Viewing file: ProfileSummaryInfo.h (15.32 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- llvm/Analysis/ProfileSummaryInfo.h - profile summary ---*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains a pass that provides access to profile summary // information. // //===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_PROFILESUMMARYINFO_H #define LLVM_ANALYSIS_PROFILESUMMARYINFO_H
#include "llvm/ADT/DenseMap.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/ProfileSummary.h" #include "llvm/Pass.h" #include <memory> #include <optional>
namespace llvm { class BasicBlock; class CallBase; class MachineFunction;
/// Analysis providing profile information. /// /// This is an immutable analysis pass that provides ability to query global /// (program-level) profile information. The main APIs are isHotCount and /// isColdCount that tells whether a given profile count is considered hot/cold /// based on the profile summary. This also provides convenience methods to /// check whether a function is hot or cold.
// FIXME: Provide convenience methods to determine hotness/coldness of other IR // units. This would require making this depend on BFI. class ProfileSummaryInfo { private: const Module *M; std::unique_ptr<ProfileSummary> Summary; void computeThresholds(); // Count thresholds to answer isHotCount and isColdCount queries. std::optional<uint64_t> HotCountThreshold, ColdCountThreshold; // True if the working set size of the code is considered huge, // because the number of profile counts required to reach the hot // percentile is above a huge threshold. std::optional<bool> HasHugeWorkingSetSize; // True if the working set size of the code is considered large, // because the number of profile counts required to reach the hot // percentile is above a large threshold. std::optional<bool> HasLargeWorkingSetSize; // Compute the threshold for a given cutoff. std::optional<uint64_t> computeThreshold(int PercentileCutoff) const; // The map that caches the threshold values. The keys are the percentile // cutoff values and the values are the corresponding threshold values. mutable DenseMap<int, uint64_t> ThresholdCache;
public: ProfileSummaryInfo(const Module &M) : M(&M) { refresh(); } ProfileSummaryInfo(ProfileSummaryInfo &&Arg) = default;
/// If no summary is present, attempt to refresh. void refresh();
/// Returns true if profile summary is available. bool hasProfileSummary() const { return Summary != nullptr; }
/// Returns true if module \c M has sample profile. bool hasSampleProfile() const { return hasProfileSummary() && Summary->getKind() == ProfileSummary::PSK_Sample; }
/// Returns true if module \c M has instrumentation profile. bool hasInstrumentationProfile() const { return hasProfileSummary() && Summary->getKind() == ProfileSummary::PSK_Instr; }
/// Returns true if module \c M has context sensitive instrumentation profile. bool hasCSInstrumentationProfile() const { return hasProfileSummary() && Summary->getKind() == ProfileSummary::PSK_CSInstr; }
/// Handle the invalidation of this information. /// /// When used as a result of \c ProfileSummaryAnalysis this method will be /// called when the module this was computed for changes. Since profile /// summary is immutable after it is annotated on the module, we return false /// here. bool invalidate(Module &, const PreservedAnalyses &, ModuleAnalysisManager::Invalidator &) { return false; }
/// Returns the profile count for \p CallInst. std::optional<uint64_t> getProfileCount(const CallBase &CallInst, BlockFrequencyInfo *BFI, bool AllowSynthetic = false) const; /// Returns true if module \c M has partial-profile sample profile. bool hasPartialSampleProfile() const; /// Returns true if the working set size of the code is considered huge. bool hasHugeWorkingSetSize() const; /// Returns true if the working set size of the code is considered large. bool hasLargeWorkingSetSize() const; /// Returns true if \p F has hot function entry. If it returns false, it /// either means it is not hot or it is unknown whether it is hot or not (for /// example, no profile data is available). template <typename FuncT> bool isFunctionEntryHot(const FuncT *F) const { if (!F || !hasProfileSummary()) return false; std::optional<Function::ProfileCount> FunctionCount = getEntryCount(F); // FIXME: The heuristic used below for determining hotness is based on // preliminary SPEC tuning for inliner. This will eventually be a // convenience method that calls isHotCount. return FunctionCount && isHotCount(FunctionCount->getCount()); }
