Pos is beyond endIndex, end() is returned. iterator find(SlotIndex Pos);
const_iterator find(SlotIndex Pos) const { return const_cast<LiveRange*>(this)->find(Pos); }
void clear() { valnos.clear(); segments.clear(); }
size_t size() const { return segments.size(); }
bool hasAtLeastOneValue() const { return !valnos.empty(); }
bool containsOneValue() const { return valnos.size() == 1; }
unsigned getNumValNums() const { return (unsigned)valnos.size(); }
/// getValNumInfo - Returns pointer to the specified val#. /// inline VNInfo *getValNumInfo(unsigned ValNo) { return valnos[ValNo]; } inline const VNInfo *getValNumInfo(unsigned ValNo) const { return valnos[ValNo]; }
/// containsValue - Returns true if VNI belongs to this range. bool containsValue(const VNInfo *VNI) const { return VNI && VNI->id < getNumValNums() && VNI == getValNumInfo(VNI->id); }
/// getNextValue - Create a new value number and return it. /// @p Def is the index of instruction that defines the value number. VNInfo *getNextValue(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator) { VNInfo *VNI = new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), Def); valnos.push_back(VNI); return VNI; }
/// createDeadDef - Make sure the range has a value defined at Def. /// If one already exists, return it. Otherwise allocate a new value and /// add liveness for a dead def. VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc);
/// Create a def of value @p VNI. Return @p VNI. If there already exists /// a definition at VNI->def, the value defined there must be @p VNI. VNInfo *createDeadDef(VNInfo *VNI);
/// Create a copy of the given value. The new value will be identical except /// for the Value number. VNInfo *createValueCopy(const VNInfo *orig, VNInfo::Allocator &VNInfoAllocator) { VNInfo *VNI = new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), *orig); valnos.push_back(VNI); return VNI; }
/// RenumberValues - Renumber all values in order of appearance and remove /// unused values. void RenumberValues();
/// MergeValueNumberInto - This method is called when two value numbers /// are found to be equivalent. This eliminates V1, replacing all /// segments with the V1 value number with the V2 value number. This can /// cause merging of V1/V2 values numbers and compaction of the value space. VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2);
/// Merge all of the live segments of a specific val# in RHS into this live /// range as the specified value number. The segments in RHS are allowed /// to overlap with segments in the current range, it will replace the /// value numbers of the overlaped live segments with the specified value /// number. void MergeSegmentsInAsValue(const LiveRange &RHS, VNInfo *LHSValNo);
/// MergeValueInAsValue - Merge all of the segments of a specific val# /// in RHS into this live range as the specified value number. /// The segments in RHS are allowed to overlap with segments in the /// current range, but only if the overlapping segments have the /// specified value number. void MergeValueInAsValue(const LiveRange &RHS, const VNInfo *RHSValNo, VNInfo *LHSValNo);
bool empty() const { return segments.empty(); }
/// beginIndex - Return the lowest numbered slot covered. SlotIndex beginIndex() const { assert(!empty() && "Call to beginIndex() on empty range."); return segments.front().start; }
/// endNumber - return the maximum point of the range of the whole, /// exclusive. SlotIndex endIndex() const { assert(!empty() && "Call to endIndex() on empty range."); return segments.back().end; }
bool expiredAt(SlotIndex index) const { return index >= endIndex(); }
bool liveAt(SlotIndex index) const { const_iterator r = find(index); return r != end() && r->start <= index; }
/// Return the segment that contains the specified index, or null if there /// is none. const Segment *getSegmentContaining(SlotIndex Idx) const { const_iterator I = FindSegmentContaining(Idx); return I == end() ? nullptr : &*I; }
/// Return the live segment that contains the specified index, or null if /// there is none. Segment *getSegmentContaining(SlotIndex Idx) { iterator I = FindSegmentContaining(Idx); return I == end() ? nullptr : &*I; }
