Viewing file: CallGraph.h (18.81 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- CallGraph.h - Build a Module's call graph ----------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// /// This file provides interfaces used to build and manipulate a call graph, /// which is a very useful tool for interprocedural optimization. /// /// Every function in a module is represented as a node in the call graph. The /// callgraph node keeps track of which functions are called by the function /// corresponding to the node. /// /// A call graph may contain nodes where the function that they correspond to /// is null. These 'external' nodes are used to represent control flow that is /// not represented (or analyzable) in the module. In particular, this /// analysis builds one external node such that: /// 1. All functions in the module without internal linkage will have edges /// from this external node, indicating that they could be called by /// functions outside of the module. /// 2. All functions whose address is used for something more than a direct /// call, for example being stored into a memory location will also have /// an edge from this external node. Since they may be called by an /// unknown caller later, they must be tracked as such. /// /// There is a second external node added for calls that leave this module. /// Functions have a call edge to the external node iff: /// 1. The function is external, reflecting the fact that they could call /// anything without internal linkage or that has its address taken. /// 2. The function contains an indirect function call. /// /// As an extension in the future, there may be multiple nodes with a null /// function. These will be used when we can prove (through pointer analysis) /// that an indirect call site can call only a specific set of functions. /// /// Because of these properties, the CallGraph captures a conservative superset /// of all of the caller-callee relationships, which is useful for /// transformations. /// //===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_CALLGRAPH_H #define LLVM_ANALYSIS_CALLGRAPH_H
#include "llvm/IR/InstrTypes.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Pass.h" #include <cassert> #include <map> #include <memory> #include <utility> #include <vector>
namespace llvm {
template <class GraphType> struct GraphTraits; class CallGraphNode; class Function; class Module; class raw_ostream;
/// The basic data container for the call graph of a \c Module of IR. /// /// This class exposes both the interface to the call graph for a module of IR. /// /// The core call graph itself can also be updated to reflect changes to the IR. class CallGraph { Module &M;
using FunctionMapTy = std::map<const Function *, std::unique_ptr<CallGraphNode>>;
/// A map from \c Function* to \c CallGraphNode*. FunctionMapTy FunctionMap;
/// This node has edges to all external functions and those internal /// functions that have their address taken. CallGraphNode *ExternalCallingNode;
/// This node has edges to it from all functions making indirect calls /// or calling an external function. std::unique_ptr<CallGraphNode> CallsExternalNode;
public: explicit CallGraph(Module &M); CallGraph(CallGraph &&Arg); ~CallGraph();
void print(raw_ostream &OS) const; void dump() const;
using iterator = FunctionMapTy::iterator; using const_iterator = FunctionMapTy::const_iterator;
/// Returns the module the call graph corresponds to. Module &getModule() const { return M; }
bool invalidate(Module &, const PreservedAnalyses &PA, ModuleAnalysisManager::Invalidator &);
inline iterator begin() { return FunctionMap.begin(); } inline iterator end() { return FunctionMap.end(); } inline const_iterator begin() const { return FunctionMap.begin(); } inline const_iterator end() const { return FunctionMap.end(); }
/// Returns the call graph node for the provided function. inline const CallGraphNode *operator[](const Function *F) const { const_iterator I = FunctionMap.find(F); assert(I != FunctionMap.end() && "Function not in callgraph!"); return I->second.get(); }
/// Returns the call graph node for the provided function. inline CallGraphNode *operator[](const Function *F) { const_iterator I = FunctionMap.find(F); assert(I != FunctionMap.end() && "Function not in callgraph!"); return I->second.get(); }
/// Returns the \c CallGraphNode which is used to represent /// undetermined calls into the callgraph. CallGraphNode *getExternalCallingNode() const { return ExternalCallingNode; }
