Viewing file: LoopCacheAnalysis.h (12.59 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- llvm/Analysis/LoopCacheAnalysis.h ------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file defines the interface for the loop cache analysis. /// //===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_LOOPCACHEANALYSIS_H #define LLVM_ANALYSIS_LOOPCACHEANALYSIS_H
#include "llvm/Analysis/LoopAnalysisManager.h" #include "llvm/IR/PassManager.h" #include <optional>
namespace llvm {
class AAResults; class DependenceInfo; class Instruction; class LPMUpdater; class raw_ostream; class LoopInfo; class Loop; class ScalarEvolution; class SCEV; class TargetTransformInfo;
using CacheCostTy = int64_t; using LoopVectorTy = SmallVector<Loop *, 8>;
/// Represents a memory reference as a base pointer and a set of indexing /// operations. For example given the array reference A[i][2j+1][3k+2] in a /// 3-dim loop nest: /// for(i=0;i<n;++i) /// for(j=0;j<m;++j) /// for(k=0;k<o;++k) /// ... A[i][2j+1][3k+2] ... /// We expect: /// BasePointer -> A /// Subscripts -> [{0,+,1}<%for.i>][{1,+,2}<%for.j>][{2,+,3}<%for.k>] /// Sizes -> [m][o][4] class IndexedReference { friend raw_ostream &operator<<(raw_ostream &OS, const IndexedReference &R);
public: /// Construct an indexed reference given a \p StoreOrLoadInst instruction. IndexedReference(Instruction &StoreOrLoadInst, const LoopInfo &LI, ScalarEvolution &SE);
bool isValid() const { return IsValid; } const SCEV *getBasePointer() const { return BasePointer; } size_t getNumSubscripts() const { return Subscripts.size(); } const SCEV *getSubscript(unsigned SubNum) const { assert(SubNum < getNumSubscripts() && "Invalid subscript number"); return Subscripts[SubNum]; } const SCEV *getFirstSubscript() const { assert(!Subscripts.empty() && "Expecting non-empty container"); return Subscripts.front(); } const SCEV *getLastSubscript() const { assert(!Subscripts.empty() && "Expecting non-empty container"); return Subscripts.back(); }
/// Return true/false if the current object and the indexed reference \p Other /// are/aren't in the same cache line of size \p CLS. Two references are in /// the same chace line iff the distance between them in the innermost /// dimension is less than the cache line size. Return std::nullopt if unsure. std::optional<bool> hasSpacialReuse(const IndexedReference &Other, unsigned CLS, AAResults &AA) const;
/// Return true if the current object and the indexed reference \p Other /// have distance smaller than \p MaxDistance in the dimension associated with /// the given loop \p L. Return false if the distance is not smaller than \p /// MaxDistance and std::nullopt if unsure. std::optional<bool> hasTemporalReuse(const IndexedReference &Other, unsigned MaxDistance, const Loop &L, DependenceInfo &DI, AAResults &AA) const;
/// Compute the cost of the reference w.r.t. the given loop \p L when it is /// considered in the innermost position in the loop nest. /// The cost is defined as: /// - equal to one if the reference is loop invariant, or /// - equal to '(TripCount * stride) / cache_line_size' if: /// + the reference stride is less than the cache line size, and /// + the coefficient of this loop's index variable used in all other /// subscripts is zero /// - or otherwise equal to 'TripCount'. CacheCostTy computeRefCost(const Loop &L, unsigned CLS) const;
private: /// Attempt to delinearize the indexed reference. bool delinearize(const LoopInfo &LI);
/// Attempt to delinearize \p AccessFn for fixed-size arrays. bool tryDelinearizeFixedSize(const SCEV *AccessFn, SmallVectorImpl<const SCEV *> &Subscripts);
/// Return true if the index reference is invariant with respect to loop \p L. bool isLoopInvariant(const Loop &L) const;
