Viewing file: ScalarEvolution.h (106.65 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // The ScalarEvolution class is an LLVM pass which can be used to analyze and // categorize scalar expressions in loops. It specializes in recognizing // general induction variables, representing them with the abstract and opaque // SCEV class. Given this analysis, trip counts of loops and other important // properties can be obtained. // // This analysis is primarily useful for induction variable substitution and // strength reduction. // //===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H #define LLVM_ANALYSIS_SCALAREVOLUTION_H
#include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/IR/ConstantRange.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/ValueHandle.h" #include "llvm/IR/ValueMap.h" #include "llvm/Pass.h" #include <cassert> #include <cstdint> #include <memory> #include <optional> #include <utility>
namespace llvm {
class OverflowingBinaryOperator; class AssumptionCache; class BasicBlock; class Constant; class ConstantInt; class DataLayout; class DominatorTree; class Function; class GEPOperator; class Instruction; class LLVMContext; class Loop; class LoopInfo; class raw_ostream; class ScalarEvolution; class SCEVAddRecExpr; class SCEVUnknown; class StructType; class TargetLibraryInfo; class Type; class Value; enum SCEVTypes : unsigned short;
extern bool VerifySCEV;
/// This class represents an analyzed expression in the program. These are /// opaque objects that the client is not allowed to do much with directly. /// class SCEV : public FoldingSetNode { friend struct FoldingSetTrait<SCEV>;
/// A reference to an Interned FoldingSetNodeID for this node. The /// ScalarEvolution's BumpPtrAllocator holds the data. FoldingSetNodeIDRef FastID;
// The SCEV baseclass this node corresponds to const SCEVTypes SCEVType;
protected: // Estimated complexity of this node's expression tree size. const unsigned short ExpressionSize;
/// This field is initialized to zero and may be used in subclasses to store /// miscellaneous information. unsigned short SubclassData = 0;
public: /// NoWrapFlags are bitfield indices into SubclassData. /// /// Add and Mul expressions may have no-unsigned-wrap <NUW> or /// no-signed-wrap <NSW> properties, which are derived from the IR /// operator. NSW is a misnomer that we use to mean no signed overflow or /// underflow. /// /// AddRec expressions may have a no-self-wraparound <NW> property if, in /// the integer domain, abs(step) * max-iteration(loop) <= /// unsigned-max(bitwidth). This means that the recurrence will never reach /// its start value if the step is non-zero. Computing the same value on /// each iteration is not considered wrapping, and recurrences with step = 0 /// are trivially <NW>. <NW> is independent of the sign of step and the /// value the add recurrence starts with. /// /// Note that NUW and NSW are also valid properties of a recurrence, and /// either implies NW. For convenience, NW will be set for a recurrence /// whenever either NUW or NSW are set. /// /// We require that the flag on a SCEV apply to the entire scope in which /// that SCEV is defined. A SCEV's scope is set of locations dominated by /// a defining location, which is in turn described by the following rules: /// * A SCEVUnknown is at the point of definition of the Value. /// * A SCEVConstant is defined at all points. /// * A SCEVAddRec is defined starting with the header of the associated /// loop. /// * All other SCEVs are defined at the earlest point all operands are /// defined. /// /// The above rules describe a maximally hoisted form (without regards to /// potential control dependence). A SCEV is defined anywhere a /// corresponding instruction could be defined in said maximally hoisted /// form. Note that SCEVUDivExpr (currently the only expression type which /// can trap) can be defined per these rules in regions where it would trap /// at runtime. A SCEV being defined does not require the existence of any /// instruction within the defined scope. enum NoWrapFlags { FlagAnyWrap = 0, // No guarantee. FlagNW = (1 << 0), // No self-wrap. FlagNUW = (1 << 1), // No unsigned wrap. FlagNSW = (1 << 2), // No signed wrap. NoWrapMask = (1 << 3) - 1 };
explicit SCEV(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, unsigned short ExpressionSize) : FastID(ID), SCEVType(SCEVTy), ExpressionSize(ExpressionSize) {} SCEV(const SCEV &) = delete; SCEV &operator=(const SCEV &) = delete;
SCEVTypes getSCEVType() const { return SCEVType; }
/// Return the LLVM type of this SCEV expression. Type *getType() const;
/// Return operands of this SCEV expression. ArrayRef<const SCEV *> operands() const;
/// Return true if the expression is a constant zero. bool isZero() const;
/// Return true if the expression is a constant one. bool isOne() const;
/// Return true if the expression is a constant all-ones value. bool isAllOnesValue() const;
/// Return true if the specified scev is negated, but not a constant. bool isNonConstantNegative() const;
// Returns estimated size of the mathematical expression represented by this // SCEV. The rules of its calculation are following: // 1) Size of a SCEV without operands (like constants and SCEVUnknown) is 1; // 2) Size SCEV with operands Op1, Op2, ..., OpN is calculated by formula: // (1 + Size(Op1) + ... + Size(OpN)). // This value gives us an estimation of time we need to traverse through this // SCEV and all its operands recursively. We may use it to avoid performing // heavy transformations on SCEVs of excessive size for sake of saving the // compilation time. unsigned short getExpressionSize() const { return ExpressionSize; }
/// Print out the internal representation of this scalar to the specified /// stream. This should really only be used for debugging purposes. void print(raw_ostream &OS) const;
/// This method is used for debugging. void dump() const; };
// Specialize FoldingSetTrait for SCEV to avoid needing to compute // temporary FoldingSetNodeID values. template <> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> { static void Profile(const SCEV &X, FoldingSetNodeID &ID) { ID = X.FastID; }
static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash, FoldingSetNodeID &TempID) { return ID == X.FastID; }
static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) { return X.FastID.ComputeHash(); } };
inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) { S.print(OS); return OS; }
/// An object of this class is returned by queries that could not be answered. /// For example, if you ask for the number of iterations of a linked-list /// traversal loop, you will get one of these. None of the standard SCEV /// operations are valid on this class, it is just a marker. struct SCEVCouldNotCompute : public SCEV { SCEVCouldNotCompute();
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const SCEV *S); };
/// This class represents an assumption made using SCEV expressions which can /// be checked at run-time. class SCEVPredicate : public FoldingSetNode { friend struct FoldingSetTrait<SCEVPredicate>;
/// A reference to an Interned FoldingSetNodeID for this node. The /// ScalarEvolution's BumpPtrAllocator holds the data. FoldingSetNodeIDRef FastID;
public: enum SCEVPredicateKind { P_Union, P_Compare, P_Wrap };
protected: SCEVPredicateKind Kind; ~SCEVPredicate() = default; SCEVPredicate(const SCEVPredicate &) = default; SCEVPredicate &operator=(const SCEVPredicate &) = default;
public: SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind);
SCEVPredicateKind getKind() const { return Kind; }
/// Returns the estimated complexity of this predicate. This is roughly /// measured in the number of run-time checks required. virtual unsigned getComplexity() const { return 1; }
/// Returns true if the predicate is always true. This means that no /// assumptions were made and nothing needs to be checked at run-time. virtual bool isAlwaysTrue() const = 0;
/// Returns true if this predicate implies \p N. virtual bool implies(const SCEVPredicate *N) const = 0;
/// Prints a textual representation of this predicate with an indentation of /// \p Depth. virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0; };
inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) { P.print(OS); return OS; }
// Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute // temporary FoldingSetNodeID values. template <> struct FoldingSetTrait<SCEVPredicate> : DefaultFoldingSetTrait<SCEVPredicate> { static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) { ID = X.FastID; }
static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID, unsigned IDHash, FoldingSetNodeID &TempID) { return ID == X.FastID; }
static unsigned ComputeHash(const SCEVPredicate &X, FoldingSetNodeID &TempID) { return X.FastID.ComputeHash(); } };
/// This class represents an assumption that the expression LHS Pred RHS /// evaluates to true, and this can be checked at run-time. class SCEVComparePredicate final : public SCEVPredicate { /// We assume that LHS Pred RHS is true. const ICmpInst::Predicate Pred; const SCEV *LHS; const SCEV *RHS;
public: SCEVComparePredicate(const FoldingSetNodeIDRef ID, const ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS);
/// Implementation of the SCEVPredicate interface bool implies(const SCEVPredicate *N) const override; void print(raw_ostream &OS, unsigned Depth = 0) const override; bool isAlwaysTrue() const override;
ICmpInst::Predicate getPredicate() const { return Pred; }
/// Returns the left hand side of the predicate. const SCEV *getLHS() const { return LHS; }
/// Returns the right hand side of the predicate. const SCEV *getRHS() const { return RHS; }
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const SCEVPredicate *P) { return P->getKind() == P_Compare; } };
/// This class represents an assumption made on an AddRec expression. Given an /// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw /// flags (defined below) in the first X iterations of the loop, where X is a /// SCEV expression returned by getPredicatedBackedgeTakenCount). /// /// Note that this does not imply that X is equal to the backedge taken /// count. This means that if we have a nusw predicate for i32 {0,+,1} with a /// predicated backedge taken count of X, we only guarantee that {0,+,1} has /// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we /// have more than X iterations. class SCEVWrapPredicate final : public SCEVPredicate { public: /// Similar to SCEV::NoWrapFlags, but with slightly different semantics /// for FlagNUSW. The increment is considered to be signed, and a + b /// (where b is the increment) is considered to wrap if: /// zext(a + b) != zext(a) + sext(b) /// /// If Signed is a function that takes an n-bit tuple and maps to the /// integer domain as the tuples value interpreted as twos complement, /// and Unsigned a function that takes an n-bit tuple and maps to the /// integer domain as the base two value of input tuple, then a + b /// has IncrementNUSW iff: /// /// 0 <= Unsigned(a) + Signed(b) < 2^n /// /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW. /// /// Note that the IncrementNUSW flag is not commutative: if base + inc /// has IncrementNUSW, then inc + base doesn't neccessarily have this /// property. The reason for this is that this is used for sign/zero /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is /// assumed. A {base,+,inc} expression is already non-commutative with /// regards to base and inc, since it is interpreted as: /// (((base + inc) + inc) + inc) ... enum IncrementWrapFlags { IncrementAnyWrap = 0, // No guarantee. IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap. IncrementNSSW = (1 << 1), // No signed with signed increment wrap // (equivalent with SCEV::NSW) IncrementNoWrapMask = (1 << 2) - 1 };
