Viewing file: AliasAnalysis.h (40.11 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the generic AliasAnalysis interface, which is used as the // common interface used by all clients of alias analysis information, and // implemented by all alias analysis implementations. Mod/Ref information is // also captured by this interface. // // Implementations of this interface must implement the various virtual methods, // which automatically provides functionality for the entire suite of client // APIs. // // This API identifies memory regions with the MemoryLocation class. The pointer // component specifies the base memory address of the region. The Size specifies // the maximum size (in address units) of the memory region, or // MemoryLocation::UnknownSize if the size is not known. The TBAA tag // identifies the "type" of the memory reference; see the // TypeBasedAliasAnalysis class for details. // // Some non-obvious details include: // - Pointers that point to two completely different objects in memory never // alias, regardless of the value of the Size component. // - NoAlias doesn't imply inequal pointers. The most obvious example of this // is two pointers to constant memory. Even if they are equal, constant // memory is never stored to, so there will never be any dependencies. // In this and other situations, the pointers may be both NoAlias and // MustAlias at the same time. The current API can only return one result, // though this is rarely a problem in practice. // //===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_ALIASANALYSIS_H #define LLVM_ANALYSIS_ALIASANALYSIS_H
#include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Sequence.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/IR/Function.h" #include "llvm/IR/PassManager.h" #include "llvm/Pass.h" #include "llvm/Support/ModRef.h" #include <cstdint> #include <functional> #include <memory> #include <optional> #include <vector>
namespace llvm {
class AnalysisUsage; class AtomicCmpXchgInst; class BasicBlock; class CatchPadInst; class CatchReturnInst; class DominatorTree; class FenceInst; class Function; class LoopInfo; class PreservedAnalyses; class TargetLibraryInfo; class Value;
/// The possible results of an alias query. /// /// These results are always computed between two MemoryLocation objects as /// a query to some alias analysis. /// /// Note that these are unscoped enumerations because we would like to support /// implicitly testing a result for the existence of any possible aliasing with /// a conversion to bool, but an "enum class" doesn't support this. The /// canonical names from the literature are suffixed and unique anyways, and so /// they serve as global constants in LLVM for these results. /// /// See docs/AliasAnalysis.html for more information on the specific meanings /// of these values. class AliasResult { private: static const int OffsetBits = 23; static const int AliasBits = 8; static_assert(AliasBits + 1 + OffsetBits <= 32, "AliasResult size is intended to be 4 bytes!");
unsigned int Alias : AliasBits; unsigned int HasOffset : 1; signed int Offset : OffsetBits;
public: enum Kind : uint8_t { /// The two locations do not alias at all. /// /// This value is arranged to convert to false, while all other values /// convert to true. This allows a boolean context to convert the result to /// a binary flag indicating whether there is the possibility of aliasing. NoAlias = 0, /// The two locations may or may not alias. This is the least precise /// result. MayAlias, /// The two locations alias, but only due to a partial overlap. PartialAlias, /// The two locations precisely alias each other. MustAlias, }; static_assert(MustAlias < (1 << AliasBits), "Not enough bit field size for the enum!");
explicit AliasResult() = delete; constexpr AliasResult(const Kind &Alias) : Alias(Alias), HasOffset(false), Offset(0) {}
operator Kind() const { return static_cast<Kind>(Alias); }
bool operator==(const AliasResult &Other) const { return Alias == Other.Alias && HasOffset == Other.HasOffset && Offset == Other.Offset; } bool operator!=(const AliasResult &Other) const { return !(*this == Other); }
bool operator==(Kind K) const { return Alias == K; } bool operator!=(Kind K) const { return !(*this == K); }
