Viewing file: VectorUtils.h (33.49 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- llvm/Analysis/VectorUtils.h - Vector utilities -----------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines some vectorizer utilities. // //===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_VECTORUTILS_H #define LLVM_ANALYSIS_VECTORUTILS_H
#include "llvm/ADT/MapVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/LoopAccessAnalysis.h" #include "llvm/IR/Module.h" #include "llvm/IR/VFABIDemangler.h" #include "llvm/Support/CheckedArithmetic.h"
namespace llvm { class TargetLibraryInfo;
/// The Vector Function Database. /// /// Helper class used to find the vector functions associated to a /// scalar CallInst. class VFDatabase { /// The Module of the CallInst CI. const Module *M; /// The CallInst instance being queried for scalar to vector mappings. const CallInst &CI; /// List of vector functions descriptors associated to the call /// instruction. const SmallVector<VFInfo, 8> ScalarToVectorMappings;
/// Retrieve the scalar-to-vector mappings associated to the rule of /// a vector Function ABI. static void getVFABIMappings(const CallInst &CI, SmallVectorImpl<VFInfo> &Mappings) { if (!CI.getCalledFunction()) return;
const StringRef ScalarName = CI.getCalledFunction()->getName();
SmallVector<std::string, 8> ListOfStrings; // The check for the vector-function-abi-variant attribute is done when // retrieving the vector variant names here. VFABI::getVectorVariantNames(CI, ListOfStrings); if (ListOfStrings.empty()) return; for (const auto &MangledName : ListOfStrings) { const std::optional<VFInfo> Shape = VFABI::tryDemangleForVFABI(MangledName, CI.getFunctionType()); // A match is found via scalar and vector names, and also by // ensuring that the variant described in the attribute has a // corresponding definition or declaration of the vector // function in the Module M. if (Shape && (Shape->ScalarName == ScalarName)) { assert(CI.getModule()->getFunction(Shape->VectorName) && "Vector function is missing."); Mappings.push_back(*Shape); } } }
public: /// Retrieve all the VFInfo instances associated to the CallInst CI. static SmallVector<VFInfo, 8> getMappings(const CallInst &CI) { SmallVector<VFInfo, 8> Ret;
// Get mappings from the Vector Function ABI variants. getVFABIMappings(CI, Ret);
// Other non-VFABI variants should be retrieved here.
return Ret; }
static bool hasMaskedVariant(const CallInst &CI, std::optional<ElementCount> VF = std::nullopt) { // Check whether we have at least one masked vector version of a scalar // function. If no VF is specified then we check for any masked variant, // otherwise we look for one that matches the supplied VF. auto Mappings = VFDatabase::getMappings(CI); for (VFInfo Info : Mappings) if (!VF || Info.Shape.VF == *VF) if (Info.isMasked()) return true;
return false; }
/// Constructor, requires a CallInst instance. VFDatabase(CallInst &CI) : M(CI.getModule()), CI(CI), ScalarToVectorMappings(VFDatabase::getMappings(CI)) {}
/// \defgroup VFDatabase query interface. /// /// @{ /// Retrieve the Function with VFShape \p Shape. Function *getVectorizedFunction(const VFShape &Shape) const { if (Shape == VFShape::getScalarShape(CI.getFunctionType())) return CI.getCalledFunction();
for (const auto &Info : ScalarToVectorMappings) if (Info.Shape == Shape) return M->getFunction(Info.VectorName);
return nullptr; } /// @} };
template <typename T> class ArrayRef; class DemandedBits; template <typename InstTy> class InterleaveGroup; class IRBuilderBase; class Loop; class ScalarEvolution; class TargetTransformInfo; class Type; class Value;
namespace Intrinsic { typedef unsigned ID; }
/// A helper function for converting Scalar types to vector types. If /// the incoming type is void, we return void. If the EC represents a /// scalar, we return the scalar type. inline Type *ToVectorTy(Type *Scalar, ElementCount EC) { if (Scalar->isVoidTy() || Scalar->isMetadataTy() || EC.isScalar()) return Scalar; return VectorType::get(Scalar, EC); }
inline Type *ToVectorTy(Type *Scalar, unsigned VF) { return ToVectorTy(Scalar, ElementCount::getFixed(VF)); }
/// Identify if the intrinsic is trivially vectorizable. /// This method returns true if the intrinsic's argument types are all scalars /// for the scalar form of the intrinsic and all vectors (or scalars handled by /// isVectorIntrinsicWithScalarOpAtArg) for the vector form of the intrinsic. bool isTriviallyVectorizable(Intrinsic::ID ID);