/// Return true if the indexed reference is 'consecutive' in loop \p L. /// An indexed reference is 'consecutive' if the only coefficient that uses /// the loop induction variable is the rightmost one, and the access stride is /// smaller than the cache line size \p CLS. Provide a valid \p Stride value /// if the indexed reference is 'consecutive'. bool isConsecutive(const Loop &L, const SCEV *&Stride, unsigned CLS) const;
/// Retrieve the index of the subscript corresponding to the given loop \p /// L. Return a zero-based positive index if the subscript index is /// succesfully located and a negative value otherwise. For example given the /// indexed reference 'A[i][2j+1][3k+2]', the call /// 'getSubscriptIndex(loop-k)' would return value 2. int getSubscriptIndex(const Loop &L) const;
/// Return the coefficient used in the rightmost dimension. const SCEV *getLastCoefficient() const;
/// Return true if the coefficient corresponding to induction variable of /// loop \p L in the given \p Subscript is zero or is loop invariant in \p L. bool isCoeffForLoopZeroOrInvariant(const SCEV &Subscript, const Loop &L) const;
/// Verify that the given \p Subscript is 'well formed' (must be a simple add /// recurrence). bool isSimpleAddRecurrence(const SCEV &Subscript, const Loop &L) const;
/// Return true if the given reference \p Other is definetely aliased with /// the indexed reference represented by this class. bool isAliased(const IndexedReference &Other, AAResults &AA) const;
private: /// True if the reference can be delinearized, false otherwise. bool IsValid = false;
/// Represent the memory reference instruction. Instruction &StoreOrLoadInst;
/// The base pointer of the memory reference. const SCEV *BasePointer = nullptr;
/// The subscript (indexes) of the memory reference. SmallVector<const SCEV *, 3> Subscripts;
/// The dimensions of the memory reference. SmallVector<const SCEV *, 3> Sizes;
ScalarEvolution &SE; };
/// A reference group represents a set of memory references that exhibit /// temporal or spacial reuse. Two references belong to the same /// reference group with respect to a inner loop L iff: /// 1. they have a loop independent dependency, or /// 2. they have a loop carried dependence with a small dependence distance /// (e.g. less than 2) carried by the inner loop, or /// 3. they refer to the same array, and the subscript in their innermost /// dimension is less than or equal to 'd' (where 'd' is less than the cache /// line size) /// /// Intuitively a reference group represents memory references that access /// the same cache line. Conditions 1,2 above account for temporal reuse, while /// contition 3 accounts for spacial reuse. using ReferenceGroupTy = SmallVector<std::unique_ptr<IndexedReference>, 8>; using ReferenceGroupsTy = SmallVector<ReferenceGroupTy, 8>;
/// \c CacheCost represents the estimated cost of a inner loop as the number of /// cache lines used by the memory references it contains. /// The 'cache cost' of a loop 'L' in a loop nest 'LN' is computed as the sum of /// the cache costs of all of its reference groups when the loop is considered /// to be in the innermost position in the nest. /// A reference group represents memory references that fall into the same cache /// line. Each reference group is analysed with respect to the innermost loop in /// a loop nest. The cost of a reference is defined as follow: /// - one if it is loop invariant w.r.t the innermost loop, /// - equal to the loop trip count divided by the cache line times the /// reference stride if the reference stride is less than the cache line /// size (CLS), and the coefficient of this loop's index variable used in all /// other subscripts is zero (e.g. RefCost = TripCount/(CLS/RefStride)) /// - equal to the innermost loop trip count if the reference stride is greater /// or equal to the cache line size CLS. class CacheCost { friend raw_ostream &operator<<(raw_ostream &OS, const CacheCost &CC); using LoopTripCountTy = std::pair<const Loop *, unsigned>; using LoopCacheCostTy = std::pair<const Loop *, CacheCostTy>;
public: static CacheCostTy constexpr InvalidCost = -1;