/// Convenient IncrementWrapFlags manipulation methods. [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, SCEVWrapPredicate::IncrementWrapFlags OffFlags) { assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!"); assert((OffFlags & IncrementNoWrapMask) == OffFlags && "Invalid flags value!"); return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags); }
[[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask) { assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!"); assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!");
return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask); }
[[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, SCEVWrapPredicate::IncrementWrapFlags OnFlags) { assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!"); assert((OnFlags & IncrementNoWrapMask) == OnFlags && "Invalid flags value!");
return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags); }
/// Returns the set of SCEVWrapPredicate no wrap flags implied by a /// SCEVAddRecExpr. [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE);
private: const SCEVAddRecExpr *AR; IncrementWrapFlags Flags;
public: explicit SCEVWrapPredicate(const FoldingSetNodeIDRef ID, const SCEVAddRecExpr *AR, IncrementWrapFlags Flags);
/// Returns the set assumed no overflow flags. IncrementWrapFlags getFlags() const { return Flags; }
/// Implementation of the SCEVPredicate interface const SCEVAddRecExpr *getExpr() const; bool implies(const SCEVPredicate *N) const override; void print(raw_ostream &OS, unsigned Depth = 0) const override; bool isAlwaysTrue() const override;
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const SCEVPredicate *P) { return P->getKind() == P_Wrap; } };
/// This class represents a composition of other SCEV predicates, and is the /// class that most clients will interact with. This is equivalent to a /// logical "AND" of all the predicates in the union. /// /// NB! Unlike other SCEVPredicate sub-classes this class does not live in the /// ScalarEvolution::Preds folding set. This is why the \c add function is sound. class SCEVUnionPredicate final : public SCEVPredicate { private: using PredicateMap = DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>;
/// Vector with references to all predicates in this union. SmallVector<const SCEVPredicate *, 16> Preds;
/// Adds a predicate to this union. void add(const SCEVPredicate *N);
public: SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds);
const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const { return Preds; }
/// Implementation of the SCEVPredicate interface bool isAlwaysTrue() const override; bool implies(const SCEVPredicate *N) const override; void print(raw_ostream &OS, unsigned Depth) const override;
/// We estimate the complexity of a union predicate as the size number of /// predicates in the union. unsigned getComplexity() const override { return Preds.size(); }
/// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const SCEVPredicate *P) { return P->getKind() == P_Union; } };
/// The main scalar evolution driver. Because client code (intentionally) /// can't do much with the SCEV objects directly, they must ask this class /// for services. class ScalarEvolution { friend class ScalarEvolutionsTest;
public: /// An enum describing the relationship between a SCEV and a loop. enum LoopDisposition { LoopVariant, ///< The SCEV is loop-variant (unknown). LoopInvariant, ///< The SCEV is loop-invariant. LoopComputable ///< The SCEV varies predictably with the loop. };
/// An enum describing the relationship between a SCEV and a basic block. enum BlockDisposition { DoesNotDominateBlock, ///< The SCEV does not dominate the block. DominatesBlock, ///< The SCEV dominates the block. ProperlyDominatesBlock ///< The SCEV properly dominates the block. };
/// Convenient NoWrapFlags manipulation that hides enum casts and is /// visible in the ScalarEvolution name space. [[nodiscard]] static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags, int Mask) { return (SCEV::NoWrapFlags)(Flags & Mask); } [[nodiscard]] static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OnFlags) { return (SCEV::NoWrapFlags)(Flags | OnFlags); } [[nodiscard]] static SCEV::NoWrapFlags clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) { return (SCEV::NoWrapFlags)(Flags & ~OffFlags); } [[nodiscard]] static bool hasFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags TestFlags) { return TestFlags == maskFlags(Flags, TestFlags); };
ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC, DominatorTree &DT, LoopInfo &LI); ScalarEvolution(ScalarEvolution &&Arg); ~ScalarEvolution();
LLVMContext &getContext() const { return F.getContext(); }
/// Test if values of the given type are analyzable within the SCEV /// framework. This primarily includes integer types, and it can optionally /// include pointer types if the ScalarEvolution class has access to /// target-specific information. bool isSCEVable(Type *Ty) const;
/// Return the size in bits of the specified type, for which isSCEVable must /// return true. uint64_t getTypeSizeInBits(Type *Ty) const;
/// Return a type with the same bitwidth as the given type and which /// represents how SCEV will treat the given type, for which isSCEVable must /// return true. For pointer types, this is the pointer-sized integer type. Type *getEffectiveSCEVType(Type *Ty) const;
// Returns a wider type among {Ty1, Ty2}. Type *getWiderType(Type *Ty1, Type *Ty2) const;
/// Return true if there exists a point in the program at which both /// A and B could be operands to the same instruction. /// SCEV expressions are generally assumed to correspond to instructions /// which could exists in IR. In general, this requires that there exists /// a use point in the program where all operands dominate the use. /// /// Example: /// loop { /// if /// loop { v1 = load @global1; } /// else /// loop { v2 = load @global2; } /// } /// No SCEV with operand V1, and v2 can exist in this program. bool instructionCouldExistWithOperands(const SCEV *A, const SCEV *B);
/// Return true if the SCEV is a scAddRecExpr or it contains /// scAddRecExpr. The result will be cached in HasRecMap. bool containsAddRecurrence(const SCEV *S);
/// Is operation \p BinOp between \p LHS and \p RHS provably does not have /// a signed/unsigned overflow (\p Signed)? If \p CtxI is specified, the /// no-overflow fact should be true in the context of this instruction. bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI = nullptr);
/// Parse NSW/NUW flags from add/sub/mul IR binary operation \p Op into /// SCEV no-wrap flags, and deduce flag[s] that aren't known yet. /// Does not mutate the original instruction. Returns std::nullopt if it could /// not deduce more precise flags than the instruction already has, otherwise /// returns proven flags. std::optional<SCEV::NoWrapFlags> getStrengthenedNoWrapFlagsFromBinOp(const OverflowingBinaryOperator *OBO);
/// Notify this ScalarEvolution that \p User directly uses SCEVs in \p Ops. void registerUser(const SCEV *User, ArrayRef<const SCEV *> Ops);
/// Return true if the SCEV expression contains an undef value. bool containsUndefs(const SCEV *S) const;
/// Return true if the SCEV expression contains a Value that has been /// optimised out and is now a nullptr. bool containsErasedValue(const SCEV *S) const;
/// Return a SCEV expression for the full generality of the specified /// expression. const SCEV *getSCEV(Value *V);
/// Return an existing SCEV for V if there is one, otherwise return nullptr. const SCEV *getExistingSCEV(Value *V);
const SCEV *getConstant(ConstantInt *V); const SCEV *getConstant(const APInt &Val); const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false); const SCEV *getLosslessPtrToIntExpr(const SCEV *Op, unsigned Depth = 0); const SCEV *getPtrToIntExpr(const SCEV *Op, Type *Ty); const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0); const SCEV *getVScale(Type *Ty); const SCEV *getElementCount(Type *Ty, ElementCount EC); const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0); const SCEV *getZeroExtendExprImpl(const SCEV *Op, Type *Ty, unsigned Depth = 0); const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0); const SCEV *getSignExtendExprImpl(const SCEV *Op, Type *Ty, unsigned Depth = 0); const SCEV *getCastExpr(SCEVTypes Kind, const SCEV *Op, Type *Ty); const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty); const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops, SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, unsigned Depth = 0); const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, unsigned Depth = 0) { SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; return getAddExpr(Ops, Flags, Depth); } const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, unsigned Depth = 0) { SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2}; return getAddExpr(Ops, Flags, Depth); } const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops, SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, unsigned Depth = 0); const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, unsigned Depth = 0) { SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; return getMulExpr(Ops, Flags, Depth); } const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, unsigned Depth = 0) { SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2}; return getMulExpr(Ops, Flags, Depth); } const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS); const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS); const SCEV *getURemExpr(const SCEV *LHS, const SCEV *RHS); const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L, SCEV::NoWrapFlags Flags); const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, const Loop *L, SCEV::NoWrapFlags Flags); const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands, const Loop *L, SCEV::NoWrapFlags Flags) { SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end()); return getAddRecExpr(NewOp, L, Flags); }
/// Checks if \p SymbolicPHI can be rewritten as an AddRecExpr under some /// Predicates. If successful return these <AddRecExpr, Predicates>; /// The function is intended to be called from PSCEV (the caller will decide /// whether to actually add the predicates and carry out the rewrites). std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI);
/// Returns an expression for a GEP /// /// \p GEP The GEP. The indices contained in the GEP itself are ignored, /// instead we use IndexExprs. /// \p IndexExprs The expressions for the indices. const SCEV *getGEPExpr(GEPOperator *GEP, const SmallVectorImpl<const SCEV *> &IndexExprs); const SCEV *getAbsExpr(const SCEV *Op, bool IsNSW); const SCEV *getMinMaxExpr(SCEVTypes Kind, SmallVectorImpl<const SCEV *> &Operands); const SCEV *getSequentialMinMaxExpr(SCEVTypes Kind, SmallVectorImpl<const SCEV *> &Operands); const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS); const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands); const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS); const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands); const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS); const SCEV *getSMinExpr(SmallVectorImpl<const SCEV *> &Operands); const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS, bool Sequential = false); const SCEV *getUMinExpr(SmallVectorImpl<const SCEV *> &Operands, bool Sequential = false); const SCEV *getUnknown(Value *V); const SCEV *getCouldNotCompute();