CallGraphNode *getCallsExternalNode() const { return CallsExternalNode.get(); }
/// Old node has been deleted, and New is to be used in its place, update the /// ExternalCallingNode. void ReplaceExternalCallEdge(CallGraphNode *Old, CallGraphNode *New);
//===--------------------------------------------------------------------- // Functions to keep a call graph up to date with a function that has been // modified. //
/// Unlink the function from this module, returning it. /// /// Because this removes the function from the module, the call graph node is /// destroyed. This is only valid if the function does not call any other /// functions (ie, there are no edges in it's CGN). The easiest way to do /// this is to dropAllReferences before calling this. Function *removeFunctionFromModule(CallGraphNode *CGN);
/// Similar to operator[], but this will insert a new CallGraphNode for /// \c F if one does not already exist. CallGraphNode *getOrInsertFunction(const Function *F);
/// Populate \p CGN based on the calls inside the associated function. void populateCallGraphNode(CallGraphNode *CGN);
/// Add a function to the call graph, and link the node to all of the /// functions that it calls. void addToCallGraph(Function *F); };
/// A node in the call graph for a module. /// /// Typically represents a function in the call graph. There are also special /// "null" nodes used to represent theoretical entries in the call graph. class CallGraphNode { public: /// A pair of the calling instruction (a call or invoke) /// and the call graph node being called. /// Call graph node may have two types of call records which represent an edge /// in the call graph - reference or a call edge. Reference edges are not /// associated with any call instruction and are created with the first field /// set to `None`, while real call edges have instruction address in this /// field. Therefore, all real call edges are expected to have a value in the /// first field and it is not supposed to be `nullptr`. /// Reference edges, for example, are used for connecting broker function /// caller to the callback function for callback call sites. using CallRecord = std::pair<std::optional<WeakTrackingVH>, CallGraphNode *>;
public: using CalledFunctionsVector = std::vector<CallRecord>;
/// Creates a node for the specified function. inline CallGraphNode(CallGraph *CG, Function *F) : CG(CG), F(F) {}
CallGraphNode(const CallGraphNode &) = delete; CallGraphNode &operator=(const CallGraphNode &) = delete;
~CallGraphNode() { assert(NumReferences == 0 && "Node deleted while references remain"); }
using iterator = std::vector<CallRecord>::iterator; using const_iterator = std::vector<CallRecord>::const_iterator;
/// Returns the function that this call graph node represents. Function *getFunction() const { return F; }
inline iterator begin() { return CalledFunctions.begin(); } inline iterator end() { return CalledFunctions.end(); } inline const_iterator begin() const { return CalledFunctions.begin(); } inline const_iterator end() const { return CalledFunctions.end(); } inline bool empty() const { return CalledFunctions.empty(); } inline unsigned size() const { return (unsigned)CalledFunctions.size(); }
/// Returns the number of other CallGraphNodes in this CallGraph that /// reference this node in their callee list. unsigned getNumReferences() const { return NumReferences; }
/// Returns the i'th called function. CallGraphNode *operator[](unsigned i) const { assert(i < CalledFunctions.size() && "Invalid index"); return CalledFunctions[i].second; }
/// Print out this call graph node. void dump() const; void print(raw_ostream &OS) const;
//===--------------------------------------------------------------------- // Methods to keep a call graph up to date with a function that has been // modified //
/// Removes all edges from this CallGraphNode to any functions it /// calls. void removeAllCalledFunctions() { while (!CalledFunctions.empty()) { CalledFunctions.back().second->DropRef(); CalledFunctions.pop_back(); } }
/// Moves all the callee information from N to this node. void stealCalledFunctionsFrom(CallGraphNode *N) { assert(CalledFunctions.empty() && "Cannot steal callsite information if I already have some"); std::swap(CalledFunctions, N->CalledFunctions); }
/// Adds a function to the list of functions called by this one. void addCalledFunction(CallBase *Call, CallGraphNode *M) { CalledFunctions.emplace_back(Call ? std::optional<WeakTrackingVH>(Call) : std::optional<WeakTrackingVH>(), M); M->AddRef(); }