/// Construct a CacheCost object for the loop nest described by \p Loops. /// The optional parameter \p TRT can be used to specify the max. distance /// between array elements accessed in a loop so that the elements are /// classified to have temporal reuse. CacheCost(const LoopVectorTy &Loops, const LoopInfo &LI, ScalarEvolution &SE, TargetTransformInfo &TTI, AAResults &AA, DependenceInfo &DI, std::optional<unsigned> TRT = std::nullopt);
/// Create a CacheCost for the loop nest rooted by \p Root. /// The optional parameter \p TRT can be used to specify the max. distance /// between array elements accessed in a loop so that the elements are /// classified to have temporal reuse. static std::unique_ptr<CacheCost> getCacheCost(Loop &Root, LoopStandardAnalysisResults &AR, DependenceInfo &DI, std::optional<unsigned> TRT = std::nullopt);
/// Return the estimated cost of loop \p L if the given loop is part of the /// loop nest associated with this object. Return -1 otherwise. CacheCostTy getLoopCost(const Loop &L) const { auto IT = llvm::find_if(LoopCosts, [&L](const LoopCacheCostTy &LCC) { return LCC.first == &L; }); return (IT != LoopCosts.end()) ? (*IT).second : -1; }
/// Return the estimated ordered loop costs. ArrayRef<LoopCacheCostTy> getLoopCosts() const { return LoopCosts; }
private: /// Calculate the cache footprint of each loop in the nest (when it is /// considered to be in the innermost position). void calculateCacheFootprint();
/// Partition store/load instructions in the loop nest into reference groups. /// Two or more memory accesses belong in the same reference group if they /// share the same cache line. bool populateReferenceGroups(ReferenceGroupsTy &RefGroups) const;
/// Calculate the cost of the given loop \p L assuming it is the innermost /// loop in nest. CacheCostTy computeLoopCacheCost(const Loop &L, const ReferenceGroupsTy &RefGroups) const;
/// Compute the cost of a representative reference in reference group \p RG /// when the given loop \p L is considered as the innermost loop in the nest. /// The computed cost is an estimate for the number of cache lines used by the /// reference group. The representative reference cost is defined as: /// - equal to one if the reference is loop invariant, or /// - equal to '(TripCount * stride) / cache_line_size' if (a) loop \p L's /// induction variable is used only in the reference subscript associated /// with loop \p L, and (b) the reference stride is less than the cache /// line size, or /// - TripCount otherwise CacheCostTy computeRefGroupCacheCost(const ReferenceGroupTy &RG, const Loop &L) const;
/// Sort the LoopCosts vector by decreasing cache cost. void sortLoopCosts() { stable_sort(LoopCosts, [](const LoopCacheCostTy &A, const LoopCacheCostTy &B) { return A.second > B.second; }); }
private: /// Loops in the loop nest associated with this object. LoopVectorTy Loops;
/// Trip counts for the loops in the loop nest associated with this object. SmallVector<LoopTripCountTy, 3> TripCounts;
/// Cache costs for the loops in the loop nest associated with this object. SmallVector<LoopCacheCostTy, 3> LoopCosts;
/// The max. distance between array elements accessed in a loop so that the /// elements are classified to have temporal reuse. std::optional<unsigned> TRT;
const LoopInfo &LI; ScalarEvolution &SE; TargetTransformInfo &TTI; AAResults &AA; DependenceInfo &DI; };
raw_ostream &operator<<(raw_ostream &OS, const IndexedReference &R); raw_ostream &operator<<(raw_ostream &OS, const CacheCost &CC);
/// Printer pass for the \c CacheCost results. class LoopCachePrinterPass : public PassInfoMixin<LoopCachePrinterPass> { raw_ostream &OS;
public: explicit LoopCachePrinterPass(raw_ostream &OS) : OS(OS) {}
PreservedAnalyses run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &U);
static bool isRequired() { return true; } };
} // namespace llvm
#endif // LLVM_ANALYSIS_LOOPCACHEANALYSIS_H
|