/// Return a SCEV for the constant 0 of a specific type. const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }
/// Return a SCEV for the constant 1 of a specific type. const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }
/// Return a SCEV for the constant \p Power of two. const SCEV *getPowerOfTwo(Type *Ty, unsigned Power) { assert(Power < getTypeSizeInBits(Ty) && "Power out of range"); return getConstant(APInt::getOneBitSet(getTypeSizeInBits(Ty), Power)); }
/// Return a SCEV for the constant -1 of a specific type. const SCEV *getMinusOne(Type *Ty) { return getConstant(Ty, -1, /*isSigned=*/true); }
/// Return an expression for a TypeSize. const SCEV *getSizeOfExpr(Type *IntTy, TypeSize Size);
/// Return an expression for the alloc size of AllocTy that is type IntTy const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
/// Return an expression for the store size of StoreTy that is type IntTy const SCEV *getStoreSizeOfExpr(Type *IntTy, Type *StoreTy);
/// Return an expression for offsetof on the given field with type IntTy const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
/// Return the SCEV object corresponding to -V. const SCEV *getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
/// Return the SCEV object corresponding to ~V. const SCEV *getNotSCEV(const SCEV *V);
/// Return LHS-RHS. Minus is represented in SCEV as A+B*-1. /// /// If the LHS and RHS are pointers which don't share a common base /// (according to getPointerBase()), this returns a SCEVCouldNotCompute. /// To compute the difference between two unrelated pointers, you can /// explicitly convert the arguments using getPtrToIntExpr(), for pointer /// types that support it. const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, unsigned Depth = 0);
/// Compute ceil(N / D). N and D are treated as unsigned values. /// /// Since SCEV doesn't have native ceiling division, this generates a /// SCEV expression of the following form: /// /// umin(N, 1) + floor((N - umin(N, 1)) / D) /// /// A denominator of zero or poison is handled the same way as getUDivExpr(). const SCEV *getUDivCeilSCEV(const SCEV *N, const SCEV *D);
/// Return a SCEV corresponding to a conversion of the input value to the /// specified type. If the type must be extended, it is zero extended. const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty, unsigned Depth = 0);
/// Return a SCEV corresponding to a conversion of the input value to the /// specified type. If the type must be extended, it is sign extended. const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty, unsigned Depth = 0);
/// Return a SCEV corresponding to a conversion of the input value to the /// specified type. If the type must be extended, it is zero extended. The /// conversion must not be narrowing. const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
/// Return a SCEV corresponding to a conversion of the input value to the /// specified type. If the type must be extended, it is sign extended. The /// conversion must not be narrowing. const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
/// Return a SCEV corresponding to a conversion of the input value to the /// specified type. If the type must be extended, it is extended with /// unspecified bits. The conversion must not be narrowing. const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
/// Return a SCEV corresponding to a conversion of the input value to the /// specified type. The conversion must not be widening. const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
/// Promote the operands to the wider of the types using zero-extension, and /// then perform a umax operation with them. const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS);
/// Promote the operands to the wider of the types using zero-extension, and /// then perform a umin operation with them. const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS, bool Sequential = false);
/// Promote the operands to the wider of the types using zero-extension, and /// then perform a umin operation with them. N-ary function. const SCEV *getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops, bool Sequential = false);
/// Transitively follow the chain of pointer-type operands until reaching a /// SCEV that does not have a single pointer operand. This returns a /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner /// cases do exist. const SCEV *getPointerBase(const SCEV *V);
/// Compute an expression equivalent to S - getPointerBase(S). const SCEV *removePointerBase(const SCEV *S);
/// Return a SCEV expression for the specified value at the specified scope /// in the program. The L value specifies a loop nest to evaluate the /// expression at, where null is the top-level or a specified loop is /// immediately inside of the loop. /// /// This method can be used to compute the exit value for a variable defined /// in a loop by querying what the value will hold in the parent loop. /// /// In the case that a relevant loop exit value cannot be computed, the /// original value V is returned. const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
/// This is a convenience function which does getSCEVAtScope(getSCEV(V), L). const SCEV *getSCEVAtScope(Value *V, const Loop *L);
/// Test whether entry to the loop is protected by a conditional between LHS /// and RHS. This is used to help avoid max expressions in loop trip /// counts, and to eliminate casts. bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS);
/// Test whether entry to the basic block is protected by a conditional /// between LHS and RHS. bool isBasicBlockEntryGuardedByCond(const BasicBlock *BB, ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS);
/// Test whether the backedge of the loop is protected by a conditional /// between LHS and RHS. This is used to eliminate casts. bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS);
/// A version of getTripCountFromExitCount below which always picks an /// evaluation type which can not result in overflow. const SCEV *getTripCountFromExitCount(const SCEV *ExitCount);
/// Convert from an "exit count" (i.e. "backedge taken count") to a "trip /// count". A "trip count" is the number of times the header of the loop /// will execute if an exit is taken after the specified number of backedges /// have been taken. (e.g. TripCount = ExitCount + 1). Note that the /// expression can overflow if ExitCount = UINT_MAX. If EvalTy is not wide /// enough to hold the result without overflow, result unsigned wraps with /// 2s-complement semantics. ex: EC = 255 (i8), TC = 0 (i8) const SCEV *getTripCountFromExitCount(const SCEV *ExitCount, Type *EvalTy, const Loop *L);
/// Returns the exact trip count of the loop if we can compute it, and /// the result is a small constant. '0' is used to represent an unknown /// or non-constant trip count. Note that a trip count is simply one more /// than the backedge taken count for the loop. unsigned getSmallConstantTripCount(const Loop *L);
/// Return the exact trip count for this loop if we exit through ExitingBlock. /// '0' is used to represent an unknown or non-constant trip count. Note /// that a trip count is simply one more than the backedge taken count for /// the same exit. /// This "trip count" assumes that control exits via ExitingBlock. More /// precisely, it is the number of times that control will reach ExitingBlock /// before taking the branch. For loops with multiple exits, it may not be /// the number times that the loop header executes if the loop exits /// prematurely via another branch. unsigned getSmallConstantTripCount(const Loop *L, const BasicBlock *ExitingBlock);
/// Returns the upper bound of the loop trip count as a normal unsigned /// value. /// Returns 0 if the trip count is unknown or not constant. unsigned getSmallConstantMaxTripCount(const Loop *L);
/// Returns the largest constant divisor of the trip count as a normal /// unsigned value, if possible. This means that the actual trip count is /// always a multiple of the returned value. Returns 1 if the trip count is /// unknown or not guaranteed to be the multiple of a constant., Will also /// return 1 if the trip count is very large (>= 2^32). /// Note that the argument is an exit count for loop L, NOT a trip count. unsigned getSmallConstantTripMultiple(const Loop *L, const SCEV *ExitCount);
/// Returns the largest constant divisor of the trip count of the /// loop. Will return 1 if no trip count could be computed, or if a /// divisor could not be found. unsigned getSmallConstantTripMultiple(const Loop *L);
/// Returns the largest constant divisor of the trip count of this loop as a /// normal unsigned value, if possible. This means that the actual trip /// count is always a multiple of the returned value (don't forget the trip /// count could very well be zero as well!). As explained in the comments /// for getSmallConstantTripCount, this assumes that control exits the loop /// via ExitingBlock. unsigned getSmallConstantTripMultiple(const Loop *L, const BasicBlock *ExitingBlock);
/// The terms "backedge taken count" and "exit count" are used /// interchangeably to refer to the number of times the backedge of a loop /// has executed before the loop is exited. enum ExitCountKind { /// An expression exactly describing the number of times the backedge has /// executed when a loop is exited. Exact, /// A constant which provides an upper bound on the exact trip count. ConstantMaximum, /// An expression which provides an upper bound on the exact trip count. SymbolicMaximum, };
/// Return the number of times the backedge executes before the given exit /// would be taken; if not exactly computable, return SCEVCouldNotCompute. /// For a single exit loop, this value is equivelent to the result of /// getBackedgeTakenCount. The loop is guaranteed to exit (via *some* exit) /// before the backedge is executed (ExitCount + 1) times. Note that there /// is no guarantee about *which* exit is taken on the exiting iteration. const SCEV *getExitCount(const Loop *L, const BasicBlock *ExitingBlock, ExitCountKind Kind = Exact);
/// If the specified loop has a predictable backedge-taken count, return it, /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count is /// the number of times the loop header will be branched to from within the /// loop, assuming there are no abnormal exists like exception throws. This is /// one less than the trip count of the loop, since it doesn't count the first /// iteration, when the header is branched to from outside the loop. /// /// Note that it is not valid to call this method on a loop without a /// loop-invariant backedge-taken count (see /// hasLoopInvariantBackedgeTakenCount). const SCEV *getBackedgeTakenCount(const Loop *L, ExitCountKind Kind = Exact);
/// Similar to getBackedgeTakenCount, except it will add a set of /// SCEV predicates to Predicates that are required to be true in order for /// the answer to be correct. Predicates can be checked with run-time /// checks and can be used to perform loop versioning. const SCEV *getPredicatedBackedgeTakenCount(const Loop *L, SmallVector<const SCEVPredicate *, 4> &Predicates);
/// When successful, this returns a SCEVConstant that is greater than or equal /// to (i.e. a "conservative over-approximation") of the value returend by /// getBackedgeTakenCount. If such a value cannot be computed, it returns the /// SCEVCouldNotCompute object. const SCEV *getConstantMaxBackedgeTakenCount(const Loop *L) { return getBackedgeTakenCount(L, ConstantMaximum); }