/// Identifies if the vector form of the intrinsic has a scalar operand. bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx);
/// Identifies if the vector form of the intrinsic is overloaded on the type of /// the operand at index \p OpdIdx, or on the return type if \p OpdIdx is -1. bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx);
/// Returns intrinsic ID for call. /// For the input call instruction it finds mapping intrinsic and returns /// its intrinsic ID, in case it does not found it return not_intrinsic. Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI);
/// Given a vector and an element number, see if the scalar value is /// already around as a register, for example if it were inserted then extracted /// from the vector. Value *findScalarElement(Value *V, unsigned EltNo);
/// If all non-negative \p Mask elements are the same value, return that value. /// If all elements are negative (undefined) or \p Mask contains different /// non-negative values, return -1. int getSplatIndex(ArrayRef<int> Mask);
/// Get splat value if the input is a splat vector or return nullptr. /// The value may be extracted from a splat constants vector or from /// a sequence of instructions that broadcast a single value into a vector. Value *getSplatValue(const Value *V);
/// Return true if each element of the vector value \p V is poisoned or equal to /// every other non-poisoned element. If an index element is specified, either /// every element of the vector is poisoned or the element at that index is not /// poisoned and equal to every other non-poisoned element. /// This may be more powerful than the related getSplatValue() because it is /// not limited by finding a scalar source value to a splatted vector. bool isSplatValue(const Value *V, int Index = -1, unsigned Depth = 0);
/// Transform a shuffle mask's output demanded element mask into demanded /// element masks for the 2 operands, returns false if the mask isn't valid. /// Both \p DemandedLHS and \p DemandedRHS are initialised to [SrcWidth]. /// \p AllowUndefElts permits "-1" indices to be treated as undef. bool getShuffleDemandedElts(int SrcWidth, ArrayRef<int> Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts = false);
/// Replace each shuffle mask index with the scaled sequential indices for an /// equivalent mask of narrowed elements. Mask elements that are less than 0 /// (sentinel values) are repeated in the output mask. /// /// Example with Scale = 4: /// <4 x i32> <3, 2, 0, -1> --> /// <16 x i8> <12, 13, 14, 15, 8, 9, 10, 11, 0, 1, 2, 3, -1, -1, -1, -1> /// /// This is the reverse process of widening shuffle mask elements, but it always /// succeeds because the indexes can always be multiplied (scaled up) to map to /// narrower vector elements. void narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask, SmallVectorImpl<int> &ScaledMask);
/// Try to transform a shuffle mask by replacing elements with the scaled index /// for an equivalent mask of widened elements. If all mask elements that would /// map to a wider element of the new mask are the same negative number /// (sentinel value), that element of the new mask is the same value. If any /// element in a given slice is negative and some other element in that slice is /// not the same value, return false (partial matches with sentinel values are /// not allowed). /// /// Example with Scale = 4: /// <16 x i8> <12, 13, 14, 15, 8, 9, 10, 11, 0, 1, 2, 3, -1, -1, -1, -1> --> /// <4 x i32> <3, 2, 0, -1> /// /// This is the reverse process of narrowing shuffle mask elements if it /// succeeds. This transform is not always possible because indexes may not /// divide evenly (scale down) to map to wider vector elements. bool widenShuffleMaskElts(int Scale, ArrayRef<int> Mask, SmallVectorImpl<int> &ScaledMask);
/// Attempt to narrow/widen the \p Mask shuffle mask to the \p NumDstElts target /// width. Internally this will call narrowShuffleMaskElts/widenShuffleMaskElts. /// This will assert unless NumDstElts is a multiple of Mask.size (or vice-versa). /// Returns false on failure, and ScaledMask will be in an undefined state. bool scaleShuffleMaskElts(unsigned NumDstElts, ArrayRef<int> Mask, SmallVectorImpl<int> &ScaledMask);
/// Repetitively apply `widenShuffleMaskElts()` for as long as it succeeds, /// to get the shuffle mask with widest possible elements. void getShuffleMaskWithWidestElts(ArrayRef<int> Mask, SmallVectorImpl<int> &ScaledMask);
