Viewing file: BitstreamWriter.h (25.25 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- BitstreamWriter.h - Low-level bitstream writer interface -*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This header defines the BitstreamWriter class. This class can be used to // write an arbitrary bitstream, regardless of its contents. // //===----------------------------------------------------------------------===//
#ifndef LLVM_BITSTREAM_BITSTREAMWRITER_H #define LLVM_BITSTREAM_BITSTREAMWRITER_H
#include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/Bitstream/BitCodes.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Endian.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> #include <optional> #include <vector>
namespace llvm {
class BitstreamWriter { /// Owned buffer, used to init Buffer if the provided stream doesn't happen to /// be a buffer itself. SmallVector<char, 0> OwnBuffer; /// Internal buffer for unflushed bytes (unless there is no stream to flush /// to, case in which these are "the bytes"). The writer backpatches, so it is /// efficient to buffer. SmallVectorImpl<char> &Buffer;
/// FS - The file stream that Buffer flushes to. If FS is a raw_fd_stream, the /// writer will incrementally flush at subblock boundaries. Otherwise flushing /// will happen at the end of BitstreamWriter's lifetime. raw_ostream *const FS;
/// FlushThreshold - this is the threshold (unit B) to flush to FS, if FS is a /// raw_fd_stream. const uint64_t FlushThreshold;
/// CurBit - Always between 0 and 31 inclusive, specifies the next bit to use. unsigned CurBit = 0;
/// CurValue - The current value. Only bits < CurBit are valid. uint32_t CurValue = 0;
/// CurCodeSize - This is the declared size of code values used for the /// current block, in bits. unsigned CurCodeSize = 2;
/// BlockInfoCurBID - When emitting a BLOCKINFO_BLOCK, this is the currently /// selected BLOCK ID. unsigned BlockInfoCurBID = 0;
/// CurAbbrevs - Abbrevs installed at in this block. std::vector<std::shared_ptr<BitCodeAbbrev>> CurAbbrevs;
// Support for retrieving a section of the output, for purposes such as // checksumming. std::optional<size_t> BlockFlushingStartPos;
struct Block { unsigned PrevCodeSize; size_t StartSizeWord; std::vector<std::shared_ptr<BitCodeAbbrev>> PrevAbbrevs; Block(unsigned PCS, size_t SSW) : PrevCodeSize(PCS), StartSizeWord(SSW) {} };
/// BlockScope - This tracks the current blocks that we have entered. std::vector<Block> BlockScope;
/// BlockInfo - This contains information emitted to BLOCKINFO_BLOCK blocks. /// These describe abbreviations that all blocks of the specified ID inherit. struct BlockInfo { unsigned BlockID; std::vector<std::shared_ptr<BitCodeAbbrev>> Abbrevs; }; std::vector<BlockInfo> BlockInfoRecords;
void WriteWord(unsigned Value) { Value = support::endian::byte_swap<uint32_t, llvm::endianness::little>(Value); Buffer.append(reinterpret_cast<const char *>(&Value), reinterpret_cast<const char *>(&Value + 1)); }
uint64_t GetNumOfFlushedBytes() const { return fdStream() ? fdStream()->tell() : 0; }
size_t GetBufferOffset() const { return Buffer.size() + GetNumOfFlushedBytes(); }
size_t GetWordIndex() const { size_t Offset = GetBufferOffset(); assert((Offset & 3) == 0 && "Not 32-bit aligned"); return Offset / 4; }
void flushAndClear() { assert(FS); assert(!Buffer.empty()); assert(!BlockFlushingStartPos && "a call to markAndBlockFlushing should have been paired with a " "call to getMarkedBufferAndResumeFlushing"); FS->write(Buffer.data(), Buffer.size()); Buffer.clear(); }
/// If the related file stream is a raw_fd_stream, flush the buffer if its /// size is above a threshold. If \p OnClosing is true, flushing happens /// regardless of thresholds. void FlushToFile(bool OnClosing = false) { if (!FS || Buffer.empty()) return; if (OnClosing) return flushAndClear(); if (BlockFlushingStartPos) return; if (fdStream() && Buffer.size() > FlushThreshold) flushAndClear(); }