/// getVNInfoAt - Return the VNInfo that is live at Idx, or NULL. VNInfo *getVNInfoAt(SlotIndex Idx) const { const_iterator I = FindSegmentContaining(Idx); return I == end() ? nullptr : I->valno; }
/// getVNInfoBefore - Return the VNInfo that is live up to but not /// necessarilly including Idx, or NULL. Use this to find the reaching def /// used by an instruction at this SlotIndex position. VNInfo *getVNInfoBefore(SlotIndex Idx) const { const_iterator I = FindSegmentContaining(Idx.getPrevSlot()); return I == end() ? nullptr : I->valno; }
/// Return an iterator to the segment that contains the specified index, or /// end() if there is none. iterator FindSegmentContaining(SlotIndex Idx) { iterator I = find(Idx); return I != end() && I->start <= Idx ? I : end(); }
const_iterator FindSegmentContaining(SlotIndex Idx) const { const_iterator I = find(Idx); return I != end() && I->start <= Idx ? I : end(); }
/// overlaps - Return true if the intersection of the two live ranges is /// not empty. bool overlaps(const LiveRange &other) const { if (other.empty()) return false; return overlapsFrom(other, other.begin()); }
/// overlaps - Return true if the two ranges have overlapping segments /// that are not coalescable according to CP. /// /// Overlapping segments where one range is defined by a coalescable /// copy are allowed. bool overlaps(const LiveRange &Other, const CoalescerPair &CP, const SlotIndexes&) const;
/// overlaps - Return true if the live range overlaps an interval specified /// by [Start, End). bool overlaps(SlotIndex Start, SlotIndex End) const;
/// overlapsFrom - Return true if the intersection of the two live ranges /// is not empty. The specified iterator is a hint that we can begin /// scanning the Other range starting at I. bool overlapsFrom(const LiveRange &Other, const_iterator StartPos) const;
/// Returns true if all segments of the @p Other live range are completely /// covered by this live range. /// Adjacent live ranges do not affect the covering:the liverange /// [1,5](5,10] covers (3,7]. bool covers(const LiveRange &Other) const;
/// Add the specified Segment to this range, merging segments as /// appropriate. This returns an iterator to the inserted segment (which /// may have grown since it was inserted). iterator addSegment(Segment S);
/// Attempt to extend a value defined after @p StartIdx to include @p Use. /// Both @p StartIdx and @p Use should be in the same basic block. In case /// of subranges, an extension could be prevented by an explicit "undef" /// caused by a <def,read-undef> on a non-overlapping lane. The list of /// location of such "undefs" should be provided in @p Undefs. /// The return value is a pair: the first element is VNInfo of the value /// that was extended (possibly nullptr), the second is a boolean value /// indicating whether an "undef" was encountered. /// If this range is live before @p Use in the basic block that starts at /// @p StartIdx, and there is no intervening "undef", extend it to be live /// up to @p Use, and return the pair {value, false}. If there is no /// segment before @p Use and there is no "undef" between @p StartIdx and /// @p Use, return {nullptr, false}. If there is an "undef" before @p Use, /// return {nullptr, true}. std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs, SlotIndex StartIdx, SlotIndex Kill);
/// Simplified version of the above "extendInBlock", which assumes that /// no register lanes are undefined by <def,read-undef> operands. /// If this range is live before @p Use in the basic block that starts /// at @p StartIdx, extend it to be live up to @p Use, and return the /// value. If there is no segment before @p Use, return nullptr. VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Kill);
/// join - Join two live ranges (this, and other) together. This applies /// mappings to the value numbers in the LHS/RHS ranges as specified. If /// the ranges are not joinable, this aborts. void join(LiveRange &Other, const int *ValNoAssignments, const int *RHSValNoAssignments, SmallVectorImpl<VNInfo *> &NewVNInfo);