/// Splits and processes shuffle mask depending on the number of input and /// output registers. The function does 2 main things: 1) splits the /// source/destination vectors into real registers; 2) do the mask analysis to /// identify which real registers are permuted. Then the function processes /// resulting registers mask using provided action items. If no input register /// is defined, \p NoInputAction action is used. If only 1 input register is /// used, \p SingleInputAction is used, otherwise \p ManyInputsAction is used to /// process > 2 input registers and masks. /// \param Mask Original shuffle mask. /// \param NumOfSrcRegs Number of source registers. /// \param NumOfDestRegs Number of destination registers. /// \param NumOfUsedRegs Number of actually used destination registers. void processShuffleMasks( ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs, unsigned NumOfUsedRegs, function_ref<void()> NoInputAction, function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction, function_ref<void(ArrayRef<int>, unsigned, unsigned)> ManyInputsAction);
/// Compute the demanded elements mask of horizontal binary operations. A /// horizontal operation combines two adjacent elements in a vector operand. /// This function returns a mask for the elements that correspond to the first /// operand of this horizontal combination. For example, for two vectors /// [X1, X2, X3, X4] and [Y1, Y2, Y3, Y4], the resulting mask can include the /// elements X1, X3, Y1, and Y3. To get the other operands, simply shift the /// result of this function to the left by 1. /// /// \param VectorBitWidth the total bit width of the vector /// \param DemandedElts the demanded elements mask for the operation /// \param DemandedLHS the demanded elements mask for the left operand /// \param DemandedRHS the demanded elements mask for the right operand void getHorizDemandedEltsForFirstOperand(unsigned VectorBitWidth, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS);
/// Compute a map of integer instructions to their minimum legal type /// size. /// /// C semantics force sub-int-sized values (e.g. i8, i16) to be promoted to int /// type (e.g. i32) whenever arithmetic is performed on them. /// /// For targets with native i8 or i16 operations, usually InstCombine can shrink /// the arithmetic type down again. However InstCombine refuses to create /// illegal types, so for targets without i8 or i16 registers, the lengthening /// and shrinking remains. /// /// Most SIMD ISAs (e.g. NEON) however support vectors of i8 or i16 even when /// their scalar equivalents do not, so during vectorization it is important to /// remove these lengthens and truncates when deciding the profitability of /// vectorization. /// /// This function analyzes the given range of instructions and determines the /// minimum type size each can be converted to. It attempts to remove or /// minimize type size changes across each def-use chain, so for example in the /// following code: /// /// %1 = load i8, i8* /// %2 = add i8 %1, 2 /// %3 = load i16, i16* /// %4 = zext i8 %2 to i32 /// %5 = zext i16 %3 to i32 /// %6 = add i32 %4, %5 /// %7 = trunc i32 %6 to i16 /// /// Instruction %6 must be done at least in i16, so computeMinimumValueSizes /// will return: {%1: 16, %2: 16, %3: 16, %4: 16, %5: 16, %6: 16, %7: 16}. /// /// If the optional TargetTransformInfo is provided, this function tries harder /// to do less work by only looking at illegal types. MapVector<Instruction*, uint64_t> computeMinimumValueSizes(ArrayRef<BasicBlock*> Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr);
/// Compute the union of two access-group lists. /// /// If the list contains just one access group, it is returned directly. If the /// list is empty, returns nullptr. MDNode *uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2);
/// Compute the access-group list of access groups that @p Inst1 and @p Inst2 /// are both in. If either instruction does not access memory at all, it is /// considered to be in every list. /// /// If the list contains just one access group, it is returned directly. If the /// list is empty, returns nullptr. MDNode *intersectAccessGroups(const Instruction *Inst1, const Instruction *Inst2);