/// When successful, this returns a SCEV that is greater than or equal /// to (i.e. a "conservative over-approximation") of the value returend by /// getBackedgeTakenCount. If such a value cannot be computed, it returns the /// SCEVCouldNotCompute object. const SCEV *getSymbolicMaxBackedgeTakenCount(const Loop *L) { return getBackedgeTakenCount(L, SymbolicMaximum); }
/// Similar to getSymbolicMaxBackedgeTakenCount, except it will add a set of /// SCEV predicates to Predicates that are required to be true in order for /// the answer to be correct. Predicates can be checked with run-time /// checks and can be used to perform loop versioning. const SCEV *getPredicatedSymbolicMaxBackedgeTakenCount( const Loop *L, SmallVector<const SCEVPredicate *, 4> &Predicates);
/// Return true if the backedge taken count is either the value returned by /// getConstantMaxBackedgeTakenCount or zero. bool isBackedgeTakenCountMaxOrZero(const Loop *L);
/// Return true if the specified loop has an analyzable loop-invariant /// backedge-taken count. bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
// This method should be called by the client when it made any change that // would invalidate SCEV's answers, and the client wants to remove all loop // information held internally by ScalarEvolution. This is intended to be used // when the alternative to forget a loop is too expensive (i.e. large loop // bodies). void forgetAllLoops();
/// This method should be called by the client when it has changed a loop in /// a way that may effect ScalarEvolution's ability to compute a trip count, /// or if the loop is deleted. This call is potentially expensive for large /// loop bodies. void forgetLoop(const Loop *L);
// This method invokes forgetLoop for the outermost loop of the given loop // \p L, making ScalarEvolution forget about all this subtree. This needs to // be done whenever we make a transform that may affect the parameters of the // outer loop, such as exit counts for branches. void forgetTopmostLoop(const Loop *L);
/// This method should be called by the client when it has changed a value /// in a way that may effect its value, or which may disconnect it from a /// def-use chain linking it to a loop. void forgetValue(Value *V);
/// Forget LCSSA phi node V of loop L to which a new predecessor was added, /// such that it may no longer be trivial. void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V);
/// Called when the client has changed the disposition of values in /// this loop. /// /// We don't have a way to invalidate per-loop dispositions. Clear and /// recompute is simpler. void forgetLoopDispositions();
/// Called when the client has changed the disposition of values in /// a loop or block. /// /// We don't have a way to invalidate per-loop/per-block dispositions. Clear /// and recompute is simpler. void forgetBlockAndLoopDispositions(Value *V = nullptr);
/// Determine the minimum number of zero bits that S is guaranteed to end in /// (at every loop iteration). It is, at the same time, the minimum number /// of times S is divisible by 2. For example, given {4,+,8} it returns 2. /// If S is guaranteed to be 0, it returns the bitwidth of S. uint32_t getMinTrailingZeros(const SCEV *S);
/// Returns the max constant multiple of S. APInt getConstantMultiple(const SCEV *S);
// Returns the max constant multiple of S. If S is exactly 0, return 1. APInt getNonZeroConstantMultiple(const SCEV *S);
/// Determine the unsigned range for a particular SCEV. /// NOTE: This returns a copy of the reference returned by getRangeRef. ConstantRange getUnsignedRange(const SCEV *S) { return getRangeRef(S, HINT_RANGE_UNSIGNED); }
/// Determine the min of the unsigned range for a particular SCEV. APInt getUnsignedRangeMin(const SCEV *S) { return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMin(); }
/// Determine the max of the unsigned range for a particular SCEV. APInt getUnsignedRangeMax(const SCEV *S) { return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMax(); }
/// Determine the signed range for a particular SCEV. /// NOTE: This returns a copy of the reference returned by getRangeRef. ConstantRange getSignedRange(const SCEV *S) { return getRangeRef(S, HINT_RANGE_SIGNED); }
/// Determine the min of the signed range for a particular SCEV. APInt getSignedRangeMin(const SCEV *S) { return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMin(); }
/// Determine the max of the signed range for a particular SCEV. APInt getSignedRangeMax(const SCEV *S) { return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMax(); }
/// Test if the given expression is known to be negative. bool isKnownNegative(const SCEV *S);
/// Test if the given expression is known to be positive. bool isKnownPositive(const SCEV *S);
/// Test if the given expression is known to be non-negative. bool isKnownNonNegative(const SCEV *S);
/// Test if the given expression is known to be non-positive. bool isKnownNonPositive(const SCEV *S);
/// Test if the given expression is known to be non-zero. bool isKnownNonZero(const SCEV *S);
/// Splits SCEV expression \p S into two SCEVs. One of them is obtained from /// \p S by substitution of all AddRec sub-expression related to loop \p L /// with initial value of that SCEV. The second is obtained from \p S by /// substitution of all AddRec sub-expressions related to loop \p L with post /// increment of this AddRec in the loop \p L. In both cases all other AddRec /// sub-expressions (not related to \p L) remain the same. /// If the \p S contains non-invariant unknown SCEV the function returns /// CouldNotCompute SCEV in both values of std::pair. /// For example, for SCEV S={0, +, 1}<L1> + {0, +, 1}<L2> and loop L=L1 /// the function returns pair: /// first = {0, +, 1}<L2> /// second = {1, +, 1}<L1> + {0, +, 1}<L2> /// We can see that for the first AddRec sub-expression it was replaced with /// 0 (initial value) for the first element and to {1, +, 1}<L1> (post /// increment value) for the second one. In both cases AddRec expression /// related to L2 remains the same. std::pair<const SCEV *, const SCEV *> SplitIntoInitAndPostInc(const Loop *L, const SCEV *S);
/// We'd like to check the predicate on every iteration of the most dominated /// loop between loops used in LHS and RHS. /// To do this we use the following list of steps: /// 1. Collect set S all loops on which either LHS or RHS depend. /// 2. If S is non-empty /// a. Let PD be the element of S which is dominated by all other elements. /// b. Let E(LHS) be value of LHS on entry of PD. /// To get E(LHS), we should just take LHS and replace all AddRecs that are /// attached to PD on with their entry values. /// Define E(RHS) in the same way. /// c. Let B(LHS) be value of L on backedge of PD. /// To get B(LHS), we should just take LHS and replace all AddRecs that are /// attached to PD on with their backedge values. /// Define B(RHS) in the same way. /// d. Note that E(LHS) and E(RHS) are automatically available on entry of PD, /// so we can assert on that. /// e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) && /// isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS)) bool isKnownViaInduction(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS);
/// Test if the given expression is known to satisfy the condition described /// by Pred, LHS, and RHS. bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS);
/// Check whether the condition described by Pred, LHS, and RHS is true or /// false. If we know it, return the evaluation of this condition. If neither /// is proved, return std::nullopt. std::optional<bool> evaluatePredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS);
/// Test if the given expression is known to satisfy the condition described /// by Pred, LHS, and RHS in the given Context. bool isKnownPredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI);
/// Check whether the condition described by Pred, LHS, and RHS is true or /// false in the given \p Context. If we know it, return the evaluation of /// this condition. If neither is proved, return std::nullopt. std::optional<bool> evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI);
/// Test if the condition described by Pred, LHS, RHS is known to be true on /// every iteration of the loop of the recurrency LHS. bool isKnownOnEveryIteration(ICmpInst::Predicate Pred, const SCEVAddRecExpr *LHS, const SCEV *RHS);
/// Information about the number of loop iterations for which a loop exit's /// branch condition evaluates to the not-taken path. This is a temporary /// pair of exact and max expressions that are eventually summarized in /// ExitNotTakenInfo and BackedgeTakenInfo. struct ExitLimit { const SCEV *ExactNotTaken; // The exit is not taken exactly this many times const SCEV *ConstantMaxNotTaken; // The exit is not taken at most this many // times const SCEV *SymbolicMaxNotTaken;
// Not taken either exactly ConstantMaxNotTaken or zero times bool MaxOrZero = false;
/// A set of predicate guards for this ExitLimit. The result is only valid /// if all of the predicates in \c Predicates evaluate to 'true' at /// run-time. SmallPtrSet<const SCEVPredicate *, 4> Predicates;
void addPredicate(const SCEVPredicate *P) { assert(!isa<SCEVUnionPredicate>(P) && "Only add leaf predicates here!"); Predicates.insert(P); }
/// Construct either an exact exit limit from a constant, or an unknown /// one from a SCEVCouldNotCompute. No other types of SCEVs are allowed /// as arguments and asserts enforce that internally. /*implicit*/ ExitLimit(const SCEV *E);
ExitLimit( const SCEV *E, const SCEV *ConstantMaxNotTaken, const SCEV *SymbolicMaxNotTaken, bool MaxOrZero, ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList = std::nullopt);
ExitLimit(const SCEV *E, const SCEV *ConstantMaxNotTaken, const SCEV *SymbolicMaxNotTaken, bool MaxOrZero, const SmallPtrSetImpl<const SCEVPredicate *> &PredSet);
/// Test whether this ExitLimit contains any computed information, or /// whether it's all SCEVCouldNotCompute values. bool hasAnyInfo() const { return !isa<SCEVCouldNotCompute>(ExactNotTaken) || !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken); }
/// Test whether this ExitLimit contains all information. bool hasFullInfo() const { return !isa<SCEVCouldNotCompute>(ExactNotTaken); } };
/// Compute the number of times the backedge of the specified loop will /// execute if its exit condition were a conditional branch of ExitCond. /// /// \p ControlsOnlyExit is true if ExitCond directly controls the only exit /// branch. In this case, we can assume that the loop exits only if the /// condition is true and can infer that failing to meet the condition prior /// to integer wraparound results in undefined behavior. /// /// If \p AllowPredicates is set, this call will try to use a minimal set of /// SCEV predicates in order to return an exact answer. ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, bool AllowPredicates = false);
/// A predicate is said to be monotonically increasing if may go from being /// false to being true as the loop iterates, but never the other way /// around. A predicate is said to be monotonically decreasing if may go /// from being true to being false as the loop iterates, but never the other /// way around. enum MonotonicPredicateType { MonotonicallyIncreasing, MonotonicallyDecreasing };
/// If, for all loop invariant X, the predicate "LHS `Pred` X" is /// monotonically increasing or decreasing, returns /// Some(MonotonicallyIncreasing) and Some(MonotonicallyDecreasing) /// respectively. If we could not prove either of these facts, returns /// std::nullopt. std::optional<MonotonicPredicateType> getMonotonicPredicateType(const SCEVAddRecExpr *LHS, ICmpInst::Predicate Pred);