/// True iff this segment is a single segment that lies between the /// specified boundaries, exclusively. Vregs live across a backedge are not /// considered local. The boundaries are expected to lie within an extended /// basic block, so vregs that are not live out should contain no holes. bool isLocal(SlotIndex Start, SlotIndex End) const { return beginIndex() > Start.getBaseIndex() && endIndex() < End.getBoundaryIndex(); }
/// Remove the specified interval from this live range. /// Does nothing if interval is not part of this live range. /// Note that the interval must be within a single Segment in its entirety. void removeSegment(SlotIndex Start, SlotIndex End, bool RemoveDeadValNo = false);
void removeSegment(Segment S, bool RemoveDeadValNo = false) { removeSegment(S.start, S.end, RemoveDeadValNo); }
/// Remove segment pointed to by iterator @p I from this range. iterator removeSegment(iterator I, bool RemoveDeadValNo = false);
/// Mark \p ValNo for deletion if no segments in this range use it. void removeValNoIfDead(VNInfo *ValNo);
/// Query Liveness at Idx. /// The sub-instruction slot of Idx doesn't matter, only the instruction /// it refers to is considered. LiveQueryResult Query(SlotIndex Idx) const { // Find the segment that enters the instruction. const_iterator I = find(Idx.getBaseIndex()); const_iterator E = end(); if (I == E) return LiveQueryResult(nullptr, nullptr, SlotIndex(), false);
// Is this an instruction live-in segment? // If Idx is the start index of a basic block, include live-in segments // that start at Idx.getBaseIndex(). VNInfo *EarlyVal = nullptr; VNInfo *LateVal = nullptr; SlotIndex EndPoint; bool Kill = false; if (I->start <= Idx.getBaseIndex()) { EarlyVal = I->valno; EndPoint = I->end; // Move to the potentially live-out segment. if (SlotIndex::isSameInstr(Idx, I->end)) { Kill = true; if (++I == E) return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill); } // Special case: A PHIDef value can have its def in the middle of a // segment if the value happens to be live out of the layout // predecessor. // Such a value is not live-in. if (EarlyVal->def == Idx.getBaseIndex()) EarlyVal = nullptr; } // I now points to the segment that may be live-through, or defined by // this instr. Ignore segments starting after the current instr. if (!SlotIndex::isEarlierInstr(Idx, I->start)) { LateVal = I->valno; EndPoint = I->end; } return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill); }
/// removeValNo - Remove all the segments defined by the specified value#. /// Also remove the value# from value# list. void removeValNo(VNInfo *ValNo);
/// Returns true if the live range is zero length, i.e. no live segments /// span instructions. It doesn't pay to spill such a range. bool isZeroLength(SlotIndexes *Indexes) const { for (const Segment &S : segments) if (Indexes->getNextNonNullIndex(S.start).getBaseIndex() < S.end.getBaseIndex()) return false; return true; }
// Returns true if any segment in the live range contains any of the // provided slot indexes. Slots which occur in holes between // segments will not cause the function to return true. bool isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const;
bool operator<(const LiveRange& other) const { const SlotIndex &thisIndex = beginIndex(); const SlotIndex &otherIndex = other.beginIndex(); return thisIndex < otherIndex; }
/// Returns true if there is an explicit "undef" between @p Begin /// @p End. bool isUndefIn(ArrayRef<SlotIndex> Undefs, SlotIndex Begin, SlotIndex End) const { return llvm::any_of(Undefs, [Begin, End](SlotIndex Idx) -> bool { return Begin <= Idx && Idx < End; }); }
/// Flush segment set into the regular segment vector. /// The method is to be called after the live range /// has been created, if use of the segment set was /// activated in the constructor of the live range. void flushSegmentSet();