constexpr bool hasOffset() const { return HasOffset; } constexpr int32_t getOffset() const { assert(HasOffset && "No offset!"); return Offset; } void setOffset(int32_t NewOffset) { if (isInt<OffsetBits>(NewOffset)) { HasOffset = true; Offset = NewOffset; } }
/// Helper for processing AliasResult for swapped memory location pairs. void swap(bool DoSwap = true) { if (DoSwap && hasOffset()) setOffset(-getOffset()); } };
static_assert(sizeof(AliasResult) == 4, "AliasResult size is intended to be 4 bytes!");
/// << operator for AliasResult. raw_ostream &operator<<(raw_ostream &OS, AliasResult AR);
/// Virtual base class for providers of capture information. struct CaptureInfo { virtual ~CaptureInfo() = 0;
/// Check whether Object is not captured before instruction I. If OrAt is /// true, captures by instruction I itself are also considered. /// /// If I is nullptr, then captures at any point will be considered. virtual bool isNotCapturedBefore(const Value *Object, const Instruction *I, bool OrAt) = 0; };
/// Context-free CaptureInfo provider, which computes and caches whether an /// object is captured in the function at all, but does not distinguish whether /// it was captured before or after the context instruction. class SimpleCaptureInfo final : public CaptureInfo { SmallDenseMap<const Value *, bool, 8> IsCapturedCache;
public: bool isNotCapturedBefore(const Value *Object, const Instruction *I, bool OrAt) override; };
/// Context-sensitive CaptureInfo provider, which computes and caches the /// earliest common dominator closure of all captures. It provides a good /// approximation to a precise "captures before" analysis. class EarliestEscapeInfo final : public CaptureInfo { DominatorTree &DT; const LoopInfo *LI;
/// Map from identified local object to an instruction before which it does /// not escape, or nullptr if it never escapes. The "earliest" instruction /// may be a conservative approximation, e.g. the first instruction in the /// function is always a legal choice. DenseMap<const Value *, Instruction *> EarliestEscapes;
/// Reverse map from instruction to the objects it is the earliest escape for. /// This is used for cache invalidation purposes. DenseMap<Instruction *, TinyPtrVector<const Value *>> Inst2Obj;
public: EarliestEscapeInfo(DominatorTree &DT, const LoopInfo *LI = nullptr) : DT(DT), LI(LI) {}
bool isNotCapturedBefore(const Value *Object, const Instruction *I, bool OrAt) override;
void removeInstruction(Instruction *I); };
/// Cache key for BasicAA results. It only includes the pointer and size from /// MemoryLocation, as BasicAA is AATags independent. Additionally, it includes /// the value of MayBeCrossIteration, which may affect BasicAA results. struct AACacheLoc { using PtrTy = PointerIntPair<const Value *, 1, bool>; PtrTy Ptr; LocationSize Size;
AACacheLoc(PtrTy Ptr, LocationSize Size) : Ptr(Ptr), Size(Size) {} AACacheLoc(const Value *Ptr, LocationSize Size, bool MayBeCrossIteration) : Ptr(Ptr, MayBeCrossIteration), Size(Size) {} };
template <> struct DenseMapInfo<AACacheLoc> { static inline AACacheLoc getEmptyKey() { return {DenseMapInfo<AACacheLoc::PtrTy>::getEmptyKey(), DenseMapInfo<LocationSize>::getEmptyKey()}; } static inline AACacheLoc getTombstoneKey() { return {DenseMapInfo<AACacheLoc::PtrTy>::getTombstoneKey(), DenseMapInfo<LocationSize>::getTombstoneKey()}; } static unsigned getHashValue(const AACacheLoc &Val) { return DenseMapInfo<AACacheLoc::PtrTy>::getHashValue(Val.Ptr) ^ DenseMapInfo<LocationSize>::getHashValue(Val.Size); } static bool isEqual(const AACacheLoc &LHS, const AACacheLoc &RHS) { return LHS.Ptr == RHS.Ptr && LHS.Size == RHS.Size; } };
class AAResults;
/// This class stores info we want to provide to or retain within an alias /// query. By default, the root query is stateless and starts with a freshly /// constructed info object. Specific alias analyses can use this query info to /// store per-query state that is important for recursive or nested queries to /// avoid recomputing. To enable preserving this state across multiple queries /// where safe (due to the IR not changing), use a `BatchAAResults` wrapper. /// The information stored in an `AAQueryInfo` is currently limitted to the /// caches used by BasicAA, but can further be extended to fit other AA needs. class AAQueryInfo { public: using LocPair = std::pair<AACacheLoc, AACacheLoc>; struct CacheEntry { /// Cache entry is neither an assumption nor does it use a (non-definitive) /// assumption. static constexpr int Definitive = -2; /// Cache entry is not an assumption itself, but may be using an assumption /// from higher up the stack. static constexpr int AssumptionBased = -1;