struct LoopInvariantPredicate { ICmpInst::Predicate Pred; const SCEV *LHS; const SCEV *RHS;
LoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) : Pred(Pred), LHS(LHS), RHS(RHS) {} }; /// If the result of the predicate LHS `Pred` RHS is loop invariant with /// respect to L, return a LoopInvariantPredicate with LHS and RHS being /// invariants, available at L's entry. Otherwise, return std::nullopt. std::optional<LoopInvariantPredicate> getLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, const Instruction *CtxI = nullptr);
/// If the result of the predicate LHS `Pred` RHS is loop invariant with /// respect to L at given Context during at least first MaxIter iterations, /// return a LoopInvariantPredicate with LHS and RHS being invariants, /// available at L's entry. Otherwise, return std::nullopt. The predicate /// should be the loop's exit condition. std::optional<LoopInvariantPredicate> getLoopInvariantExitCondDuringFirstIterations(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, const Instruction *CtxI, const SCEV *MaxIter);
std::optional<LoopInvariantPredicate> getLoopInvariantExitCondDuringFirstIterationsImpl( ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, const Instruction *CtxI, const SCEV *MaxIter);
/// Simplify LHS and RHS in a comparison with predicate Pred. Return true /// iff any changes were made. If the operands are provably equal or /// unequal, LHS and RHS are set to the same value and Pred is set to either /// ICMP_EQ or ICMP_NE. bool SimplifyICmpOperands(ICmpInst::Predicate &Pred, const SCEV *&LHS, const SCEV *&RHS, unsigned Depth = 0);
/// Return the "disposition" of the given SCEV with respect to the given /// loop. LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
/// Return true if the value of the given SCEV is unchanging in the /// specified loop. bool isLoopInvariant(const SCEV *S, const Loop *L);
/// Determine if the SCEV can be evaluated at loop's entry. It is true if it /// doesn't depend on a SCEVUnknown of an instruction which is dominated by /// the header of loop L. bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L);
/// Return true if the given SCEV changes value in a known way in the /// specified loop. This property being true implies that the value is /// variant in the loop AND that we can emit an expression to compute the /// value of the expression at any particular loop iteration. bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
/// Return the "disposition" of the given SCEV with respect to the given /// block. BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
/// Return true if elements that makes up the given SCEV dominate the /// specified basic block. bool dominates(const SCEV *S, const BasicBlock *BB);
/// Return true if elements that makes up the given SCEV properly dominate /// the specified basic block. bool properlyDominates(const SCEV *S, const BasicBlock *BB);
/// Test whether the given SCEV has Op as a direct or indirect operand. bool hasOperand(const SCEV *S, const SCEV *Op) const;
/// Return the size of an element read or written by Inst. const SCEV *getElementSize(Instruction *Inst);
void print(raw_ostream &OS) const; void verify() const; bool invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &Inv);
/// Return the DataLayout associated with the module this SCEV instance is /// operating on. const DataLayout &getDataLayout() const { return DL; }
const SCEVPredicate *getEqualPredicate(const SCEV *LHS, const SCEV *RHS); const SCEVPredicate *getComparePredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS);
const SCEVPredicate * getWrapPredicate(const SCEVAddRecExpr *AR, SCEVWrapPredicate::IncrementWrapFlags AddedFlags);
/// Re-writes the SCEV according to the Predicates in \p A. const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L, const SCEVPredicate &A); /// Tries to convert the \p S expression to an AddRec expression, /// adding additional predicates to \p Preds as required. const SCEVAddRecExpr *convertSCEVToAddRecWithPredicates( const SCEV *S, const Loop *L, SmallPtrSetImpl<const SCEVPredicate *> &Preds);
/// Compute \p LHS - \p RHS and returns the result as an APInt if it is a /// constant, and std::nullopt if it isn't. /// /// This is intended to be a cheaper version of getMinusSCEV. We can be /// frugal here since we just bail out of actually constructing and /// canonicalizing an expression in the cases where the result isn't going /// to be a constant. std::optional<APInt> computeConstantDifference(const SCEV *LHS, const SCEV *RHS);
/// Update no-wrap flags of an AddRec. This may drop the cached info about /// this AddRec (such as range info) in case if new flags may potentially /// sharpen it. void setNoWrapFlags(SCEVAddRecExpr *AddRec, SCEV::NoWrapFlags Flags);
class LoopGuards { DenseMap<const SCEV *, const SCEV *> RewriteMap; bool PreserveNUW = false; bool PreserveNSW = false; ScalarEvolution &SE;
LoopGuards(ScalarEvolution &SE) : SE(SE) {}
public: /// Collect rewrite map for loop guards for loop \p L, together with flags /// indicating if NUW and NSW can be preserved during rewriting. static LoopGuards collect(const Loop *L, ScalarEvolution &SE);
/// Try to apply the collected loop guards to \p Expr. const SCEV *rewrite(const SCEV *Expr) const; };
/// Try to apply information from loop guards for \p L to \p Expr. const SCEV *applyLoopGuards(const SCEV *Expr, const Loop *L); const SCEV *applyLoopGuards(const SCEV *Expr, const LoopGuards &Guards);
/// Return true if the loop has no abnormal exits. That is, if the loop /// is not infinite, it must exit through an explicit edge in the CFG. /// (As opposed to either a) throwing out of the function or b) entering a /// well defined infinite loop in some callee.) bool loopHasNoAbnormalExits(const Loop *L) { return getLoopProperties(L).HasNoAbnormalExits; }
/// Return true if this loop is finite by assumption. That is, /// to be infinite, it must also be undefined. bool loopIsFiniteByAssumption(const Loop *L);
/// Return the set of Values that, if poison, will definitively result in S /// being poison as well. The returned set may be incomplete, i.e. there can /// be additional Values that also result in S being poison. void getPoisonGeneratingValues(SmallPtrSetImpl<const Value *> &Result, const SCEV *S);
/// Check whether it is poison-safe to represent the expression S using the /// instruction I. If such a replacement is performed, the poison flags of /// instructions in DropPoisonGeneratingInsts must be dropped. bool canReuseInstruction( const SCEV *S, Instruction *I, SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts);
class FoldID { const SCEV *Op = nullptr; const Type *Ty = nullptr; unsigned short C;
public: FoldID(SCEVTypes C, const SCEV *Op, const Type *Ty) : Op(Op), Ty(Ty), C(C) { assert(Op); assert(Ty); }
FoldID(unsigned short C) : C(C) {}
unsigned computeHash() const { return detail::combineHashValue( C, detail::combineHashValue(reinterpret_cast<uintptr_t>(Op), reinterpret_cast<uintptr_t>(Ty))); }
bool operator==(const FoldID &RHS) const { return std::tie(Op, Ty, C) == std::tie(RHS.Op, RHS.Ty, RHS.C); } };
private: /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a /// Value is deleted. class SCEVCallbackVH final : public CallbackVH { ScalarEvolution *SE;
void deleted() override; void allUsesReplacedWith(Value *New) override;
public: SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr); };
friend class SCEVCallbackVH; friend class SCEVExpander; friend class SCEVUnknown;
/// The function we are analyzing. Function &F;
/// Data layout of the module. const DataLayout &DL;
/// Does the module have any calls to the llvm.experimental.guard intrinsic /// at all? If this is false, we avoid doing work that will only help if /// thare are guards present in the IR. bool HasGuards;
/// The target library information for the target we are targeting. TargetLibraryInfo &TLI;
/// The tracker for \@llvm.assume intrinsics in this function. AssumptionCache &AC;
/// The dominator tree. DominatorTree &DT;
/// The loop information for the function we are currently analyzing. LoopInfo &LI;
/// This SCEV is used to represent unknown trip counts and things. std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
/// The type for HasRecMap. using HasRecMapType = DenseMap<const SCEV *, bool>;
/// This is a cache to record whether a SCEV contains any scAddRecExpr. HasRecMapType HasRecMap;
/// The type for ExprValueMap. using ValueSetVector = SmallSetVector<Value *, 4>; using ExprValueMapType = DenseMap<const SCEV *, ValueSetVector>;
/// ExprValueMap -- This map records the original values from which /// the SCEV expr is generated from. ExprValueMapType ExprValueMap;
/// The type for ValueExprMap. using ValueExprMapType = DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *>>;
/// This is a cache of the values we have analyzed so far. ValueExprMapType ValueExprMap;
/// This is a cache for expressions that got folded to a different existing /// SCEV. DenseMap<FoldID, const SCEV *> FoldCache; DenseMap<const SCEV *, SmallVector<FoldID, 2>> FoldCacheUser;
/// Mark predicate values currently being processed by isImpliedCond. SmallPtrSet<const Value *, 6> PendingLoopPredicates;
/// Mark SCEVUnknown Phis currently being processed by getRangeRef. SmallPtrSet<const PHINode *, 6> PendingPhiRanges;
/// Mark SCEVUnknown Phis currently being processed by getRangeRefIter. SmallPtrSet<const PHINode *, 6> PendingPhiRangesIter;
// Mark SCEVUnknown Phis currently being processed by isImpliedViaMerge. SmallPtrSet<const PHINode *, 6> PendingMerges;
/// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of /// conditions dominating the backedge of a loop. bool WalkingBEDominatingConds = false;
/// Set to true by isKnownPredicateViaSplitting when we're trying to prove a /// predicate by splitting it into a set of independent predicates. bool ProvingSplitPredicate = false;
/// Memoized values for the getConstantMultiple DenseMap<const SCEV *, APInt> ConstantMultipleCache;
/// Return the Value set from which the SCEV expr is generated. ArrayRef<Value *> getSCEVValues(const SCEV *S);
/// Private helper method for the getConstantMultiple method. APInt getConstantMultipleImpl(const SCEV *S);
/// Information about the number of times a particular loop exit may be /// reached before exiting the loop. struct ExitNotTakenInfo { PoisoningVH<BasicBlock> ExitingBlock; const SCEV *ExactNotTaken; const SCEV *ConstantMaxNotTaken; const SCEV *SymbolicMaxNotTaken; SmallPtrSet<const SCEVPredicate *, 4> Predicates;
explicit ExitNotTakenInfo( PoisoningVH<BasicBlock> ExitingBlock, const SCEV *ExactNotTaken, const SCEV *ConstantMaxNotTaken, const SCEV *SymbolicMaxNotTaken, const SmallPtrSet<const SCEVPredicate *, 4> &Predicates) : ExitingBlock(ExitingBlock), ExactNotTaken(ExactNotTaken), ConstantMaxNotTaken(ConstantMaxNotTaken), SymbolicMaxNotTaken(SymbolicMaxNotTaken), Predicates(Predicates) {}
bool hasAlwaysTruePredicate() const { return Predicates.empty(); } };
/// Information about the backedge-taken count of a loop. This currently /// includes an exact count and a maximum count. /// class BackedgeTakenInfo { friend class ScalarEvolution;
/// A list of computable exits and their not-taken counts. Loops almost /// never have more than one computable exit. SmallVector<ExitNotTakenInfo, 1> ExitNotTaken;
/// Expression indicating the least constant maximum backedge-taken count of /// the loop that is known, or a SCEVCouldNotCompute. This expression is /// only valid if the redicates associated with all loop exits are true. const SCEV *ConstantMax = nullptr;