/// Stores indexes from the input index sequence R at which this LiveRange /// is live to the output O iterator. /// R is a range of _ascending sorted_ _random_ access iterators /// to the input indexes. Indexes stored at O are ascending sorted so it /// can be used directly in the subsequent search (for example for /// subranges). Returns true if found at least one index. template <typename Range, typename OutputIt> bool findIndexesLiveAt(Range &&R, OutputIt O) const { assert(llvm::is_sorted(R)); auto Idx = R.begin(), EndIdx = R.end(); auto Seg = segments.begin(), EndSeg = segments.end(); bool Found = false; while (Idx != EndIdx && Seg != EndSeg) { // if the Seg is lower find first segment that is above Idx using binary // search if (Seg->end <= *Idx) { Seg = std::upper_bound(++Seg, EndSeg, *Idx, [=](auto V, const auto &S) { return V < S.end; }); if (Seg == EndSeg) break; } auto NotLessStart = std::lower_bound(Idx, EndIdx, Seg->start); if (NotLessStart == EndIdx) break; auto NotLessEnd = std::lower_bound(NotLessStart, EndIdx, Seg->end); if (NotLessEnd != NotLessStart) { Found = true; O = std::copy(NotLessStart, NotLessEnd, O); } Idx = NotLessEnd; ++Seg; } return Found; }
void print(raw_ostream &OS) const; void dump() const;
/// Walk the range and assert if any invariants fail to hold. /// /// Note that this is a no-op when asserts are disabled. #ifdef NDEBUG void verify() const {} #else void verify() const; #endif
protected: /// Append a segment to the list of segments. void append(const LiveRange::Segment S);
private: friend class LiveRangeUpdater; void addSegmentToSet(Segment S); void markValNoForDeletion(VNInfo *V); };
inline raw_ostream &operator<<(raw_ostream &OS, const LiveRange &LR) { LR.print(OS); return OS; }
/// LiveInterval - This class represents the liveness of a register, /// or stack slot. class LiveInterval : public LiveRange { public: using super = LiveRange;
/// A live range for subregisters. The LaneMask specifies which parts of the /// super register are covered by the interval. /// (@sa TargetRegisterInfo::getSubRegIndexLaneMask()). class SubRange : public LiveRange { public: SubRange *Next = nullptr; LaneBitmask LaneMask;
/// Constructs a new SubRange object. SubRange(LaneBitmask LaneMask) : LaneMask(LaneMask) {}
/// Constructs a new SubRange object by copying liveness from @p Other. SubRange(LaneBitmask LaneMask, const LiveRange &Other, BumpPtrAllocator &Allocator) : LiveRange(Other, Allocator), LaneMask(LaneMask) {}
void print(raw_ostream &OS) const; void dump() const; };
private: SubRange *SubRanges = nullptr; ///< Single linked list of subregister live /// ranges. const Register Reg; // the register or stack slot of this interval. float Weight = 0.0; // weight of this interval
public: Register reg() const { return Reg; } float weight() const { return Weight; } void incrementWeight(float Inc) { Weight += Inc; } void setWeight(float Value) { Weight = Value; }
LiveInterval(unsigned Reg, float Weight) : Reg(Reg), Weight(Weight) {}
~LiveInterval() { clearSubRanges(); }
template<typename T> class SingleLinkedListIterator { T *P;
public: using difference_type = ptrdiff_t; using value_type = T; using pointer = T *; using reference = T &; using iterator_category = std::forward_iterator_tag;
SingleLinkedListIterator(T *P) : P(P) {}
SingleLinkedListIterator<T> &operator++() { P = P->Next; return *this; } SingleLinkedListIterator<T> operator++(int) { SingleLinkedListIterator res = *this; ++*this; return res; } bool operator!=(const SingleLinkedListIterator<T> &Other) const { return P != Other.operator->(); } bool operator==(const SingleLinkedListIterator<T> &Other) const { return P == Other.operator->(); } T &operator*() const { return *P; } T *operator->() const { return P; } };
using subrange_iterator = SingleLinkedListIterator<SubRange>; using const_subrange_iterator = SingleLinkedListIterator<const SubRange>;
subrange_iterator subrange_begin() { return subrange_iterator(SubRanges); } subrange_iterator subrange_end() { return subrange_iterator(nullptr); }
const_subrange_iterator subrange_begin() const { return const_subrange_iterator(SubRanges); } const_subrange_iterator subrange_end() const { return const_subrange_iterator(nullptr); }
iterator_range<subrange_iterator> subranges() { return make_range(subrange_begin(), subrange_end()); }