AliasResult Result; /// Number of times a NoAlias assumption has been used, 0 for assumptions /// that have not been used. Can also take one of the Definitive or /// AssumptionBased values documented above. int NumAssumptionUses;
/// Whether this is a definitive (non-assumption) result. bool isDefinitive() const { return NumAssumptionUses == Definitive; } /// Whether this is an assumption that has not been proven yet. bool isAssumption() const { return NumAssumptionUses >= 0; } };
// Alias analysis result aggregration using which this query is performed. // Can be used to perform recursive queries. AAResults &AAR;
using AliasCacheT = SmallDenseMap<LocPair, CacheEntry, 8>; AliasCacheT AliasCache;
CaptureInfo *CI;
/// Query depth used to distinguish recursive queries. unsigned Depth = 0;
/// How many active NoAlias assumption uses there are. int NumAssumptionUses = 0;
/// Location pairs for which an assumption based result is currently stored. /// Used to remove all potentially incorrect results from the cache if an /// assumption is disproven. SmallVector<AAQueryInfo::LocPair, 4> AssumptionBasedResults;
/// Tracks whether the accesses may be on different cycle iterations. /// /// When interpret "Value" pointer equality as value equality we need to make /// sure that the "Value" is not part of a cycle. Otherwise, two uses could /// come from different "iterations" of a cycle and see different values for /// the same "Value" pointer. /// /// The following example shows the problem: /// %p = phi(%alloca1, %addr2) /// %l = load %ptr /// %addr1 = gep, %alloca2, 0, %l /// %addr2 = gep %alloca2, 0, (%l + 1) /// alias(%p, %addr1) -> MayAlias ! /// store %l, ... bool MayBeCrossIteration = false;
/// Whether alias analysis is allowed to use the dominator tree, for use by /// passes that lazily update the DT while performing AA queries. bool UseDominatorTree = true;
AAQueryInfo(AAResults &AAR, CaptureInfo *CI) : AAR(AAR), CI(CI) {} };
/// AAQueryInfo that uses SimpleCaptureInfo. class SimpleAAQueryInfo : public AAQueryInfo { SimpleCaptureInfo CI;
public: SimpleAAQueryInfo(AAResults &AAR) : AAQueryInfo(AAR, &CI) {} };
class BatchAAResults;
class AAResults { public: // Make these results default constructable and movable. We have to spell // these out because MSVC won't synthesize them. AAResults(const TargetLibraryInfo &TLI); AAResults(AAResults &&Arg); ~AAResults();
/// Register a specific AA result. template <typename AAResultT> void addAAResult(AAResultT &AAResult) { // FIXME: We should use a much lighter weight system than the usual // polymorphic pattern because we don't own AAResult. It should // ideally involve two pointers and no separate allocation. AAs.emplace_back(new Model<AAResultT>(AAResult, *this)); }
/// Register a function analysis ID that the results aggregation depends on. /// /// This is used in the new pass manager to implement the invalidation logic /// where we must invalidate the results aggregation if any of our component /// analyses become invalid. void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }
/// Handle invalidation events in the new pass manager. /// /// The aggregation is invalidated if any of the underlying analyses is /// invalidated. bool invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &Inv);
//===--------------------------------------------------------------------===// /// \name Alias Queries /// @{
/// The main low level interface to the alias analysis implementation. /// Returns an AliasResult indicating whether the two pointers are aliased to /// each other. This is the interface that must be implemented by specific /// alias analysis implementations. AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
/// A convenience wrapper around the primary \c alias interface. AliasResult alias(const Value *V1, LocationSize V1Size, const Value *V2, LocationSize V2Size) { return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size)); }
