Viewing file: LoopUnrollAnalyzer.h (3.28 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- llvm/Analysis/LoopUnrollAnalyzer.h - Loop Unroll Analyzer-*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements UnrolledInstAnalyzer class. It's used for predicting // potential effects that loop unrolling might have, such as enabling constant // propagation and other optimizations. // //===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_LOOPUNROLLANALYZER_H #define LLVM_ANALYSIS_LOOPUNROLLANALYZER_H
#include "llvm/ADT/APInt.h" #include "llvm/ADT/DenseMap.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/IR/InstVisitor.h"
// This class is used to get an estimate of the optimization effects that we // could get from complete loop unrolling. It comes from the fact that some // loads might be replaced with concrete constant values and that could trigger // a chain of instruction simplifications. // // E.g. we might have: // int a[] = {0, 1, 0}; // v = 0; // for (i = 0; i < 3; i ++) // v += b[i]*a[i]; // If we completely unroll the loop, we would get: // v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2] // Which then will be simplified to: // v = b[0]* 0 + b[1]* 1 + b[2]* 0 // And finally: // v = b[1] namespace llvm { class Instruction;
class UnrolledInstAnalyzer : private InstVisitor<UnrolledInstAnalyzer, bool> { typedef InstVisitor<UnrolledInstAnalyzer, bool> Base; friend class InstVisitor<UnrolledInstAnalyzer, bool>; struct SimplifiedAddress { Value *Base = nullptr; ConstantInt *Offset = nullptr; };
public: UnrolledInstAnalyzer(unsigned Iteration, DenseMap<Value *, Value *> &SimplifiedValues, ScalarEvolution &SE, const Loop *L) : SimplifiedValues(SimplifiedValues), SE(SE), L(L) { IterationNumber = SE.getConstant(APInt(64, Iteration)); }
// Allow access to the initial visit method. using Base::visit;
private: /// A cache of pointer bases and constant-folded offsets corresponding /// to GEP (or derived from GEP) instructions. /// /// In order to find the base pointer one needs to perform non-trivial /// traversal of the corresponding SCEV expression, so it's good to have the /// results saved. DenseMap<Value *, SimplifiedAddress> SimplifiedAddresses;
/// SCEV expression corresponding to number of currently simulated /// iteration. const SCEV *IterationNumber;
/// While we walk the loop instructions, we build up and maintain a mapping /// of simplified values specific to this iteration. The idea is to propagate /// any special information we have about loads that can be replaced with /// constants after complete unrolling, and account for likely simplifications /// post-unrolling. DenseMap<Value *, Value *> &SimplifiedValues;
ScalarEvolution &SE; const Loop *L;
bool simplifyInstWithSCEV(Instruction *I);
bool visitInstruction(Instruction &I); bool visitBinaryOperator(BinaryOperator &I); bool visitLoad(LoadInst &I); bool visitCastInst(CastInst &I); bool visitCmpInst(CmpInst &I); bool visitPHINode(PHINode &PN); }; } #endif
|