void removeCallEdge(iterator I) { I->second->DropRef(); *I = CalledFunctions.back(); CalledFunctions.pop_back(); }
/// Removes the edge in the node for the specified call site. /// /// Note that this method takes linear time, so it should be used sparingly. void removeCallEdgeFor(CallBase &Call);
/// Removes all call edges from this node to the specified callee /// function. /// /// This takes more time to execute than removeCallEdgeTo, so it should not /// be used unless necessary. void removeAnyCallEdgeTo(CallGraphNode *Callee);
/// Removes one edge associated with a null callsite from this node to /// the specified callee function. void removeOneAbstractEdgeTo(CallGraphNode *Callee);
/// Replaces the edge in the node for the specified call site with a /// new one. /// /// Note that this method takes linear time, so it should be used sparingly. void replaceCallEdge(CallBase &Call, CallBase &NewCall, CallGraphNode *NewNode);
private: friend class CallGraph;
CallGraph *CG; Function *F;
std::vector<CallRecord> CalledFunctions;
/// The number of times that this CallGraphNode occurs in the /// CalledFunctions array of this or other CallGraphNodes. unsigned NumReferences = 0;
void DropRef() { --NumReferences; } void AddRef() { ++NumReferences; }
/// A special function that should only be used by the CallGraph class. void allReferencesDropped() { NumReferences = 0; } };
/// An analysis pass to compute the \c CallGraph for a \c Module. /// /// This class implements the concept of an analysis pass used by the \c /// ModuleAnalysisManager to run an analysis over a module and cache the /// resulting data. class CallGraphAnalysis : public AnalysisInfoMixin<CallGraphAnalysis> { friend AnalysisInfoMixin<CallGraphAnalysis>;
static AnalysisKey Key;
public: /// A formulaic type to inform clients of the result type. using Result = CallGraph;
/// Compute the \c CallGraph for the module \c M. /// /// The real work here is done in the \c CallGraph constructor. CallGraph run(Module &M, ModuleAnalysisManager &) { return CallGraph(M); } };
/// Printer pass for the \c CallGraphAnalysis results. class CallGraphPrinterPass : public PassInfoMixin<CallGraphPrinterPass> { raw_ostream &OS;
public: explicit CallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
static bool isRequired() { return true; } };
/// Printer pass for the summarized \c CallGraphAnalysis results. class CallGraphSCCsPrinterPass : public PassInfoMixin<CallGraphSCCsPrinterPass> { raw_ostream &OS;
public: explicit CallGraphSCCsPrinterPass(raw_ostream &OS) : OS(OS) {}
PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
static bool isRequired() { return true; } };
/// The \c ModulePass which wraps up a \c CallGraph and the logic to /// build it. /// /// This class exposes both the interface to the call graph container and the /// module pass which runs over a module of IR and produces the call graph. The /// call graph interface is entirelly a wrapper around a \c CallGraph object /// which is stored internally for each module. class CallGraphWrapperPass : public ModulePass { std::unique_ptr<CallGraph> G;
public: static char ID; // Class identification, replacement for typeinfo
CallGraphWrapperPass(); ~CallGraphWrapperPass() override;
/// The internal \c CallGraph around which the rest of this interface /// is wrapped. const CallGraph &getCallGraph() const { return *G; } CallGraph &getCallGraph() { return *G; }
using iterator = CallGraph::iterator; using const_iterator = CallGraph::const_iterator;
/// Returns the module the call graph corresponds to. Module &getModule() const { return G->getModule(); }
inline iterator begin() { return G->begin(); } inline iterator end() { return G->end(); } inline const_iterator begin() const { return G->begin(); } inline const_iterator end() const { return G->end(); }
/// Returns the call graph node for the provided function. inline const CallGraphNode *operator[](const Function *F) const { return (*G)[F]; }
/// Returns the call graph node for the provided function. inline CallGraphNode *operator[](const Function *F) { return (*G)[F]; }
/// Returns the \c CallGraphNode which is used to represent /// undetermined calls into the callgraph. CallGraphNode *getExternalCallingNode() const { return G->getExternalCallingNode(); }
CallGraphNode *getCallsExternalNode() const { return G->getCallsExternalNode(); }