raw_fd_stream *fdStream() { return dyn_cast_or_null<raw_fd_stream>(FS); }
const raw_fd_stream *fdStream() const { return dyn_cast_or_null<raw_fd_stream>(FS); }
SmallVectorImpl<char> &getInternalBufferFromStream(raw_ostream &OutStream) { if (auto *SV = dyn_cast<raw_svector_ostream>(&OutStream)) return SV->buffer(); return OwnBuffer; }
public: /// Create a BitstreamWriter over a raw_ostream \p OutStream. /// If \p OutStream is a raw_svector_ostream, the BitstreamWriter will write /// directly to the latter's buffer. In all other cases, the BitstreamWriter /// will use an internal buffer and flush at the end of its lifetime. /// /// In addition, if \p is a raw_fd_stream supporting seek, tell, and read /// (besides write), the BitstreamWriter will also flush incrementally, when a /// subblock is finished, and if the FlushThreshold is passed. /// /// NOTE: \p FlushThreshold's unit is MB. BitstreamWriter(raw_ostream &OutStream, uint32_t FlushThreshold = 512) : Buffer(getInternalBufferFromStream(OutStream)), FS(!isa<raw_svector_ostream>(OutStream) ? &OutStream : nullptr), FlushThreshold(uint64_t(FlushThreshold) << 20) {}
/// Convenience constructor for users that start with a vector - avoids /// needing to wrap it in a raw_svector_ostream. BitstreamWriter(SmallVectorImpl<char> &Buff) : Buffer(Buff), FS(nullptr), FlushThreshold(0) {}
~BitstreamWriter() { FlushToWord(); assert(BlockScope.empty() && CurAbbrevs.empty() && "Block imbalance"); FlushToFile(/*OnClosing=*/true); }
/// For scenarios where the user wants to access a section of the stream to /// (for example) compute some checksum, disable flushing and remember the /// position in the internal buffer where that happened. Must be paired with a /// call to getMarkedBufferAndResumeFlushing. void markAndBlockFlushing() { assert(!BlockFlushingStartPos); BlockFlushingStartPos = Buffer.size(); }
/// resumes flushing, but does not flush, and returns the section in the /// internal buffer starting from the position marked with /// markAndBlockFlushing. The return should be processed before any additional /// calls to this object, because those may cause a flush and invalidate the /// return. StringRef getMarkedBufferAndResumeFlushing() { assert(BlockFlushingStartPos); size_t Start = *BlockFlushingStartPos; BlockFlushingStartPos.reset(); return {&Buffer[Start], Buffer.size() - Start}; }
/// Retrieve the current position in the stream, in bits. uint64_t GetCurrentBitNo() const { return GetBufferOffset() * 8 + CurBit; }
/// Retrieve the number of bits currently used to encode an abbrev ID. unsigned GetAbbrevIDWidth() const { return CurCodeSize; }
//===--------------------------------------------------------------------===// // Basic Primitives for emitting bits to the stream. //===--------------------------------------------------------------------===//
/// Backpatch a byte in the output at the given bit offset with the specified /// value. void BackpatchByte(uint64_t BitNo, uint8_t NewByte) { using namespace llvm::support; uint64_t ByteNo = BitNo / 8; uint64_t StartBit = BitNo & 7; uint64_t NumOfFlushedBytes = GetNumOfFlushedBytes();
if (ByteNo >= NumOfFlushedBytes) { assert((!endian::readAtBitAlignment<uint8_t, llvm::endianness::little, unaligned>( &Buffer[ByteNo - NumOfFlushedBytes], StartBit)) && "Expected to be patching over 0-value placeholders"); endian::writeAtBitAlignment<uint8_t, llvm::endianness::little, unaligned>( &Buffer[ByteNo - NumOfFlushedBytes], NewByte, StartBit); return; }
// If we don't have a raw_fd_stream, GetNumOfFlushedBytes() should have // returned 0, and we shouldn't be here. assert(fdStream() != nullptr); // If the byte offset to backpatch is flushed, use seek to backfill data. // First, save the file position to restore later. uint64_t CurPos = fdStream()->tell();