iterator_range<const_subrange_iterator> subranges() const { return make_range(subrange_begin(), subrange_end()); }
/// Creates a new empty subregister live range. The range is added at the /// beginning of the subrange list; subrange iterators stay valid. SubRange *createSubRange(BumpPtrAllocator &Allocator, LaneBitmask LaneMask) { SubRange *Range = new (Allocator) SubRange(LaneMask); appendSubRange(Range); return Range; }
/// Like createSubRange() but the new range is filled with a copy of the /// liveness information in @p CopyFrom. SubRange *createSubRangeFrom(BumpPtrAllocator &Allocator, LaneBitmask LaneMask, const LiveRange &CopyFrom) { SubRange *Range = new (Allocator) SubRange(LaneMask, CopyFrom, Allocator); appendSubRange(Range); return Range; }
/// Returns true if subregister liveness information is available. bool hasSubRanges() const { return SubRanges != nullptr; }
/// Removes all subregister liveness information. void clearSubRanges();
/// Removes all subranges without any segments (subranges without segments /// are not considered valid and should only exist temporarily). void removeEmptySubRanges();
/// getSize - Returns the sum of sizes of all the LiveRange's. /// unsigned getSize() const;
/// isSpillable - Can this interval be spilled? bool isSpillable() const { return Weight != huge_valf; }
/// markNotSpillable - Mark interval as not spillable void markNotSpillable() { Weight = huge_valf; }
/// For a given lane mask @p LaneMask, compute indexes at which the /// lane is marked undefined by subregister <def,read-undef> definitions. void computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs, LaneBitmask LaneMask, const MachineRegisterInfo &MRI, const SlotIndexes &Indexes) const;
/// Refines the subranges to support \p LaneMask. This may only be called /// for LI.hasSubrange()==true. Subregister ranges are split or created /// until \p LaneMask can be matched exactly. \p Mod is executed on the /// matching subranges. /// /// Example: /// Given an interval with subranges with lanemasks L0F00, L00F0 and /// L000F, refining for mask L0018. Will split the L00F0 lane into /// L00E0 and L0010 and the L000F lane into L0007 and L0008. The Mod /// function will be applied to the L0010 and L0008 subranges. /// /// \p Indexes and \p TRI are required to clean up the VNIs that /// don't define the related lane masks after they get shrunk. E.g., /// when L000F gets split into L0007 and L0008 maybe only a subset /// of the VNIs that defined L000F defines L0007. /// /// The clean up of the VNIs need to look at the actual instructions /// to decide what is or is not live at a definition point. If the /// update of the subranges occurs while the IR does not reflect these /// changes, \p ComposeSubRegIdx can be used to specify how the /// definition are going to be rewritten. /// E.g., let say we want to merge: /// V1.sub1:<2 x s32> = COPY V2.sub3:<4 x s32> /// We do that by choosing a class where sub1:<2 x s32> and sub3:<4 x s32> /// overlap, i.e., by choosing a class where we can find "offset + 1 == 3". /// Put differently we align V2's sub3 with V1's sub1: /// V2: sub0 sub1 sub2 sub3 /// V1: <offset> sub0 sub1 /// /// This offset will look like a composed subregidx in the class: /// V1.(composed sub2 with sub1):<4 x s32> = COPY V2.sub3:<4 x s32> /// => V1.(composed sub2 with sub1):<4 x s32> = COPY V2.sub3:<4 x s32> /// /// Now if we didn't rewrite the uses and def of V1, all the checks for V1 /// need to account for this offset. /// This happens during coalescing where we update the live-ranges while /// still having the old IR around because updating the IR on-the-fly /// would actually clobber some information on how the live-ranges that /// are being updated look like. void refineSubRanges(BumpPtrAllocator &Allocator, LaneBitmask LaneMask, std::function<void(LiveInterval::SubRange &)> Apply, const SlotIndexes &Indexes, const TargetRegisterInfo &TRI, unsigned ComposeSubRegIdx = 0);
bool operator<(const LiveInterval& other) const { const SlotIndex &thisIndex = beginIndex(); const SlotIndex &otherIndex = other.beginIndex(); return std::tie(thisIndex, Reg) < std::tie(otherIndex, other.Reg); }