/// Returns true if \p F contains hot code. template <typename FuncT, typename BFIT> bool isFunctionHotInCallGraph(const FuncT *F, BFIT &BFI) const { if (!F || !hasProfileSummary()) return false; if (auto FunctionCount = getEntryCount(F)) if (isHotCount(FunctionCount->getCount())) return true;
if (auto TotalCallCount = getTotalCallCount(F)) if (isHotCount(*TotalCallCount)) return true;
for (const auto &BB : *F) if (isHotBlock(&BB, &BFI)) return true; return false; } /// Returns true if \p F has cold function entry. bool isFunctionEntryCold(const Function *F) const; /// Returns true if \p F contains only cold code. template <typename FuncT, typename BFIT> bool isFunctionColdInCallGraph(const FuncT *F, BFIT &BFI) const { if (!F || !hasProfileSummary()) return false; if (auto FunctionCount = getEntryCount(F)) if (!isColdCount(FunctionCount->getCount())) return false;
if (auto TotalCallCount = getTotalCallCount(F)) if (!isColdCount(*TotalCallCount)) return false;
for (const auto &BB : *F) if (!isColdBlock(&BB, &BFI)) return false; return true; } /// Returns true if the hotness of \p F is unknown. bool isFunctionHotnessUnknown(const Function &F) const; /// Returns true if \p F contains hot code with regard to a given hot /// percentile cutoff value. template <typename FuncT, typename BFIT> bool isFunctionHotInCallGraphNthPercentile(int PercentileCutoff, const FuncT *F, BFIT &BFI) const { return isFunctionHotOrColdInCallGraphNthPercentile<true, FuncT, BFIT>( PercentileCutoff, F, BFI); } /// Returns true if \p F contains cold code with regard to a given cold /// percentile cutoff value. template <typename FuncT, typename BFIT> bool isFunctionColdInCallGraphNthPercentile(int PercentileCutoff, const FuncT *F, BFIT &BFI) const { return isFunctionHotOrColdInCallGraphNthPercentile<false, FuncT, BFIT>( PercentileCutoff, F, BFI); } /// Returns true if count \p C is considered hot. bool isHotCount(uint64_t C) const; /// Returns true if count \p C is considered cold. bool isColdCount(uint64_t C) const; /// Returns true if count \p C is considered hot with regard to a given /// hot percentile cutoff value. /// PercentileCutoff is encoded as a 6 digit decimal fixed point number, where /// the first two digits are the whole part. E.g. 995000 for 99.5 percentile. bool isHotCountNthPercentile(int PercentileCutoff, uint64_t C) const; /// Returns true if count \p C is considered cold with regard to a given /// cold percentile cutoff value. /// PercentileCutoff is encoded as a 6 digit decimal fixed point number, where /// the first two digits are the whole part. E.g. 995000 for 99.5 percentile. bool isColdCountNthPercentile(int PercentileCutoff, uint64_t C) const;
/// Returns true if BasicBlock \p BB is considered hot. template <typename BBType, typename BFIT> bool isHotBlock(const BBType *BB, BFIT *BFI) const { auto Count = BFI->getBlockProfileCount(BB); return Count && isHotCount(*Count); }
/// Returns true if BasicBlock \p BB is considered cold. template <typename BBType, typename BFIT> bool isColdBlock(const BBType *BB, BFIT *BFI) const { auto Count = BFI->getBlockProfileCount(BB); return Count && isColdCount(*Count); }
template <typename BFIT> bool isColdBlock(BlockFrequency BlockFreq, const BFIT *BFI) const { auto Count = BFI->getProfileCountFromFreq(BlockFreq); return Count && isColdCount(*Count); }
template <typename BBType, typename BFIT> bool isHotBlockNthPercentile(int PercentileCutoff, const BBType *BB, BFIT *BFI) const { return isHotOrColdBlockNthPercentile<true, BBType, BFIT>(PercentileCutoff, BB, BFI); }
template <typename BFIT> bool isHotBlockNthPercentile(int PercentileCutoff, BlockFrequency BlockFreq, BFIT *BFI) const { return isHotOrColdBlockNthPercentile<true, BFIT>(PercentileCutoff, BlockFreq, BFI); }
/// Returns true if BasicBlock \p BB is considered cold with regard to a given /// cold percentile cutoff value. /// PercentileCutoff is encoded as a 6 digit decimal fixed point number, where /// the first two digits are the whole part. E.g. 995000 for 99.5 percentile. template <typename BBType, typename BFIT> bool isColdBlockNthPercentile(int PercentileCutoff, const BBType *BB, BFIT *BFI) const { return isHotOrColdBlockNthPercentile<false, BBType, BFIT>(PercentileCutoff, BB, BFI); } template <typename BFIT> bool isColdBlockNthPercentile(int PercentileCutoff, BlockFrequency BlockFreq, BFIT *BFI) const { return isHotOrColdBlockNthPercentile<false, BFIT>(PercentileCutoff, BlockFreq, BFI); } /// Returns true if the call site \p CB is considered