// Copy data to update into Bytes from the file FS and the buffer Out. char Bytes[3]; // Use one more byte to silence a warning from Visual C++. size_t BytesNum = StartBit ? 2 : 1; size_t BytesFromDisk = std::min(static_cast<uint64_t>(BytesNum), NumOfFlushedBytes - ByteNo); size_t BytesFromBuffer = BytesNum - BytesFromDisk;
// When unaligned, copy existing data into Bytes from the file FS and the // buffer Buffer so that it can be updated before writing. For debug builds // read bytes unconditionally in order to check that the existing value is 0 // as expected. #ifdef NDEBUG if (StartBit) #endif { fdStream()->seek(ByteNo); ssize_t BytesRead = fdStream()->read(Bytes, BytesFromDisk); (void)BytesRead; // silence warning assert(BytesRead >= 0 && static_cast<size_t>(BytesRead) == BytesFromDisk); for (size_t i = 0; i < BytesFromBuffer; ++i) Bytes[BytesFromDisk + i] = Buffer[i]; assert((!endian::readAtBitAlignment<uint8_t, llvm::endianness::little, unaligned>(Bytes, StartBit)) && "Expected to be patching over 0-value placeholders"); }
// Update Bytes in terms of bit offset and value. endian::writeAtBitAlignment<uint8_t, llvm::endianness::little, unaligned>( Bytes, NewByte, StartBit);
// Copy updated data back to the file FS and the buffer Out. fdStream()->seek(ByteNo); fdStream()->write(Bytes, BytesFromDisk); for (size_t i = 0; i < BytesFromBuffer; ++i) Buffer[i] = Bytes[BytesFromDisk + i];
// Restore the file position. fdStream()->seek(CurPos); }
void BackpatchHalfWord(uint64_t BitNo, uint16_t Val) { BackpatchByte(BitNo, (uint8_t)Val); BackpatchByte(BitNo + 8, (uint8_t)(Val >> 8)); }
void BackpatchWord(uint64_t BitNo, unsigned Val) { BackpatchHalfWord(BitNo, (uint16_t)Val); BackpatchHalfWord(BitNo + 16, (uint16_t)(Val >> 16)); }
void BackpatchWord64(uint64_t BitNo, uint64_t Val) { BackpatchWord(BitNo, (uint32_t)Val); BackpatchWord(BitNo + 32, (uint32_t)(Val >> 32)); }
void Emit(uint32_t Val, unsigned NumBits) { assert(NumBits && NumBits <= 32 && "Invalid value size!"); assert((Val & ~(~0U >> (32-NumBits))) == 0 && "High bits set!"); CurValue |= Val << CurBit; if (CurBit + NumBits < 32) { CurBit += NumBits; return; }
// Add the current word. WriteWord(CurValue);
if (CurBit) CurValue = Val >> (32-CurBit); else CurValue = 0; CurBit = (CurBit+NumBits) & 31; }
void FlushToWord() { if (CurBit) { WriteWord(CurValue); CurBit = 0; CurValue = 0; } }
void EmitVBR(uint32_t Val, unsigned NumBits) { assert(NumBits <= 32 && "Too many bits to emit!"); uint32_t Threshold = 1U << (NumBits-1);
// Emit the bits with VBR encoding, NumBits-1 bits at a time. while (Val >= Threshold) { Emit((Val & ((1U << (NumBits - 1)) - 1)) | (1U << (NumBits - 1)), NumBits); Val >>= NumBits-1; }
Emit(Val, NumBits); }
void EmitVBR64(uint64_t Val, unsigned NumBits) { assert(NumBits <= 32 && "Too many bits to emit!"); if ((uint32_t)Val == Val) return EmitVBR((uint32_t)Val, NumBits);
uint32_t Threshold = 1U << (NumBits-1);
// Emit the bits with VBR encoding, NumBits-1 bits at a time. while (Val >= Threshold) { Emit(((uint32_t)Val & ((1U << (NumBits - 1)) - 1)) | (1U << (NumBits - 1)), NumBits); Val >>= NumBits-1; }
Emit((uint32_t)Val, NumBits); }
/// EmitCode - Emit the specified code. void EmitCode(unsigned Val) { Emit(Val, CurCodeSize); }
//===--------------------------------------------------------------------===// // Block Manipulation //===--------------------------------------------------------------------===//
/// getBlockInfo - If there is block info for the specified ID, return it, /// otherwise return null. BlockInfo *getBlockInfo(unsigned BlockID) { // Common case, the most recent entry matches BlockID. if (!BlockInfoRecords.empty() && BlockInfoRecords.back().BlockID == BlockID) return &BlockInfoRecords.back();