/// Specifically, let Kinds = [MD_tbaa, MD_alias_scope, MD_noalias, MD_fpmath, /// MD_nontemporal, MD_access_group, MD_mmra]. /// For K in Kinds, we get the MDNode for K from each of the /// elements of VL, compute their "intersection" (i.e., the most generic /// metadata value that covers all of the individual values), and set I's /// metadata for M equal to the intersection value. /// /// This function always sets a (possibly null) value for each K in Kinds. Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL);
/// Create a mask that filters the members of an interleave group where there /// are gaps. /// /// For example, the mask for \p Group with interleave-factor 3 /// and \p VF 4, that has only its first member present is: /// /// <1,0,0,1,0,0,1,0,0,1,0,0> /// /// Note: The result is a mask of 0's and 1's, as opposed to the other /// create[*]Mask() utilities which create a shuffle mask (mask that /// consists of indices). Constant *createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup<Instruction> &Group);
/// Create a mask with replicated elements. /// /// This function creates a shuffle mask for replicating each of the \p VF /// elements in a vector \p ReplicationFactor times. It can be used to /// transform a mask of \p VF elements into a mask of /// \p VF * \p ReplicationFactor elements used by a predicated /// interleaved-group of loads/stores whose Interleaved-factor == /// \p ReplicationFactor. /// /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is: /// /// <0,0,0,1,1,1,2,2,2,3,3,3> llvm::SmallVector<int, 16> createReplicatedMask(unsigned ReplicationFactor, unsigned VF);
/// Create an interleave shuffle mask. /// /// This function creates a shuffle mask for interleaving \p NumVecs vectors of /// vectorization factor \p VF into a single wide vector. The mask is of the /// form: /// /// <0, VF, VF * 2, ..., VF * (NumVecs - 1), 1, VF + 1, VF * 2 + 1, ...> /// /// For example, the mask for VF = 4 and NumVecs = 2 is: /// /// <0, 4, 1, 5, 2, 6, 3, 7>. llvm::SmallVector<int, 16> createInterleaveMask(unsigned VF, unsigned NumVecs);
/// Create a stride shuffle mask. /// /// This function creates a shuffle mask whose elements begin at \p Start and /// are incremented by \p Stride. The mask can be used to deinterleave an /// interleaved vector into separate vectors of vectorization factor \p VF. The /// mask is of the form: /// /// <Start, Start + Stride, ..., Start + Stride * (VF - 1)> /// /// For example, the mask for Start = 0, Stride = 2, and VF = 4 is: /// /// <0, 2, 4, 6> llvm::SmallVector<int, 16> createStrideMask(unsigned Start, unsigned Stride, unsigned VF);
/// Create a sequential shuffle mask. /// /// This function creates shuffle mask whose elements are sequential and begin /// at \p Start. The mask contains \p NumInts integers and is padded with \p /// NumUndefs undef values. The mask is of the form: /// /// <Start, Start + 1, ... Start + NumInts - 1, undef_1, ... undef_NumUndefs> /// /// For example, the mask for Start = 0, NumInsts = 4, and NumUndefs = 4 is: /// /// <0, 1, 2, 3, undef, undef, undef, undef> llvm::SmallVector<int, 16> createSequentialMask(unsigned Start, unsigned NumInts, unsigned NumUndefs);
/// Given a shuffle mask for a binary shuffle, create the equivalent shuffle /// mask assuming both operands are identical. This assumes that the unary /// shuffle will use elements from operand 0 (operand 1 will be unused). llvm::SmallVector<int, 16> createUnaryMask(ArrayRef<int> Mask, unsigned NumElts);
/// Concatenate a list of vectors. /// /// This function generates code that concatenate the vectors in \p Vecs into a /// single large vector. The number of vectors should be greater than one, and /// their element types should be the same. The number of elements in the /// vectors should also be the same; however, if the last vector has fewer /// elements, it will be padded with undefs. Value *concatenateVectors(IRBuilderBase &Builder, ArrayRef<Value *> Vecs);
/// Given a mask vector of i1, Return true if all of the elements of this /// predicate mask are known to be false or undef. That is, return true if all /// lanes can be assumed inactive. bool maskIsAllZeroOrUndef(Value *Mask);
/// Given a mask vector of i1, Return true if all of the elements of this /// predicate mask are known to be true or undef. That is, return true if all /// lanes can be assumed active. bool maskIsAllOneOrUndef(Value *Mask);
/// Given a mask vector of i1, Return true if any of the elements of this /// predicate mask are known to be true or undef. That is, return true if at /// least one lane can be assumed active. bool maskContainsAllOneOrUndef(Value *Mask);