/// Indicating if \c ExitNotTaken has an element for every exiting block in /// the loop. bool IsComplete = false;
/// Expression indicating the least maximum backedge-taken count of the loop /// that is known, or a SCEVCouldNotCompute. Lazily computed on first query. const SCEV *SymbolicMax = nullptr;
/// True iff the backedge is taken either exactly Max or zero times. bool MaxOrZero = false;
bool isComplete() const { return IsComplete; } const SCEV *getConstantMax() const { return ConstantMax; }
public: BackedgeTakenInfo() = default; BackedgeTakenInfo(BackedgeTakenInfo &&) = default; BackedgeTakenInfo &operator=(BackedgeTakenInfo &&) = default;
using EdgeExitInfo = std::pair<BasicBlock *, ExitLimit>;
/// Initialize BackedgeTakenInfo from a list of exact exit counts. BackedgeTakenInfo(ArrayRef<EdgeExitInfo> ExitCounts, bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero);
/// Test whether this BackedgeTakenInfo contains any computed information, /// or whether it's all SCEVCouldNotCompute values. bool hasAnyInfo() const { return !ExitNotTaken.empty() || !isa<SCEVCouldNotCompute>(getConstantMax()); }
/// Test whether this BackedgeTakenInfo contains complete information. bool hasFullInfo() const { return isComplete(); }
/// Return an expression indicating the exact *backedge-taken* /// count of the loop if it is known or SCEVCouldNotCompute /// otherwise. If execution makes it to the backedge on every /// iteration (i.e. there are no abnormal exists like exception /// throws and thread exits) then this is the number of times the /// loop header will execute minus one. /// /// If the SCEV predicate associated with the answer can be different /// from AlwaysTrue, we must add a (non null) Predicates argument. /// The SCEV predicate associated with the answer will be added to /// Predicates. A run-time check needs to be emitted for the SCEV /// predicate in order for the answer to be valid. /// /// Note that we should always know if we need to pass a predicate /// argument or not from the way the ExitCounts vector was computed. /// If we allowed SCEV predicates to be generated when populating this /// vector, this information can contain them and therefore a /// SCEVPredicate argument should be added to getExact. const SCEV *getExact(const Loop *L, ScalarEvolution *SE, SmallVector<const SCEVPredicate *, 4> *Predicates = nullptr) const;
/// Return the number of times this loop exit may fall through to the back /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via /// this block before this number of iterations, but may exit via another /// block. const SCEV *getExact(const BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
/// Get the constant max backedge taken count for the loop. const SCEV *getConstantMax(ScalarEvolution *SE) const;
/// Get the constant max backedge taken count for the particular loop exit. const SCEV *getConstantMax(const BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
/// Get the symbolic max backedge taken count for the loop. const SCEV * getSymbolicMax(const Loop *L, ScalarEvolution *SE, SmallVector<const SCEVPredicate *, 4> *Predicates = nullptr);
/// Get the symbolic max backedge taken count for the particular loop exit. const SCEV *getSymbolicMax(const BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
/// Return true if the number of times this backedge is taken is either the /// value returned by getConstantMax or zero. bool isConstantMaxOrZero(ScalarEvolution *SE) const; };
/// Cache the backedge-taken count of the loops for this function as they /// are computed. DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts;
/// Cache the predicated backedge-taken count of the loops for this /// function as they are computed. DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts;
/// Loops whose backedge taken counts directly use this non-constant SCEV. DenseMap<const SCEV *, SmallPtrSet<PointerIntPair<const Loop *, 1, bool>, 4>> BECountUsers;
/// This map contains entries for all of the PHI instructions that we /// attempt to compute constant evolutions for. This allows us to avoid /// potentially expensive recomputation of these properties. An instruction /// maps to null if we are unable to compute its exit value. DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue;
/// This map contains entries for all the expressions that we attempt to /// compute getSCEVAtScope information for, which can be expensive in /// extreme cases. DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>> ValuesAtScopes;
/// Reverse map for invalidation purposes: Stores of which SCEV and which /// loop this is the value-at-scope of. DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>> ValuesAtScopesUsers;
/// Memoized computeLoopDisposition results. DenseMap<const SCEV *, SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>> LoopDispositions;
struct LoopProperties { /// Set to true if the loop contains no instruction that can abnormally exit /// the loop (i.e. via throwing an exception, by terminating the thread /// cleanly or by infinite looping in a called function). Strictly /// speaking, the last one is not leaving the loop, but is identical to /// leaving the loop for reasoning about undefined behavior. bool HasNoAbnormalExits;
/// Set to true if the loop contains no instruction that can have side /// effects (i.e. via throwing an exception, volatile or atomic access). bool HasNoSideEffects; };
/// Cache for \c getLoopProperties. DenseMap<const Loop *, LoopProperties> LoopPropertiesCache;
/// Return a \c LoopProperties instance for \p L, creating one if necessary. LoopProperties getLoopProperties(const Loop *L);
bool loopHasNoSideEffects(const Loop *L) { return getLoopProperties(L).HasNoSideEffects; }
/// Compute a LoopDisposition value. LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
/// Memoized computeBlockDisposition results. DenseMap< const SCEV *, SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>> BlockDispositions;
/// Compute a BlockDisposition value. BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
/// Stores all SCEV that use a given SCEV as its direct operand. DenseMap<const SCEV *, SmallPtrSet<const SCEV *, 8> > SCEVUsers;
/// Memoized results from getRange DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
/// Memoized results from getRange DenseMap<const SCEV *, ConstantRange> SignedRanges;
/// Used to parameterize getRange enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
/// Set the memoized range for the given SCEV. const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint, ConstantRange CR) { DenseMap<const SCEV *, ConstantRange> &Cache = Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
auto Pair = Cache.insert_or_assign(S, std::move(CR)); return Pair.first->second; }
/// Determine the range for a particular SCEV. /// NOTE: This returns a reference to an entry in a cache. It must be /// copied if its needed for longer. const ConstantRange &getRangeRef(const SCEV *S, RangeSignHint Hint, unsigned Depth = 0);
/// Determine the range for a particular SCEV, but evaluates ranges for /// operands iteratively first. const ConstantRange &getRangeRefIter(const SCEV *S, RangeSignHint Hint);
/// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Step}. /// Helper for \c getRange. ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Step, const APInt &MaxBECount);
/// Determines the range for the affine non-self-wrapping SCEVAddRecExpr {\p /// Start,+,\p Step}<nw>. ConstantRange getRangeForAffineNoSelfWrappingAR(const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, RangeSignHint SignHint);
/// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p /// Step} by "factoring out" a ternary expression from the add recurrence. /// Helper called by \c getRange. ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Step, const APInt &MaxBECount);
/// If the unknown expression U corresponds to a simple recurrence, return /// a constant range which represents the entire recurrence. Note that /// *add* recurrences with loop invariant steps aren't represented by /// SCEVUnknowns and thus don't use this mechanism. ConstantRange getRangeForUnknownRecurrence(const SCEVUnknown *U);
/// We know that there is no SCEV for the specified value. Analyze the /// expression recursively. const SCEV *createSCEV(Value *V);
/// We know that there is no SCEV for the specified value. Create a new SCEV /// for \p V iteratively. const SCEV *createSCEVIter(Value *V); /// Collect operands of \p V for which SCEV expressions should be constructed /// first. Returns a SCEV directly if it can be constructed trivially for \p /// V. const SCEV *getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops);
/// Provide the special handling we need to analyze PHI SCEVs. const SCEV *createNodeForPHI(PHINode *PN);
/// Helper function called from createNodeForPHI. const SCEV *createAddRecFromPHI(PHINode *PN);
/// A helper function for createAddRecFromPHI to handle simple cases. const SCEV *createSimpleAffineAddRec(PHINode *PN, Value *BEValueV, Value *StartValueV);
/// Helper function called from createNodeForPHI. const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
/// Provide special handling for a select-like instruction (currently this /// is either a select instruction or a phi node). \p Ty is the type of the /// instruction being processed, that is assumed equivalent to /// "Cond ? TrueVal : FalseVal". std::optional<const SCEV *> createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty, ICmpInst *Cond, Value *TrueVal, Value *FalseVal);
/// See if we can model this select-like instruction via umin_seq expression. const SCEV *createNodeForSelectOrPHIViaUMinSeq(Value *I, Value *Cond, Value *TrueVal, Value *FalseVal);
/// Given a value \p V, which is a select-like instruction (currently this is /// either a select instruction or a phi node), which is assumed equivalent to /// Cond ? TrueVal : FalseVal /// see if we can model it as a SCEV expression. const SCEV *createNodeForSelectOrPHI(Value *V, Value *Cond, Value *TrueVal, Value *FalseVal);
/// Provide the special handling we need to analyze GEP SCEVs. const SCEV *createNodeForGEP(GEPOperator *GEP);
/// Implementation code for getSCEVAtScope; called at most once for each /// SCEV+Loop pair. const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
/// Return the BackedgeTakenInfo for the given loop, lazily computing new /// values if the loop hasn't been analyzed yet. The returned result is /// guaranteed not to be predicated. BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
/// Similar to getBackedgeTakenInfo, but will add predicates as required /// with the purpose of returning complete information. BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L);
/// Compute the number of times the specified loop will iterate. /// If AllowPredicates is set, we will create new SCEV predicates as /// necessary in order to return an exact answer. BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L, bool AllowPredicates = false);
/// Compute the number of times the backedge of the specified loop will /// execute if it exits via the specified block. If AllowPredicates is set, /// this call will try to use a minimal set of SCEV predicates in order to /// return an exact answer. ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, bool IsOnlyExit, bool AllowPredicates = false);
// Helper functions for computeExitLimitFromCond to avoid exponential time // complexity.