for (BlockInfo &BI : BlockInfoRecords) if (BI.BlockID == BlockID) return &BI; return nullptr; }
void EnterSubblock(unsigned BlockID, unsigned CodeLen) { // Block header: // [ENTER_SUBBLOCK, blockid, newcodelen, <align4bytes>, blocklen] EmitCode(bitc::ENTER_SUBBLOCK); EmitVBR(BlockID, bitc::BlockIDWidth); EmitVBR(CodeLen, bitc::CodeLenWidth); FlushToWord();
size_t BlockSizeWordIndex = GetWordIndex(); unsigned OldCodeSize = CurCodeSize;
// Emit a placeholder, which will be replaced when the block is popped. Emit(0, bitc::BlockSizeWidth);
CurCodeSize = CodeLen;
// Push the outer block's abbrev set onto the stack, start out with an // empty abbrev set. BlockScope.emplace_back(OldCodeSize, BlockSizeWordIndex); BlockScope.back().PrevAbbrevs.swap(CurAbbrevs);
// If there is a blockinfo for this BlockID, add all the predefined abbrevs // to the abbrev list. if (BlockInfo *Info = getBlockInfo(BlockID)) append_range(CurAbbrevs, Info->Abbrevs); }
void ExitBlock() { assert(!BlockScope.empty() && "Block scope imbalance!"); const Block &B = BlockScope.back();
// Block tail: // [END_BLOCK, <align4bytes>] EmitCode(bitc::END_BLOCK); FlushToWord();
// Compute the size of the block, in words, not counting the size field. size_t SizeInWords = GetWordIndex() - B.StartSizeWord - 1; uint64_t BitNo = uint64_t(B.StartSizeWord) * 32;
// Update the block size field in the header of this sub-block. BackpatchWord(BitNo, SizeInWords);
// Restore the inner block's code size and abbrev table. CurCodeSize = B.PrevCodeSize; CurAbbrevs = std::move(B.PrevAbbrevs); BlockScope.pop_back(); FlushToFile(); }
//===--------------------------------------------------------------------===// // Record Emission //===--------------------------------------------------------------------===//
private: /// EmitAbbreviatedLiteral - Emit a literal value according to its abbrev /// record. This is a no-op, since the abbrev specifies the literal to use. template<typename uintty> void EmitAbbreviatedLiteral(const BitCodeAbbrevOp &Op, uintty V) { assert(Op.isLiteral() && "Not a literal"); // If the abbrev specifies the literal value to use, don't emit // anything. assert(V == Op.getLiteralValue() && "Invalid abbrev for record!"); }
/// EmitAbbreviatedField - Emit a single scalar field value with the specified /// encoding. template<typename uintty> void EmitAbbreviatedField(const BitCodeAbbrevOp &Op, uintty V) { assert(!Op.isLiteral() && "Literals should use EmitAbbreviatedLiteral!");
// Encode the value as we are commanded. switch (Op.getEncoding()) { default: llvm_unreachable("Unknown encoding!"); case BitCodeAbbrevOp::Fixed: if (Op.getEncodingData()) Emit((unsigned)V, (unsigned)Op.getEncodingData()); break; case BitCodeAbbrevOp::VBR: if (Op.getEncodingData()) EmitVBR64(V, (unsigned)Op.getEncodingData()); break; case BitCodeAbbrevOp::Char6: Emit(BitCodeAbbrevOp::EncodeChar6((char)V), 6); break; } }
/// EmitRecordWithAbbrevImpl - This is the core implementation of the record /// emission code. If BlobData is non-null, then it specifies an array of /// data that should be emitted as part of the Blob or Array operand that is /// known to exist at the end of the record. If Code is specified, then /// it is the record code to emit before the Vals, which must not contain /// the code. template <typename uintty> void EmitRecordWithAbbrevImpl(unsigned Abbrev, ArrayRef<uintty> Vals, StringRef Blob, std::optional<unsigned> Code) { const char *BlobData = Blob.data(); unsigned BlobLen = (unsigned) Blob.size(); unsigned AbbrevNo = Abbrev-bitc::FIRST_APPLICATION_ABBREV; assert(AbbrevNo < CurAbbrevs.size() && "Invalid abbrev #!"); const BitCodeAbbrev *Abbv = CurAbbrevs[AbbrevNo].get();
EmitCode(Abbrev);