//===--------------------------------------------------------------------- // Functions to keep a call graph up to date with a function that has been // modified. //
/// Unlink the function from this module, returning it. /// /// Because this removes the function from the module, the call graph node is /// destroyed. This is only valid if the function does not call any other /// functions (ie, there are no edges in it's CGN). The easiest way to do /// this is to dropAllReferences before calling this. Function *removeFunctionFromModule(CallGraphNode *CGN) { return G->removeFunctionFromModule(CGN); }
/// Similar to operator[], but this will insert a new CallGraphNode for /// \c F if one does not already exist. CallGraphNode *getOrInsertFunction(const Function *F) { return G->getOrInsertFunction(F); }
//===--------------------------------------------------------------------- // Implementation of the ModulePass interface needed here. //
void getAnalysisUsage(AnalysisUsage &AU) const override; bool runOnModule(Module &M) override; void releaseMemory() override;
void print(raw_ostream &o, const Module *) const override; void dump() const; };
//===----------------------------------------------------------------------===// // GraphTraits specializations for call graphs so that they can be treated as // graphs by the generic graph algorithms. //
// Provide graph traits for traversing call graphs using standard graph // traversals. template <> struct GraphTraits<CallGraphNode *> { using NodeRef = CallGraphNode *; using CGNPairTy = CallGraphNode::CallRecord;
static NodeRef getEntryNode(CallGraphNode *CGN) { return CGN; } static CallGraphNode *CGNGetValue(CGNPairTy P) { return P.second; }
using ChildIteratorType = mapped_iterator<CallGraphNode::iterator, decltype(&CGNGetValue)>;
static ChildIteratorType child_begin(NodeRef N) { return ChildIteratorType(N->begin(), &CGNGetValue); }
static ChildIteratorType child_end(NodeRef N) { return ChildIteratorType(N->end(), &CGNGetValue); } };
template <> struct GraphTraits<const CallGraphNode *> { using NodeRef = const CallGraphNode *; using CGNPairTy = CallGraphNode::CallRecord; using EdgeRef = const CallGraphNode::CallRecord &;
static NodeRef getEntryNode(const CallGraphNode *CGN) { return CGN; } static const CallGraphNode *CGNGetValue(CGNPairTy P) { return P.second; }
using ChildIteratorType = mapped_iterator<CallGraphNode::const_iterator, decltype(&CGNGetValue)>; using ChildEdgeIteratorType = CallGraphNode::const_iterator;
static ChildIteratorType child_begin(NodeRef N) { return ChildIteratorType(N->begin(), &CGNGetValue); }
static ChildIteratorType child_end(NodeRef N) { return ChildIteratorType(N->end(), &CGNGetValue); }
static ChildEdgeIteratorType child_edge_begin(NodeRef N) { return N->begin(); } static ChildEdgeIteratorType child_edge_end(NodeRef N) { return N->end(); }
static NodeRef edge_dest(EdgeRef E) { return E.second; } };
template <> struct GraphTraits<CallGraph *> : public GraphTraits<CallGraphNode *> { using PairTy = std::pair<const Function *const, std::unique_ptr<CallGraphNode>>;
static NodeRef getEntryNode(CallGraph *CGN) { return CGN->getExternalCallingNode(); // Start at the external node! }
static CallGraphNode *CGGetValuePtr(const PairTy &P) { return P.second.get(); }
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph using nodes_iterator = mapped_iterator<CallGraph::iterator, decltype(&CGGetValuePtr)>;
static nodes_iterator nodes_begin(CallGraph *CG) { return nodes_iterator(CG->begin(), &CGGetValuePtr); }
static nodes_iterator nodes_end(CallGraph *CG) { return nodes_iterator(CG->end(), &CGGetValuePtr); } };
template <> struct GraphTraits<const CallGraph *> : public GraphTraits< const CallGraphNode *> { using PairTy = std::pair<const Function *const, std::unique_ptr<CallGraphNode>>;
static NodeRef getEntryNode(const CallGraph *CGN) { return CGN->getExternalCallingNode(); // Start at the external node! }
static const CallGraphNode *CGGetValuePtr(const PairTy &P) { return P.second.get(); }
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph using nodes_iterator = mapped_iterator<CallGraph::const_iterator, decltype(&CGGetValuePtr)>;
static nodes_iterator nodes_begin(const CallGraph *CG) { return nodes_iterator(CG->begin(), &CGGetValuePtr); }
static nodes_iterator nodes_end(const CallGraph *CG) { return nodes_iterator(CG->end(), &CGGetValuePtr); } };
} // end namespace llvm
#endif // LLVM_ANALYSIS_CALLGRAPH_H
|