class ExitLimitCache { // It may look like we need key on the whole (L, ExitIfTrue, // ControlsOnlyExit, AllowPredicates) tuple, but recursive calls to // computeExitLimitFromCondCached from computeExitLimitFromCondImpl only // vary the in \c ExitCond and \c ControlsOnlyExit parameters. We remember // the initial values of the other values to assert our assumption. SmallDenseMap<PointerIntPair<Value *, 1>, ExitLimit> TripCountMap;
const Loop *L; bool ExitIfTrue; bool AllowPredicates;
public: ExitLimitCache(const Loop *L, bool ExitIfTrue, bool AllowPredicates) : L(L), ExitIfTrue(ExitIfTrue), AllowPredicates(AllowPredicates) {}
std::optional<ExitLimit> find(const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, bool AllowPredicates);
void insert(const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, bool AllowPredicates, const ExitLimit &EL); };
using ExitLimitCacheTy = ExitLimitCache;
ExitLimit computeExitLimitFromCondCached(ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, bool AllowPredicates); ExitLimit computeExitLimitFromCondImpl(ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, bool AllowPredicates); std::optional<ScalarEvolution::ExitLimit> computeExitLimitFromCondFromBinOp( ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, bool AllowPredicates);
/// Compute the number of times the backedge of the specified loop will /// execute if its exit condition were a conditional branch of the ICmpInst /// ExitCond and ExitIfTrue. If AllowPredicates is set, this call will try /// to use a minimal set of SCEV predicates in order to return an exact /// answer. ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond, bool ExitIfTrue, bool IsSubExpr, bool AllowPredicates = false);
/// Variant of previous which takes the components representing an ICmp /// as opposed to the ICmpInst itself. Note that the prior version can /// return more precise results in some cases and is preferred when caller /// has a materialized ICmp. ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, bool IsSubExpr, bool AllowPredicates = false);
/// Compute the number of times the backedge of the specified loop will /// execute if its exit condition were a switch with a single exiting case /// to ExitingBB. ExitLimit computeExitLimitFromSingleExitSwitch(const Loop *L, SwitchInst *Switch, BasicBlock *ExitingBB, bool IsSubExpr);
/// Compute the exit limit of a loop that is controlled by a /// "(IV >> 1) != 0" type comparison. We cannot compute the exact trip /// count in these cases (since SCEV has no way of expressing them), but we /// can still sometimes compute an upper bound. /// /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred /// RHS`. ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS, const Loop *L, ICmpInst::Predicate Pred);
/// If the loop is known to execute a constant number of times (the /// condition evolves only from constants), try to evaluate a few iterations /// of the loop until we get the exit condition gets a value of ExitWhen /// (true or false). If we cannot evaluate the exit count of the loop, /// return CouldNotCompute. const SCEV *computeExitCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen);
/// Return the number of times an exit condition comparing the specified /// value to zero will execute. If not computable, return CouldNotCompute. /// If AllowPredicates is set, this call will try to use a minimal set of /// SCEV predicates in order to return an exact answer. ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr, bool AllowPredicates = false);
/// Return the number of times an exit condition checking the specified /// value for nonzero will execute. If not computable, return /// CouldNotCompute. ExitLimit howFarToNonZero(const SCEV *V, const Loop *L);
/// Return the number of times an exit condition containing the specified /// less-than comparison will execute. If not computable, return /// CouldNotCompute. /// /// \p isSigned specifies whether the less-than is signed. /// /// \p ControlsOnlyExit is true when the LHS < RHS condition directly controls /// the branch (loops exits only if condition is true). In this case, we can /// use NoWrapFlags to skip overflow checks. /// /// If \p AllowPredicates is set, this call will try to use a minimal set of /// SCEV predicates in order to return an exact answer. ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L, bool isSigned, bool ControlsOnlyExit, bool AllowPredicates = false);
ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L, bool isSigned, bool IsSubExpr, bool AllowPredicates = false);
/// Return a predecessor of BB (which may not be an immediate predecessor) /// which has exactly one successor from which BB is reachable, or null if /// no such block is found. std::pair<const BasicBlock *, const BasicBlock *> getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) const;
/// Test whether the condition described by Pred, LHS, and RHS is true /// whenever the given FoundCondValue value evaluates to true in given /// Context. If Context is nullptr, then the found predicate is true /// everywhere. LHS and FoundLHS may have different type width. bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Value *FoundCondValue, bool Inverse, const Instruction *Context = nullptr);
/// Test whether the condition described by Pred, LHS, and RHS is true /// whenever the given FoundCondValue value evaluates to true in given /// Context. If Context is nullptr, then the found predicate is true /// everywhere. LHS and FoundLHS must have same type width. bool isImpliedCondBalancedTypes(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI);
/// Test whether the condition described by Pred, LHS, and RHS is true /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is /// true in given Context. If Context is nullptr, then the found predicate is /// true everywhere. bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context = nullptr);
/// Test whether the condition described by Pred, LHS, and RHS is true /// whenever the condition described by Pred, FoundLHS, and FoundRHS is /// true in given Context. If Context is nullptr, then the found predicate is /// true everywhere. bool isImpliedCondOperands(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context = nullptr);
/// Test whether the condition described by Pred, LHS, and RHS is true /// whenever the condition described by Pred, FoundLHS, and FoundRHS is /// true. Here LHS is an operation that includes FoundLHS as one of its /// arguments. bool isImpliedViaOperations(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const SCEV *FoundLHS, const SCEV *FoundRHS, unsigned Depth = 0);
/// Test whether the condition described by Pred, LHS, and RHS is true. /// Use only simple non-recursive types of checks, such as range analysis etc. bool isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS);
/// Test whether the condition described by Pred, LHS, and RHS is true /// whenever the condition described by Pred, FoundLHS, and FoundRHS is /// true. bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const SCEV *FoundLHS, const SCEV *FoundRHS);
/// Test whether the condition described by Pred, LHS, and RHS is true /// whenever the condition described by Pred, FoundLHS, and FoundRHS is /// true. Utility function used by isImpliedCondOperands. Tries to get /// cases like "X `sgt` 0 => X - 1 `sgt` -1". bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS);
/// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied /// by a call to @llvm.experimental.guard in \p BB. bool isImpliedViaGuard(const BasicBlock *BB, ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS);
/// Test whether the condition described by Pred, LHS, and RHS is true /// whenever the condition described by Pred, FoundLHS, and FoundRHS is /// true. /// /// This routine tries to rule out certain kinds of integer overflow, and /// then tries to reason about arithmetic properties of the predicates. bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const SCEV *FoundLHS, const SCEV *FoundRHS);
/// Test whether the condition described by Pred, LHS, and RHS is true /// whenever the condition described by Pred, FoundLHS, and FoundRHS is /// true. /// /// This routine tries to weaken the known condition basing on fact that /// FoundLHS is an AddRec. bool isImpliedCondOperandsViaAddRecStart(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI);
/// Test whether the condition described by Pred, LHS, and RHS is true /// whenever the condition described by Pred, FoundLHS, and FoundRHS is /// true. /// /// This routine tries to figure out predicate for Phis which are SCEVUnknown /// if it is true for every possible incoming value from their respective /// basic blocks. bool isImpliedViaMerge(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const SCEV *FoundLHS, const SCEV *FoundRHS, unsigned Depth);
/// Test whether the condition described by Pred, LHS, and RHS is true /// whenever the condition described by Pred, FoundLHS, and FoundRHS is /// true. /// /// This routine tries to reason about shifts. bool isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const SCEV *FoundLHS, const SCEV *FoundRHS);
/// If we know that the specified Phi is in the header of its containing /// loop, we know the loop executes a constant number of times, and the PHI /// node is just a recurrence involving constants, fold it. Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt &BEs, const Loop *L);
/// Test if the given expression is known to satisfy the condition described /// by Pred and the known constant ranges of LHS and RHS. bool isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS);
/// Try to prove the condition described by "LHS Pred RHS" by ruling out /// integer overflow. /// /// For instance, this will return true for "A s< (A + C)<nsw>" if C is /// positive. bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS);
/// Try to split Pred LHS RHS into logical conjunctions (and's) and try to /// prove them individually. bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS);
/// Try to match the Expr as "(L + R)<Flags>". bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R, SCEV::NoWrapFlags &Flags);
/// Forget predicated/non-predicated backedge taken counts for the given loop. void forgetBackedgeTakenCounts(const Loop *L, bool Predicated);
/// Drop memoized information for all \p SCEVs. void forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs);
/// Helper for forgetMemoizedResults. void forgetMemoizedResultsImpl(const SCEV *S);
/// Iterate over instructions in \p Worklist and their users. Erase entries /// from ValueExprMap and collect SCEV expressions in \p ToForget void visitAndClearUsers(SmallVectorImpl<Instruction *> &Worklist, SmallPtrSetImpl<Instruction *> &Visited, SmallVectorImpl<const SCEV *> &ToForget);
/// Erase Value from ValueExprMap and ExprValueMap. void eraseValueFromMap(Value *V);
/// Insert V to S mapping into ValueExprMap and ExprValueMap. void insertValueToMap(Value *V, const SCEV *S);
/// Return false iff given SCEV contains a SCEVUnknown with NULL value- /// pointer. bool checkValidity(const SCEV *S) const;
/// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}. This is /// equivalent to proving no signed (resp. unsigned) wrap in /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr` /// (resp. `SCEVZeroExtendExpr`). template <typename ExtendOpTy> bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step, const Loop *L);
/// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation. SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR);
/// Try to prove NSW on \p AR by proving facts about conditions known on /// entry and backedge. SCEV::NoWrapFlags proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR);
/// Try to prove NUW on \p AR by proving facts about conditions known on /// entry and backedge. SCEV::NoWrapFlags proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR);
std::optional<MonotonicPredicateType> getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, ICmpInst::Predicate Pred);
/// Return SCEV no-wrap flags that can be proven based on reasoning about /// how poison produced from no-wrap flags on this value (e.g. a nuw add) /// would trigger undefined behavior on overflow. SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