hot. bool isHotCallSite(const CallBase &CB, BlockFrequencyInfo *BFI) const; /// Returns true if call site \p CB is considered cold. bool isColdCallSite(const CallBase &CB, BlockFrequencyInfo *BFI) const; /// Returns HotCountThreshold if set. Recompute HotCountThreshold /// if not set. uint64_t getOrCompHotCountThreshold() const; /// Returns ColdCountThreshold if set. Recompute HotCountThreshold /// if not set. uint64_t getOrCompColdCountThreshold() const; /// Returns HotCountThreshold if set. uint64_t getHotCountThreshold() const { return HotCountThreshold.value_or(0); } /// Returns ColdCountThreshold if set. uint64_t getColdCountThreshold() const { return ColdCountThreshold.value_or(0); }
private: template <typename FuncT> std::optional<uint64_t> getTotalCallCount(const FuncT *F) const { return std::nullopt; }
template <bool isHot, typename FuncT, typename BFIT> bool isFunctionHotOrColdInCallGraphNthPercentile(int PercentileCutoff, const FuncT *F, BFIT &FI) const { if (!F || !hasProfileSummary()) return false; if (auto FunctionCount = getEntryCount(F)) { if (isHot && isHotCountNthPercentile(PercentileCutoff, FunctionCount->getCount())) return true; if (!isHot && !isColdCountNthPercentile(PercentileCutoff, FunctionCount->getCount())) return false; } if (auto TotalCallCount = getTotalCallCount(F)) { if (isHot && isHotCountNthPercentile(PercentileCutoff, *TotalCallCount)) return true; if (!isHot && !isColdCountNthPercentile(PercentileCutoff, *TotalCallCount)) return false; } for (const auto &BB : *F) { if (isHot && isHotBlockNthPercentile(PercentileCutoff, &BB, &FI)) return true; if (!isHot && !isColdBlockNthPercentile(PercentileCutoff, &BB, &FI)) return false; } return !isHot; }
template <bool isHot> bool isHotOrColdCountNthPercentile(int PercentileCutoff, uint64_t C) const;
template <bool isHot, typename BBType, typename BFIT> bool isHotOrColdBlockNthPercentile(int PercentileCutoff, const BBType *BB, BFIT *BFI) const { auto Count = BFI->getBlockProfileCount(BB); if (isHot) return Count && isHotCountNthPercentile(PercentileCutoff, *Count); else return Count && isColdCountNthPercentile(PercentileCutoff, *Count); }
template <bool isHot, typename BFIT> bool isHotOrColdBlockNthPercentile(int PercentileCutoff, BlockFrequency BlockFreq, BFIT *BFI) const { auto Count = BFI->getProfileCountFromFreq(BlockFreq); if (isHot) return Count && isHotCountNthPercentile(PercentileCutoff, *Count); else return Count && isColdCountNthPercentile(PercentileCutoff, *Count); }
template <typename FuncT> std::optional<Function::ProfileCount> getEntryCount(const FuncT *F) const { return F->getEntryCount(); } };
template <> inline std::optional<uint64_t> ProfileSummaryInfo::getTotalCallCount<Function>(const Function *F) const { if (!hasSampleProfile()) return std::nullopt; uint64_t TotalCallCount = 0; for (const auto &BB : *F) for (const auto &I : BB) if (isa<CallInst>(I) || isa<InvokeInst>(I)) if (auto CallCount = getProfileCount(cast<CallBase>(I), nullptr)) TotalCallCount += *CallCount; return TotalCallCount; }
// Declare template specialization for llvm::MachineFunction. Do not implement // here, because we cannot include MachineFunction header here, that would break // dependency rules. template <> std::optional<Function::ProfileCount> ProfileSummaryInfo::getEntryCount<MachineFunction>( const MachineFunction *F) const;
/// An analysis pass based on legacy pass manager to deliver ProfileSummaryInfo. class ProfileSummaryInfoWrapperPass : public ImmutablePass { std::unique_ptr<ProfileSummaryInfo> PSI;
public: static char ID; ProfileSummaryInfoWrapperPass();
ProfileSummaryInfo &getPSI() { return *PSI; } const ProfileSummaryInfo &getPSI() const { return *PSI; }
bool doInitialization(Module &M) override; bool doFinalization(Module &M) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesAll(); } };
/// An analysis pass based on the new PM to deliver ProfileSummaryInfo. class ProfileSummaryAnalysis : public AnalysisInfoMixin<ProfileSummaryAnalysis> { public: typedef ProfileSummaryInfo Result;
Result run(Module &M, ModuleAnalysisManager &);
private: friend AnalysisInfoMixin<ProfileSummaryAnalysis>; static AnalysisKey Key; };
/// Printer pass that uses \c ProfileSummaryAnalysis. class ProfileSummaryPrinterPass : public PassInfoMixin<ProfileSummaryPrinterPass> { raw_ostream &OS;
public: explicit ProfileSummaryPrinterPass(raw_ostream &OS) : OS(OS) {} PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM); static bool isRequired() { return true; } };
} // end namespace llvm
#endif
|