/// A convenience wrapper around the primary \c alias interface. AliasResult alias(const Value *V1, const Value *V2) { return alias(MemoryLocation::getBeforeOrAfter(V1), MemoryLocation::getBeforeOrAfter(V2)); }
/// A trivial helper function to check to see if the specified pointers are /// no-alias. bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) { return alias(LocA, LocB) == AliasResult::NoAlias; }
/// A convenience wrapper around the \c isNoAlias helper interface. bool isNoAlias(const Value *V1, LocationSize V1Size, const Value *V2, LocationSize V2Size) { return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size)); }
/// A convenience wrapper around the \c isNoAlias helper interface. bool isNoAlias(const Value *V1, const Value *V2) { return isNoAlias(MemoryLocation::getBeforeOrAfter(V1), MemoryLocation::getBeforeOrAfter(V2)); }
/// A trivial helper function to check to see if the specified pointers are /// must-alias. bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) { return alias(LocA, LocB) == AliasResult::MustAlias; }
/// A convenience wrapper around the \c isMustAlias helper interface. bool isMustAlias(const Value *V1, const Value *V2) { return alias(V1, LocationSize::precise(1), V2, LocationSize::precise(1)) == AliasResult::MustAlias; }
/// Checks whether the given location points to constant memory, or if /// \p OrLocal is true whether it points to a local alloca. bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) { return isNoModRef(getModRefInfoMask(Loc, OrLocal)); }
/// A convenience wrapper around the primary \c pointsToConstantMemory /// interface. bool pointsToConstantMemory(const Value *P, bool OrLocal = false) { return pointsToConstantMemory(MemoryLocation::getBeforeOrAfter(P), OrLocal); }
/// @} //===--------------------------------------------------------------------===// /// \name Simple mod/ref information /// @{
/// Returns a bitmask that should be unconditionally applied to the ModRef /// info of a memory location. This allows us to eliminate Mod and/or Ref /// from the ModRef info based on the knowledge that the memory location /// points to constant and/or locally-invariant memory. /// /// If IgnoreLocals is true, then this method returns NoModRef for memory /// that points to a local alloca. ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, bool IgnoreLocals = false);
/// A convenience wrapper around the primary \c getModRefInfoMask /// interface. ModRefInfo getModRefInfoMask(const Value *P, bool IgnoreLocals = false) { return getModRefInfoMask(MemoryLocation::getBeforeOrAfter(P), IgnoreLocals); }
/// Get the ModRef info associated with a pointer argument of a call. The /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note /// that these bits do not necessarily account for the overall behavior of /// the function, but rather only provide additional per-argument /// information. ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx);
/// Return the behavior of the given call site. MemoryEffects getMemoryEffects(const CallBase *Call);
/// Return the behavior when calling the given function. MemoryEffects getMemoryEffects(const Function *F);
/// Checks if the specified call is known to never read or write memory. /// /// Note that if the call only reads from known-constant memory, it is also /// legal to return true. Also, calls that unwind the stack are legal for /// this predicate. /// /// Many optimizations (such as CSE and LICM) can be performed on such calls /// without worrying about aliasing properties, and many calls have this /// property (e.g. calls to 'sin' and 'cos'). /// /// This property corresponds to the GCC 'const' attribute. bool doesNotAccessMemory(const CallBase *Call) { return getMemoryEffects(Call).doesNotAccessMemory(); }
/// Checks if the specified function is known to never read or write memory. /// /// Note that if the function only reads from known-constant memory, it is /// also legal to return true. Also, function that unwind the stack are legal /// for this predicate. /// /// Many optimizations (such as CSE and LICM) can be performed on such calls /// to such functions without worrying about aliasing properties, and many /// functions have this property (e.g. 'sin' and 'cos'). /// /// This property corresponds to the GCC 'const' attribute. bool doesNotAccessMemory(const Function *F) { return getMemoryEffects(F).doesNotAccessMemory(); }