unsigned i = 0, e = static_cast<unsigned>(Abbv->getNumOperandInfos()); if (Code) { assert(e && "Expected non-empty abbreviation"); const BitCodeAbbrevOp &Op = Abbv->getOperandInfo(i++);
if (Op.isLiteral()) EmitAbbreviatedLiteral(Op, *Code); else { assert(Op.getEncoding() != BitCodeAbbrevOp::Array && Op.getEncoding() != BitCodeAbbrevOp::Blob && "Expected literal or scalar"); EmitAbbreviatedField(Op, *Code); } }
unsigned RecordIdx = 0; for (; i != e; ++i) { const BitCodeAbbrevOp &Op = Abbv->getOperandInfo(i); if (Op.isLiteral()) { assert(RecordIdx < Vals.size() && "Invalid abbrev/record"); EmitAbbreviatedLiteral(Op, Vals[RecordIdx]); ++RecordIdx; } else if (Op.getEncoding() == BitCodeAbbrevOp::Array) { // Array case. assert(i + 2 == e && "array op not second to last?"); const BitCodeAbbrevOp &EltEnc = Abbv->getOperandInfo(++i);
// If this record has blob data, emit it, otherwise we must have record // entries to encode this way. if (BlobData) { assert(RecordIdx == Vals.size() && "Blob data and record entries specified for array!"); // Emit a vbr6 to indicate the number of elements present. EmitVBR(static_cast<uint32_t>(BlobLen), 6);
// Emit each field. for (unsigned i = 0; i != BlobLen; ++i) EmitAbbreviatedField(EltEnc, (unsigned char)BlobData[i]);
// Know that blob data is consumed for assertion below. BlobData = nullptr; } else { // Emit a vbr6 to indicate the number of elements present. EmitVBR(static_cast<uint32_t>(Vals.size()-RecordIdx), 6);
// Emit each field. for (unsigned e = Vals.size(); RecordIdx != e; ++RecordIdx) EmitAbbreviatedField(EltEnc, Vals[RecordIdx]); } } else if (Op.getEncoding() == BitCodeAbbrevOp::Blob) { // If this record has blob data, emit it, otherwise we must have record // entries to encode this way.
if (BlobData) { assert(RecordIdx == Vals.size() && "Blob data and record entries specified for blob operand!");
assert(Blob.data() == BlobData && "BlobData got moved"); assert(Blob.size() == BlobLen && "BlobLen got changed"); emitBlob(Blob); BlobData = nullptr; } else { emitBlob(Vals.slice(RecordIdx)); } } else { // Single scalar field. assert(RecordIdx < Vals.size() && "Invalid abbrev/record"); EmitAbbreviatedField(Op, Vals[RecordIdx]); ++RecordIdx; } } assert(RecordIdx == Vals.size() && "Not all record operands emitted!"); assert(BlobData == nullptr && "Blob data specified for record that doesn't use it!"); }
public: /// Emit a blob, including flushing before and tail-padding. template <class UIntTy> void emitBlob(ArrayRef<UIntTy> Bytes, bool ShouldEmitSize = true) { // Emit a vbr6 to indicate the number of elements present. if (ShouldEmitSize) EmitVBR(static_cast<uint32_t>(Bytes.size()), 6);
// Flush to a 32-bit alignment boundary. FlushToWord();
// Emit literal bytes. assert(llvm::all_of(Bytes, [](UIntTy B) { return isUInt<8>(B); })); Buffer.append(Bytes.begin(), Bytes.end());
// Align end to 32-bits. while (GetBufferOffset() & 3) Buffer.push_back(0); } void emitBlob(StringRef Bytes, bool ShouldEmitSize = true) { emitBlob(ArrayRef((const uint8_t *)Bytes.data(), Bytes.size()), ShouldEmitSize); }
/// EmitRecord - Emit the specified record to the stream, using an abbrev if /// we have one to compress the output. template <typename Container> void EmitRecord(unsigned Code, const Container &Vals, unsigned Abbrev = 0) { if (!Abbrev) { // If we don't have an abbrev to use, emit this in its fully unabbreviated // form. auto Count = static_cast<uint32_t>(std::size(Vals)); EmitCode(bitc::UNABBREV_RECORD); EmitVBR(Code, 6); EmitVBR(Count, 6); for (unsigned i = 0, e = Count; i != e; ++i) EmitVBR64(Vals[i], 6); return; }
EmitRecordWithAbbrevImpl(Abbrev, ArrayRef(Vals), StringRef(), Code); }
/// EmitRecordWithAbbrev - Emit a record with the specified abbreviation. /// Unlike EmitRecord, the code for the record should be included in Vals as /// the first entry. template <typename Container> void EmitRecordWithAbbrev(unsigned Abbrev, const Container &Vals) { EmitRecordWithAbbrevImpl(Abbrev, ArrayRef(Vals), StringRef(), std::nullopt); }