/// Given a mask vector of the form <Y x i1>, return an APInt (of bitwidth Y) /// for each lane which may be active. APInt possiblyDemandedEltsInMask(Value *Mask);
/// The group of interleaved loads/stores sharing the same stride and /// close to each other. /// /// Each member in this group has an index starting from 0, and the largest /// index should be less than interleaved factor, which is equal to the absolute /// value of the access's stride. /// /// E.g. An interleaved load group of factor 4: /// for (unsigned i = 0; i < 1024; i+=4) { /// a = A[i]; // Member of index 0 /// b = A[i+1]; // Member of index 1 /// d = A[i+3]; // Member of index 3 /// ... /// } /// /// An interleaved store group of factor 4: /// for (unsigned i = 0; i < 1024; i+=4) { /// ... /// A[i] = a; // Member of index 0 /// A[i+1] = b; // Member of index 1 /// A[i+2] = c; // Member of index 2 /// A[i+3] = d; // Member of index 3 /// } /// /// Note: the interleaved load group could have gaps (missing members), but /// the interleaved store group doesn't allow gaps. template <typename InstTy> class InterleaveGroup { public: InterleaveGroup(uint32_t Factor, bool Reverse, Align Alignment) : Factor(Factor), Reverse(Reverse), Alignment(Alignment), InsertPos(nullptr) {}
InterleaveGroup(InstTy *Instr, int32_t Stride, Align Alignment) : Alignment(Alignment), InsertPos(Instr) { Factor = std::abs(Stride); assert(Factor > 1 && "Invalid interleave factor");
Reverse = Stride < 0; Members[0] = Instr; }
bool isReverse() const { return Reverse; } uint32_t getFactor() const { return Factor; } Align getAlign() const { return Alignment; } uint32_t getNumMembers() const { return Members.size(); }
/// Try to insert a new member \p Instr with index \p Index and /// alignment \p NewAlign. The index is related to the leader and it could be /// negative if it is the new leader. /// /// \returns false if the instruction doesn't belong to the group. bool insertMember(InstTy *Instr, int32_t Index, Align NewAlign) { // Make sure the key fits in an int32_t. std::optional<int32_t> MaybeKey = checkedAdd(Index, SmallestKey); if (!MaybeKey) return false; int32_t Key = *MaybeKey;
// Skip if the key is used for either the tombstone or empty special values. if (DenseMapInfo<int32_t>::getTombstoneKey() == Key || DenseMapInfo<int32_t>::getEmptyKey() == Key) return false;
// Skip if there is already a member with the same index. if (Members.contains(Key)) return false;
if (Key > LargestKey) { // The largest index is always less than the interleave factor. if (Index >= static_cast<int32_t>(Factor)) return false;
LargestKey = Key; } else if (Key < SmallestKey) {
// Make sure the largest index fits in an int32_t. std::optional<int32_t> MaybeLargestIndex = checkedSub(LargestKey, Key); if (!MaybeLargestIndex) return false;
// The largest index is always less than the interleave factor. if (*MaybeLargestIndex >= static_cast<int64_t>(Factor)) return false;
SmallestKey = Key; }
// It's always safe to select the minimum alignment. Alignment = std::min(Alignment, NewAlign); Members[Key] = Instr; return true; }
/// Get the member with the given index \p Index /// /// \returns nullptr if contains no such member. InstTy *getMember(uint32_t Index) const { int32_t Key = SmallestKey + Index; return Members.lookup(Key); }
/// Get the index for the given member. Unlike the key in the member /// map, the index starts from 0. uint32_t getIndex(const InstTy *Instr) const { for (auto I : Members) { if (I.second == Instr) return I.first - SmallestKey; }
llvm_unreachable("InterleaveGroup contains no such member"); }
InstTy *getInsertPos() const { return InsertPos; } void setInsertPos(InstTy *Inst) { InsertPos = Inst; }
/// Add metadata (e.g. alias info) from the instructions in this group to \p /// NewInst. /// /// FIXME: this function currently does not add noalias metadata a'la /// addNewMedata. To do that we need to compute the intersection of the /// noalias info from all members. void addMetadata(InstTy *NewInst) const;
/// Returns true if this Group requires a scalar iteration to handle gaps. bool requiresScalarEpilogue() const { // If the last member of the Group exists, then a scalar epilog is not // needed for this group. if (getMember(getFactor() - 1)) return false;
// We have a group with gaps. It therefore can't be a reversed access, // because such groups get invalidated (TODO). assert(!isReverse() && "Group should have been invalidated");