void print(raw_ostream &OS) const; void dump() const;
/// Walks the interval and assert if any invariants fail to hold. /// /// Note that this is a no-op when asserts are disabled. #ifdef NDEBUG void verify(const MachineRegisterInfo *MRI = nullptr) const {} #else void verify(const MachineRegisterInfo *MRI = nullptr) const; #endif
private: /// Appends @p Range to SubRanges list. void appendSubRange(SubRange *Range) { Range->Next = SubRanges; SubRanges = Range; }
/// Free memory held by SubRange. void freeSubRange(SubRange *S); };
inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval::SubRange &SR) { SR.print(OS); return OS; }
inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) { LI.print(OS); return OS; }
raw_ostream &operator<<(raw_ostream &OS, const LiveRange::Segment &S);
inline bool operator<(SlotIndex V, const LiveRange::Segment &S) { return V < S.start; }
inline bool operator<(const LiveRange::Segment &S, SlotIndex V) { return S.start < V; }
/// Helper class for performant LiveRange bulk updates. /// /// Calling LiveRange::addSegment() repeatedly can be expensive on large /// live ranges because segments after the insertion point may need to be /// shifted. The LiveRangeUpdater class can defer the shifting when adding /// many segments in order. /// /// The LiveRange will be in an invalid state until flush() is called. class LiveRangeUpdater { LiveRange *LR; SlotIndex LastStart; LiveRange::iterator WriteI; LiveRange::iterator ReadI; SmallVector<LiveRange::Segment, 16> Spills; void mergeSpills();
public: /// Create a LiveRangeUpdater for adding segments to LR. /// LR will temporarily be in an invalid state until flush() is called. LiveRangeUpdater(LiveRange *lr = nullptr) : LR(lr) {}
~LiveRangeUpdater() { flush(); }
/// Add a segment to LR and coalesce when possible, just like /// LR.addSegment(). Segments should be added in increasing start order for /// best performance. void add(LiveRange::Segment);
void add(SlotIndex Start, SlotIndex End, VNInfo *VNI) { add(LiveRange::Segment(Start, End, VNI)); }
/// Return true if the LR is currently in an invalid state, and flush() /// needs to be called. bool isDirty() const { return LastStart.isValid(); }
/// Flush the updater state to LR so it is valid and contains all added /// segments. void flush();
/// Select a different destination live range. void setDest(LiveRange *lr) { if (LR != lr && isDirty()) flush(); LR = lr; }
/// Get the current destination live range. LiveRange *getDest() const { return LR; }
void dump() const; void print(raw_ostream&) const; };
inline raw_ostream &operator<<(raw_ostream &OS, const LiveRangeUpdater &X) { X.print(OS); return OS; }
/// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a /// LiveInterval into equivalence clases of connected components. A /// LiveInterval that has multiple connected components can be broken into /// multiple LiveIntervals. /// /// Given a LiveInterval that may have multiple connected components, run: /// /// unsigned numComps = ConEQ.Classify(LI); /// if (numComps > 1) { /// // allocate numComps-1 new LiveIntervals into LIS[1..] /// ConEQ.Distribute(LIS); /// }
class ConnectedVNInfoEqClasses { LiveIntervals &LIS; IntEqClasses EqClass;
public: explicit ConnectedVNInfoEqClasses(LiveIntervals &lis) : LIS(lis) {}
/// Classify the values in \p LR into connected components. /// Returns the number of connected components. unsigned Classify(const LiveRange &LR);
/// getEqClass - Classify creates equivalence classes numbered 0..N. Return /// the equivalence class assigned the VNI. unsigned getEqClass(const VNInfo *VNI) const { return EqClass[VNI->id]; }
/// Distribute values in \p LI into a separate LiveIntervals /// for each connected component. LIV must have an empty LiveInterval for /// each additional connected component. The first connected component is /// left in \p LI. void Distribute(LiveInterval &LI, LiveInterval *LIV[], MachineRegisterInfo &MRI); };
} // end namespace llvm
#endif // LLVM_CODEGEN_LIVEINTERVAL_H
|