/// EmitRecordWithBlob - Emit the specified record to the stream, using an /// abbrev that includes a blob at the end. The blob data to emit is /// specified by the pointer and length specified at the end. In contrast to /// EmitRecord, this routine expects that the first entry in Vals is the code /// of the record. template <typename Container> void EmitRecordWithBlob(unsigned Abbrev, const Container &Vals, StringRef Blob) { EmitRecordWithAbbrevImpl(Abbrev, ArrayRef(Vals), Blob, std::nullopt); } template <typename Container> void EmitRecordWithBlob(unsigned Abbrev, const Container &Vals, const char *BlobData, unsigned BlobLen) { return EmitRecordWithAbbrevImpl(Abbrev, ArrayRef(Vals), StringRef(BlobData, BlobLen), std::nullopt); }
/// EmitRecordWithArray - Just like EmitRecordWithBlob, works with records /// that end with an array. template <typename Container> void EmitRecordWithArray(unsigned Abbrev, const Container &Vals, StringRef Array) { EmitRecordWithAbbrevImpl(Abbrev, ArrayRef(Vals), Array, std::nullopt); } template <typename Container> void EmitRecordWithArray(unsigned Abbrev, const Container &Vals, const char *ArrayData, unsigned ArrayLen) { return EmitRecordWithAbbrevImpl( Abbrev, ArrayRef(Vals), StringRef(ArrayData, ArrayLen), std::nullopt); }
//===--------------------------------------------------------------------===// // Abbrev Emission //===--------------------------------------------------------------------===//
private: // Emit the abbreviation as a DEFINE_ABBREV record. void EncodeAbbrev(const BitCodeAbbrev &Abbv) { EmitCode(bitc::DEFINE_ABBREV); EmitVBR(Abbv.getNumOperandInfos(), 5); for (unsigned i = 0, e = static_cast<unsigned>(Abbv.getNumOperandInfos()); i != e; ++i) { const BitCodeAbbrevOp &Op = Abbv.getOperandInfo(i); Emit(Op.isLiteral(), 1); if (Op.isLiteral()) { EmitVBR64(Op.getLiteralValue(), 8); } else { Emit(Op.getEncoding(), 3); if (Op.hasEncodingData()) EmitVBR64(Op.getEncodingData(), 5); } } } public:
/// Emits the abbreviation \p Abbv to the stream. unsigned EmitAbbrev(std::shared_ptr<BitCodeAbbrev> Abbv) { EncodeAbbrev(*Abbv); CurAbbrevs.push_back(std::move(Abbv)); return static_cast<unsigned>(CurAbbrevs.size())-1 + bitc::FIRST_APPLICATION_ABBREV; }
//===--------------------------------------------------------------------===// // BlockInfo Block Emission //===--------------------------------------------------------------------===//
/// EnterBlockInfoBlock - Start emitting the BLOCKINFO_BLOCK. void EnterBlockInfoBlock() { EnterSubblock(bitc::BLOCKINFO_BLOCK_ID, 2); BlockInfoCurBID = ~0U; BlockInfoRecords.clear(); } private: /// SwitchToBlockID - If we aren't already talking about the specified block /// ID, emit a BLOCKINFO_CODE_SETBID record. void SwitchToBlockID(unsigned BlockID) { if (BlockInfoCurBID == BlockID) return; SmallVector<unsigned, 2> V; V.push_back(BlockID); EmitRecord(bitc::BLOCKINFO_CODE_SETBID, V); BlockInfoCurBID = BlockID; }
BlockInfo &getOrCreateBlockInfo(unsigned BlockID) { if (BlockInfo *BI = getBlockInfo(BlockID)) return *BI;
// Otherwise, add a new record. BlockInfoRecords.emplace_back(); BlockInfoRecords.back().BlockID = BlockID; return BlockInfoRecords.back(); }
public:
/// EmitBlockInfoAbbrev - Emit a DEFINE_ABBREV record for the specified /// BlockID. unsigned EmitBlockInfoAbbrev(unsigned BlockID, std::shared_ptr<BitCodeAbbrev> Abbv) { SwitchToBlockID(BlockID); EncodeAbbrev(*Abbv);
// Add the abbrev to the specified block record. BlockInfo &Info = getOrCreateBlockInfo(BlockID); Info.Abbrevs.push_back(std::move(Abbv));
return Info.Abbrevs.size()-1+bitc::FIRST_APPLICATION_ABBREV; } };
} // End llvm namespace
#endif
|