// This is a group of loads, with gaps, and without a last-member return true; }
private: uint32_t Factor; // Interleave Factor. bool Reverse; Align Alignment; DenseMap<int32_t, InstTy *> Members; int32_t SmallestKey = 0; int32_t LargestKey = 0;
// To avoid breaking dependences, vectorized instructions of an interleave // group should be inserted at either the first load or the last store in // program order. // // E.g. %even = load i32 // Insert Position // %add = add i32 %even // Use of %even // %odd = load i32 // // store i32 %even // %odd = add i32 // Def of %odd // store i32 %odd // Insert Position InstTy *InsertPos; };
/// Drive the analysis of interleaved memory accesses in the loop. /// /// Use this class to analyze interleaved accesses only when we can vectorize /// a loop. Otherwise it's meaningless to do analysis as the vectorization /// on interleaved accesses is unsafe. /// /// The analysis collects interleave groups and records the relationships /// between the member and the group in a map. class InterleavedAccessInfo { public: InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, DominatorTree *DT, LoopInfo *LI, const LoopAccessInfo *LAI) : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(LAI) {}
~InterleavedAccessInfo() { invalidateGroups(); }
/// Analyze the interleaved accesses and collect them in interleave /// groups. Substitute symbolic strides using \p Strides. /// Consider also predicated loads/stores in the analysis if /// \p EnableMaskedInterleavedGroup is true. void analyzeInterleaving(bool EnableMaskedInterleavedGroup);
/// Invalidate groups, e.g., in case all blocks in loop will be predicated /// contrary to original assumption. Although we currently prevent group /// formation for predicated accesses, we may be able to relax this limitation /// in the future once we handle more complicated blocks. Returns true if any /// groups were invalidated. bool invalidateGroups() { if (InterleaveGroups.empty()) { assert( !RequiresScalarEpilogue && "RequiresScalarEpilog should not be set without interleave groups"); return false; }
InterleaveGroupMap.clear(); for (auto *Ptr : InterleaveGroups) delete Ptr; InterleaveGroups.clear(); RequiresScalarEpilogue = false; return true; }
/// Check if \p Instr belongs to any interleave group. bool isInterleaved(Instruction *Instr) const { return InterleaveGroupMap.contains(Instr); }
/// Get the interleave group that \p Instr belongs to. /// /// \returns nullptr if doesn't have such group. InterleaveGroup<Instruction> * getInterleaveGroup(const Instruction *Instr) const { return InterleaveGroupMap.lookup(Instr); }
iterator_range<SmallPtrSetIterator<llvm::InterleaveGroup<Instruction> *>> getInterleaveGroups() { return make_range(InterleaveGroups.begin(), InterleaveGroups.end()); }
/// Returns true if an interleaved group that may access memory /// out-of-bounds requires a scalar epilogue iteration for correctness. bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; }
/// Invalidate groups that require a scalar epilogue (due to gaps). This can /// happen when optimizing for size forbids a scalar epilogue, and the gap /// cannot be filtered by masking the load/store. void invalidateGroupsRequiringScalarEpilogue();
/// Returns true if we have any interleave groups. bool hasGroups() const { return !InterleaveGroups.empty(); }
private: /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. /// Simplifies SCEV expressions in the context of existing SCEV assumptions. /// The interleaved access analysis can also add new predicates (for example /// by versioning strides of pointers). PredicatedScalarEvolution &PSE;
Loop *TheLoop; DominatorTree *DT; LoopInfo *LI; const LoopAccessInfo *LAI;
/// True if the loop may contain non-reversed interleaved groups with /// out-of-bounds accesses. We ensure we don't speculatively access memory /// out-of-bounds by executing at least one scalar epilogue iteration. bool RequiresScalarEpilogue = false;
/// Holds the relationships between the members and the interleave group. DenseMap<Instruction *, InterleaveGroup<Instruction> *> InterleaveGroupMap;
SmallPtrSet<InterleaveGroup<Instruction> *, 4> InterleaveGroups;
/// Holds dependences among the memory accesses in the loop. It maps a source /// access to a set of dependent sink accesses. DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences;