/// Checks if the specified call is known to only read from non-volatile /// memory (or not access memory at all). /// /// Calls that unwind the stack are legal for this predicate. /// /// This property allows many common optimizations to be performed in the /// absence of interfering store instructions, such as CSE of strlen calls. /// /// This property corresponds to the GCC 'pure' attribute. bool onlyReadsMemory(const CallBase *Call) { return getMemoryEffects(Call).onlyReadsMemory(); }
/// Checks if the specified function is known to only read from non-volatile /// memory (or not access memory at all). /// /// Functions that unwind the stack are legal for this predicate. /// /// This property allows many common optimizations to be performed in the /// absence of interfering store instructions, such as CSE of strlen calls. /// /// This property corresponds to the GCC 'pure' attribute. bool onlyReadsMemory(const Function *F) { return getMemoryEffects(F).onlyReadsMemory(); }
/// Check whether or not an instruction may read or write the optionally /// specified memory location. /// /// /// An instruction that doesn't read or write memory may be trivially LICM'd /// for example. /// /// For function calls, this delegates to the alias-analysis specific /// call-site mod-ref behavior queries. Otherwise it delegates to the specific /// helpers above. ModRefInfo getModRefInfo(const Instruction *I, const std::optional<MemoryLocation> &OptLoc) { SimpleAAQueryInfo AAQIP(*this); return getModRefInfo(I, OptLoc, AAQIP); }
/// A convenience wrapper for constructing the memory location. ModRefInfo getModRefInfo(const Instruction *I, const Value *P, LocationSize Size) { return getModRefInfo(I, MemoryLocation(P, Size)); }
/// Return information about whether a call and an instruction may refer to /// the same memory locations. ModRefInfo getModRefInfo(const Instruction *I, const CallBase *Call);
/// Return information about whether a particular call site modifies /// or reads the specified memory location \p MemLoc before instruction \p I /// in a BasicBlock. ModRefInfo callCapturesBefore(const Instruction *I, const MemoryLocation &MemLoc, DominatorTree *DT) { SimpleAAQueryInfo AAQIP(*this); return callCapturesBefore(I, MemLoc, DT, AAQIP); }
/// A convenience wrapper to synthesize a memory location. ModRefInfo callCapturesBefore(const Instruction *I, const Value *P, LocationSize Size, DominatorTree *DT) { return callCapturesBefore(I, MemoryLocation(P, Size), DT); }
/// @} //===--------------------------------------------------------------------===// /// \name Higher level methods for querying mod/ref information. /// @{
/// Check if it is possible for execution of the specified basic block to /// modify the location Loc. bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
/// A convenience wrapper synthesizing a memory location. bool canBasicBlockModify(const BasicBlock &BB, const Value *P, LocationSize Size) { return canBasicBlockModify(BB, MemoryLocation(P, Size)); }
/// Check if it is possible for the execution of the specified instructions /// to mod\ref (according to the mode) the location Loc. /// /// The instructions to consider are all of the instructions in the range of /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block. bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2, const MemoryLocation &Loc, const ModRefInfo Mode);
/// A convenience wrapper synthesizing a memory location. bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2, const Value *Ptr, LocationSize Size, const ModRefInfo Mode) { return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode); }
// CtxI can be nullptr, in which case the query is whether or not the aliasing // relationship holds through the entire function. AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB, AAQueryInfo &AAQI, const Instruction *CtxI = nullptr);
ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, AAQueryInfo &AAQI, bool IgnoreLocals = false); ModRefInfo getModRefInfo(const Instruction *I, const CallBase *Call2, AAQueryInfo &AAQIP); ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc, AAQueryInfo &AAQI); ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2, AAQueryInfo &AAQI); ModRefInfo getModRefInfo(const VAArgInst *V, const MemoryLocation &Loc, AAQueryInfo &AAQI); ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc, AAQueryInfo &AAQI); ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc, AAQueryInfo &AAQI); ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc, AAQueryInfo &AAQI); ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const MemoryLocation &Loc, AAQueryInfo &AAQI); ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc, AAQueryInfo &AAQI); ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc, AAQueryInfo &AAQI); ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc, AAQueryInfo &AAQI); ModRefInfo getModRefInfo(const Instruction *I, const std::optional<MemoryLocation> &OptLoc, AAQueryInfo &AAQIP); ModRefInfo callCapturesBefore(const Instruction *I, const MemoryLocation &MemLoc, DominatorTree *DT, AAQueryInfo &AAQIP); MemoryEffects getMemoryEffects(const CallBase *Call, AAQueryInfo &AAQI);
private: class Concept;
template <typename T> class Model;
friend class AAResultBase;
const TargetLibraryInfo &TLI;
std::vector<std::unique_ptr<Concept>> AAs;
std::vector<AnalysisKey *> AADeps;
friend class BatchAAResults; };
/// This class is a wrapper over an AAResults, and it is intended to be used /// only when there are no IR changes inbetween queries. BatchAAResults is /// reusing the same `AAQueryInfo` to preserve the state across queries, /// esentially making AA work in "batch mode". The internal state cannot be /// cleared, so to go "out-of-batch-mode", the user must either use AAResults, /// or create a new BatchAAResults. class BatchAAResults { AAResults &AA; AAQueryInfo AAQI; SimpleCaptureInfo SimpleCI;
public: BatchAAResults(AAResults &AAR) : AA(AAR), AAQI(AAR, &SimpleCI) {} BatchAAResults(AAResults &AAR, CaptureInfo *CI) : AA(AAR), AAQI(AAR, CI) {}
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) { return AA.alias(LocA, LocB, AAQI); } bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) { return isNoModRef(AA.getModRefInfoMask(Loc, AAQI, OrLocal)); } ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, bool IgnoreLocals = false) { return AA.getModRefInfoMask(Loc, AAQI, IgnoreLocals); } ModRefInfo getModRefInfo(const Instruction *I, const std::optional<MemoryLocation> &OptLoc) { return AA.getModRefInfo(I, OptLoc, AAQI); } ModRefInfo getModRefInfo(const Instruction *I, const CallBase *Call2) { return AA.getModRefInfo(I, Call2, AAQI); } ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) { return AA.getArgModRefInfo(Call, ArgIdx); } MemoryEffects getMemoryEffects(const CallBase *Call) { return AA.getMemoryEffects(Call, AAQI); } bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) { return alias(LocA, LocB) == AliasResult::MustAlias; } bool isMustAlias(const Value *V1, const Value *V2) { return alias(MemoryLocation(V1, LocationSize::precise(1)), MemoryLocation(V2, LocationSize::precise(1))) == AliasResult::MustAlias; } ModRefInfo callCapturesBefore(const Instruction *I, const MemoryLocation &MemLoc, DominatorTree *DT) { return AA.callCapturesBefore(I, MemLoc, DT, AAQI); }
/// Assume that values may come from different cycle iterations. void enableCrossIterationMode() { AAQI.MayBeCrossIteration = true; }
/// Disable the use of the dominator tree during alias analysis queries. void disableDominatorTree() { AAQI.UseDominatorTree = false; } };
/// Temporary typedef for legacy code that uses a generic \c AliasAnalysis /// pointer or reference. using AliasAnalysis = AAResults;
/// A private abstract base class describing the concept of an individual alias /// analysis implementation. /// /// This interface is implemented by any \c Model instantiation. It is also the /// interface which a type used to instantiate the model must provide. /// /// All of these methods model methods by the same name in the \c /// AAResults class. Only differences and specifics to how the /// implementations are called are documented here. class AAResults::Concept { public: virtual ~Concept() = 0;
//===--------------------------------------------------------------------===// /// \name Alias Queries /// @{
/// The main low level interface to the alias analysis implementation. /// Returns an AliasResult indicating whether the two pointers are aliased to /// each other. This is the interface that must be implemented by specific /// alias analysis implementations. virtual AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB, AAQueryInfo &AAQI, const Instruction *CtxI) = 0;