/// Return a scope which provides an upper bound on the defining scope of /// 'S'. Specifically, return the first instruction in said bounding scope. /// Return nullptr if the scope is trivial (function entry). /// (See scope definition rules associated with flag discussion above) const Instruction *getNonTrivialDefiningScopeBound(const SCEV *S);
/// Return a scope which provides an upper bound on the defining scope for /// a SCEV with the operands in Ops. The outparam Precise is set if the /// bound found is a precise bound (i.e. must be the defining scope.) const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops, bool &Precise);
/// Wrapper around the above for cases which don't care if the bound /// is precise. const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops);
/// Given two instructions in the same function, return true if we can /// prove B must execute given A executes. bool isGuaranteedToTransferExecutionTo(const Instruction *A, const Instruction *B);
/// Return true if the SCEV corresponding to \p I is never poison. Proving /// this is more complex than proving that just \p I is never poison, since /// SCEV commons expressions across control flow, and you can have cases /// like: /// /// idx0 = a + b; /// ptr[idx0] = 100; /// if (<condition>) { /// idx1 = a +nsw b; /// ptr[idx1] = 200; /// } /// /// where the SCEV expression (+ a b) is guaranteed to not be poison (and /// hence not sign-overflow) only if "<condition>" is true. Since both /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b), /// it is not okay to annotate (+ a b) with <nsw> in the above example. bool isSCEVExprNeverPoison(const Instruction *I);
/// This is like \c isSCEVExprNeverPoison but it specifically works for /// instructions that will get mapped to SCEV add recurrences. Return true /// if \p I will never generate poison under the assumption that \p I is an /// add recurrence on the loop \p L. bool isAddRecNeverPoison(const Instruction *I, const Loop *L);
/// Similar to createAddRecFromPHI, but with the additional flexibility of /// suggesting runtime overflow checks in case casts are encountered. /// If successful, the analysis records that for this loop, \p SymbolicPHI, /// which is the UnknownSCEV currently representing the PHI, can be rewritten /// into an AddRec, assuming some predicates; The function then returns the /// AddRec and the predicates as a pair, and caches this pair in /// PredicatedSCEVRewrites. /// If the analysis is not successful, a mapping from the \p SymbolicPHI to /// itself (with no predicates) is recorded, and a nullptr with an empty /// predicates vector is returned as a pair. std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI);
/// Compute the maximum backedge count based on the range of values /// permitted by Start, End, and Stride. This is for loops of the form /// {Start, +, Stride} LT End. /// /// Preconditions: /// * the induction variable is known to be positive. /// * the induction variable is assumed not to overflow (i.e. either it /// actually doesn't, or we'd have to immediately execute UB) /// We *don't* assert these preconditions so please be careful. const SCEV *computeMaxBECountForLT(const SCEV *Start, const SCEV *Stride, const SCEV *End, unsigned BitWidth, bool IsSigned);
/// Verify if an linear IV with positive stride can overflow when in a /// less-than comparison, knowing the invariant term of the comparison, /// the stride. bool canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
/// Verify if an linear IV with negative stride can overflow when in a /// greater-than comparison, knowing the invariant term of the comparison, /// the stride. bool canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
/// Get add expr already created or create a new one. const SCEV *getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, SCEV::NoWrapFlags Flags);
/// Get mul expr already created or create a new one. const SCEV *getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, SCEV::NoWrapFlags Flags);
// Get addrec expr already created or create a new one. const SCEV *getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, const Loop *L, SCEV::NoWrapFlags Flags);
/// Return x if \p Val is f(x) where f is a 1-1 function. const SCEV *stripInjectiveFunctions(const SCEV *Val) const;
/// Find all of the loops transitively used in \p S, and fill \p LoopsUsed. /// A loop is considered "used" by an expression if it contains /// an add rec on said loop. void getUsedLoops(const SCEV *S, SmallPtrSetImpl<const Loop *> &LoopsUsed);
/// Try to match the pattern generated by getURemExpr(A, B). If successful, /// Assign A and B to LHS and RHS, respectively. bool matchURem(const SCEV *Expr, const SCEV *&LHS, const SCEV *&RHS);
/// Look for a SCEV expression with type `SCEVType` and operands `Ops` in /// `UniqueSCEVs`. Return if found, else nullptr. SCEV *findExistingSCEVInCache(SCEVTypes SCEVType, ArrayRef<const SCEV *> Ops);
/// Get reachable blocks in this function, making limited use of SCEV /// reasoning about conditions. void getReachableBlocks(SmallPtrSetImpl<BasicBlock *> &Reachable, Function &F);
/// Return the given SCEV expression with a new set of operands. /// This preserves the origial nowrap flags. const SCEV *getWithOperands(const SCEV *S, SmallVectorImpl<const SCEV *> &NewOps);
FoldingSet<SCEV> UniqueSCEVs; FoldingSet<SCEVPredicate> UniquePreds; BumpPtrAllocator SCEVAllocator;
/// This maps loops to a list of addrecs that directly use said loop. DenseMap<const Loop *, SmallVector<const SCEVAddRecExpr *, 4>> LoopUsers;
/// Cache tentative mappings from UnknownSCEVs in a Loop, to a SCEV expression /// they can be rewritten into under certain predicates. DenseMap<std::pair<const SCEVUnknown *, const Loop *>, std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> PredicatedSCEVRewrites;
/// Set of AddRecs for which proving NUW via an induction has already been /// tried. SmallPtrSet<const SCEVAddRecExpr *, 16> UnsignedWrapViaInductionTried;
/// Set of AddRecs for which proving NSW via an induction has already been /// tried. SmallPtrSet<const SCEVAddRecExpr *, 16> SignedWrapViaInductionTried;
/// The head of a linked list of all SCEVUnknown values that have been /// allocated. This is used by releaseMemory to locate them all and call /// their destructors. SCEVUnknown *FirstUnknown = nullptr; };
/// Analysis pass that exposes the \c ScalarEvolution for a function. class ScalarEvolutionAnalysis : public AnalysisInfoMixin<ScalarEvolutionAnalysis> { friend AnalysisInfoMixin<ScalarEvolutionAnalysis>;
static AnalysisKey Key;
public: using Result = ScalarEvolution;
ScalarEvolution run(Function &F, FunctionAnalysisManager &AM); };
/// Verifier pass for the \c ScalarEvolutionAnalysis results. class ScalarEvolutionVerifierPass : public PassInfoMixin<ScalarEvolutionVerifierPass> { public: PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); static bool isRequired() { return true; } };
/// Printer pass for the \c ScalarEvolutionAnalysis results. class ScalarEvolutionPrinterPass : public PassInfoMixin<ScalarEvolutionPrinterPass> { raw_ostream &OS;
public: explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
static bool isRequired() { return true; } };
class ScalarEvolutionWrapperPass : public FunctionPass { std::unique_ptr<ScalarEvolution> SE;
public: static char ID;
ScalarEvolutionWrapperPass();
ScalarEvolution &getSE() { return *SE; } const ScalarEvolution &getSE() const { return *SE; }
bool runOnFunction(Function &F) override; void releaseMemory() override; void getAnalysisUsage(AnalysisUsage &AU) const override; void print(raw_ostream &OS, const Module * = nullptr) const override; void verifyAnalysis() const override; };
/// An interface layer with SCEV used to manage how we see SCEV expressions /// for values in the context of existing predicates. We can add new /// predicates, but we cannot remove them. /// /// This layer has multiple purposes: /// - provides a simple interface for SCEV versioning. /// - guarantees that the order of transformations applied on a SCEV /// expression for a single Value is consistent across two different /// getSCEV calls. This means that, for example, once we've obtained /// an AddRec expression for a certain value through expression /// rewriting, we will continue to get an AddRec expression for that /// Value. /// - lowers the number of expression rewrites. class PredicatedScalarEvolution { public: PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L);
const SCEVPredicate &getPredicate() const;
/// Returns the SCEV expression of V, in the context of the current SCEV /// predicate. The order of transformations applied on the expression of V /// returned by ScalarEvolution is guaranteed to be preserved, even when /// adding new predicates. const SCEV *getSCEV(Value *V);
/// Get the (predicated) backedge count for the analyzed loop. const SCEV *getBackedgeTakenCount();
/// Get the (predicated) symbolic max backedge count for the analyzed loop. const SCEV *getSymbolicMaxBackedgeTakenCount();
/// Adds a new predicate. void addPredicate(const SCEVPredicate &Pred);
/// Attempts to produce an AddRecExpr for V by adding additional SCEV /// predicates. If we can't transform the expression into an AddRecExpr we /// return nullptr and not add additional SCEV predicates to the current /// context. const SCEVAddRecExpr *getAsAddRec(Value *V);
/// Proves that V doesn't overflow by adding SCEV predicate. void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
/// Returns true if we've proved that V doesn't wrap by means of a SCEV /// predicate. bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
/// Returns the ScalarEvolution analysis used. ScalarEvolution *getSE() const { return &SE; }
/// We need to explicitly define the copy constructor because of FlagsMap. PredicatedScalarEvolution(const PredicatedScalarEvolution &);
/// Print the SCEV mappings done by the Predicated Scalar Evolution. /// The printed text is indented by \p Depth. void print(raw_ostream &OS, unsigned Depth) const;
/// Check if \p AR1 and \p AR2 are equal, while taking into account /// Equal predicates in Preds. bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const;
private: /// Increments the version number of the predicate. This needs to be called /// every time the SCEV predicate changes. void updateGeneration();
/// Holds a SCEV and the version number of the SCEV predicate used to /// perform the rewrite of the expression. using RewriteEntry = std::pair<unsigned, const SCEV *>;
/// Maps a SCEV to the rewrite result of that SCEV at a certain version /// number. If this number doesn't match the current Generation, we will /// need to do a rewrite. To preserve the transformation order of previous /// rewrites, we will rewrite the previous result instead of the original /// SCEV. DenseMap<const SCEV *, RewriteEntry> RewriteMap;
/// Records what NoWrap flags we've added to a Value *. ValueMap<Value *, SCEVWrapPredicate::IncrementWrapFlags> FlagsMap;
/// The ScalarEvolution analysis. ScalarEvolution &SE;
/// The analyzed Loop. const Loop &L;
/// The SCEVPredicate that forms our context. We will rewrite all /// expressions assuming that this predicate true. std::unique_ptr<SCEVUnionPredicate> Preds;
/// Marks the version of the SCEV predicate used. When rewriting a SCEV /// expression we mark it with the version of the predicate. We use this to /// figure out if the predicate has changed from the last rewrite of the /// SCEV. If so, we need to perform a new rewrite. unsigned Generation = 0;
/// The backedge taken count. const SCEV *BackedgeCount = nullptr;
/// The symbolic backedge taken count. const SCEV *SymbolicMaxBackedgeCount = nullptr; };
template <> struct DenseMapInfo<ScalarEvolution::FoldID> { static inline ScalarEvolution::FoldID getEmptyKey() { ScalarEvolution::FoldID ID(0); return ID; } static inline ScalarEvolution::FoldID getTombstoneKey() { ScalarEvolution::FoldID ID(1); return ID; }
static unsigned getHashValue(const ScalarEvolution::FoldID &Val) { return Val.computeHash(); }
static bool isEqual(const ScalarEvolution::FoldID &LHS, const ScalarEvolution::FoldID &RHS) { return LHS == RHS; } };
} // end namespace llvm
#endif // LLVM_ANALYSIS_SCALAREVOLUTION_H
|