/// The descriptor for a strided memory access. struct StrideDescriptor { StrideDescriptor() = default; StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, Align Alignment) : Stride(Stride), Scev(Scev), Size(Size), Alignment(Alignment) {}
// The access's stride. It is negative for a reverse access. int64_t Stride = 0;
// The scalar expression of this access. const SCEV *Scev = nullptr;
// The size of the memory object. uint64_t Size = 0;
// The alignment of this access. Align Alignment; };
/// A type for holding instructions and their stride descriptors. using StrideEntry = std::pair<Instruction *, StrideDescriptor>;
/// Create a new interleave group with the given instruction \p Instr, /// stride \p Stride and alignment \p Align. /// /// \returns the newly created interleave group. InterleaveGroup<Instruction> * createInterleaveGroup(Instruction *Instr, int Stride, Align Alignment) { assert(!InterleaveGroupMap.count(Instr) && "Already in an interleaved access group"); InterleaveGroupMap[Instr] = new InterleaveGroup<Instruction>(Instr, Stride, Alignment); InterleaveGroups.insert(InterleaveGroupMap[Instr]); return InterleaveGroupMap[Instr]; }
/// Release the group and remove all the relationships. void releaseGroup(InterleaveGroup<Instruction> *Group) { InterleaveGroups.erase(Group); releaseGroupWithoutRemovingFromSet(Group); }
/// Do everything necessary to release the group, apart from removing it from /// the InterleaveGroups set. void releaseGroupWithoutRemovingFromSet(InterleaveGroup<Instruction> *Group) { for (unsigned i = 0; i < Group->getFactor(); i++) if (Instruction *Member = Group->getMember(i)) InterleaveGroupMap.erase(Member);
delete Group; }
/// Collect all the accesses with a constant stride in program order. void collectConstStrideAccesses( MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, const DenseMap<Value *, const SCEV *> &Strides);
/// Returns true if \p Stride is allowed in an interleaved group. static bool isStrided(int Stride);
/// Returns true if \p BB is a predicated block. bool isPredicated(BasicBlock *BB) const { return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); }
/// Returns true if LoopAccessInfo can be used for dependence queries. bool areDependencesValid() const { return LAI && LAI->getDepChecker().getDependences(); }
/// Returns true if memory accesses \p A and \p B can be reordered, if /// necessary, when constructing interleaved groups. /// /// \p A must precede \p B in program order. We return false if reordering is /// not necessary or is prevented because \p A and \p B may be dependent. bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, StrideEntry *B) const { // Code motion for interleaved accesses can potentially hoist strided loads // and sink strided stores. The code below checks the legality of the // following two conditions: // // 1. Potentially moving a strided load (B) before any store (A) that // precedes B, or // // 2. Potentially moving a strided store (A) after any load or store (B) // that A precedes. // // It's legal to reorder A and B if we know there isn't a dependence from A // to B. Note that this determination is conservative since some // dependences could potentially be reordered safely.
// A is potentially the source of a dependence. auto *Src = A->first; auto SrcDes = A->second;
// B is potentially the sink of a dependence. auto *Sink = B->first; auto SinkDes = B->second;
// Code motion for interleaved accesses can't violate WAR dependences. // Thus, reordering is legal if the source isn't a write. if (!Src->mayWriteToMemory()) return true;
// At least one of the accesses must be strided. if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) return true;
// If dependence information is not available from LoopAccessInfo, // conservatively assume the instructions can't be reordered. if (!areDependencesValid()) return false;
// If we know there is a dependence from source to sink, assume the // instructions can't be reordered. Otherwise, reordering is legal. return !Dependences.contains(Src) || !Dependences.lookup(Src).count(Sink); }
/// Collect the dependences from LoopAccessInfo. /// /// We process the dependences once during the interleaved access analysis to /// enable constant-time dependence queries. void collectDependences() { if (!areDependencesValid()) return; const auto &DepChecker = LAI->getDepChecker(); auto *Deps = DepChecker.getDependences(); for (auto Dep : *Deps) Dependences[Dep.getSource(DepChecker)].insert( Dep.getDestination(DepChecker)); } };
} // llvm namespace
#endif
|