/// @} //===--------------------------------------------------------------------===// /// \name Simple mod/ref information /// @{
/// Returns a bitmask that should be unconditionally applied to the ModRef /// info of a memory location. This allows us to eliminate Mod and/or Ref from /// the ModRef info based on the knowledge that the memory location points to /// constant and/or locally-invariant memory. virtual ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, AAQueryInfo &AAQI, bool IgnoreLocals) = 0;
/// Get the ModRef info associated with a pointer argument of a callsite. The /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note /// that these bits do not necessarily account for the overall behavior of /// the function, but rather only provide additional per-argument /// information. virtual ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) = 0;
/// Return the behavior of the given call site. virtual MemoryEffects getMemoryEffects(const CallBase *Call, AAQueryInfo &AAQI) = 0;
/// Return the behavior when calling the given function. virtual MemoryEffects getMemoryEffects(const Function *F) = 0;
/// getModRefInfo (for call sites) - Return information about whether /// a particular call site modifies or reads the specified memory location. virtual ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc, AAQueryInfo &AAQI) = 0;
/// Return information about whether two call sites may refer to the same set /// of memory locations. See the AA documentation for details: /// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo virtual ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2, AAQueryInfo &AAQI) = 0;
/// @} };
/// A private class template which derives from \c Concept and wraps some other /// type. /// /// This models the concept by directly forwarding each interface point to the /// wrapped type which must implement a compatible interface. This provides /// a type erased binding. template <typename AAResultT> class AAResults::Model final : public Concept { AAResultT &Result;
public: explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {} ~Model() override = default;
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB, AAQueryInfo &AAQI, const Instruction *CtxI) override { return Result.alias(LocA, LocB, AAQI, CtxI); }
ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, AAQueryInfo &AAQI, bool IgnoreLocals) override { return Result.getModRefInfoMask(Loc, AAQI, IgnoreLocals); }
ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) override { return Result.getArgModRefInfo(Call, ArgIdx); }
MemoryEffects getMemoryEffects(const CallBase *Call, AAQueryInfo &AAQI) override { return Result.getMemoryEffects(Call, AAQI); }
MemoryEffects getMemoryEffects(const Function *F) override { return Result.getMemoryEffects(F); }
ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc, AAQueryInfo &AAQI) override { return Result.getModRefInfo(Call, Loc, AAQI); }
ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2, AAQueryInfo &AAQI) override { return Result.getModRefInfo(Call1, Call2, AAQI); } };
/// A base class to help implement the function alias analysis results concept. /// /// Because of the nature of many alias analysis implementations, they often /// only implement a subset of the interface. This base class will attempt to /// implement the remaining portions of the interface in terms of simpler forms /// of the interface where possible, and otherwise provide conservatively /// correct fallback implementations. /// /// Implementors of an alias analysis should derive from this class, and then /// override specific methods that they wish to customize. There is no need to /// use virtual anywhere. class AAResultBase { protected: explicit AAResultBase() = default;
// Provide all the copy and move constructors so that derived types aren't // constrained. AAResultBase(const AAResultBase &Arg) {} AAResultBase(AAResultBase &&Arg) {}
public: AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB, AAQueryInfo &AAQI, const Instruction *I) { return AliasResult::MayAlias; }
ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, AAQueryInfo &AAQI, bool IgnoreLocals) { return ModRefInfo::ModRef; }
ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) { return ModRefInfo::ModRef; }
MemoryEffects getMemoryEffects(const CallBase *Call, AAQueryInfo &AAQI) { return MemoryEffects::unknown(); }
MemoryEffects getMemoryEffects(const Function *F) { return MemoryEffects::unknown(); }
ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc, AAQueryInfo &AAQI) { return ModRefInfo::ModRef; }
ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2, AAQueryInfo &AAQI) { return ModRefInfo::ModRef; } };
/// Return true if this pointer is returned by a noalias function. bool isNoAliasCall(const Value *V);
/// Return true if this pointer refers to a distinct and identifiable object. /// This returns true for: /// Global Variables and Functions (but not Global Aliases) /// Allocas /// ByVal and NoAlias Arguments /// NoAlias returns (e.g. calls to malloc) /// bool isIdentifiedObject(const Value *V);
/// Return true if V is umabigously identified at the function-level. /// Different IdentifiedFunctionLocals can't alias. /// Further, an IdentifiedFunctionLocal can not alias with any function /// arguments other than itself, which is not necessarily true for /// IdentifiedObjects. bool isIdentifiedFunctionLocal(const Value *V);
/// Returns true if the pointer is one which would have been considered an /// escape by isNonEscapingLocalObject. bool isEscapeSource(const Value *V);
/// Return true if Object memory is not visible after an unwind, in the sense /// that program semantics cannot depend on Object containing any particular /// value on unwind. If the RequiresNoCaptureBeforeUnwind out parameter is set /// to true, then the memory is only not visible if the object has not been /// captured prior to the unwind. Otherwise it is not visible even if captured. bool isNotVisibleOnUnwind(const Value *Object, bool &RequiresNoCaptureBeforeUnwind);
/// Return true if the Object is writable, in the sense that any location based /// on this pointer that can be loaded can also be stored to without trapping. /// Additionally, at the point Object is declared, stores can be introduced /// without data races. At later points, this is only the case if the pointer /// can not escape to a different thread. /// /// If ExplicitlyDereferenceableOnly is set to true, this property only holds /// for the part of Object that is explicitly marked as dereferenceable, e.g. /// using the dereferenceable(N) attribute. It does not necessarily hold for /// parts that are only known to be dereferenceable due to the presence of /// loads. bool isWritableObject(const Value *Object, bool &ExplicitlyDereferenceableOnly);
/// A manager for alias analyses. /// /// This class can have analyses registered with it and when run, it will run /// all of them and aggregate their results into single AA results interface /// that dispatches across all of the alias analysis results available. /// /// Note that the order in which analyses are registered is very significant. /// That is the order in which the results will be aggregated and queried. /// /// This manager effectively wraps the AnalysisManager for registering alias /// analyses. When you register your alias analysis with this manager, it will /// ensure the analysis itself is registered with its AnalysisManager. /// /// The result of this analysis is only invalidated if one of the particular /// aggregated AA results end up being invalidated. This removes the need to /// explicitly preserve the results of `AAManager`. Note that analyses should no /// longer be registered once the `AAManager` is run. class AAManager : public AnalysisInfoMixin<AAManager> { public: using Result = AAResults;
/// Register a specific AA result. template <typename AnalysisT> void registerFunctionAnalysis() { ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>); }
/// Register a specific AA result. template <typename AnalysisT> void registerModuleAnalysis() { ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>); }
Result run(Function &F, FunctionAnalysisManager &AM);
private: friend AnalysisInfoMixin<AAManager>;
static AnalysisKey Key;
SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM, AAResults &AAResults), 4> ResultGetters;
template <typename AnalysisT> static void getFunctionAAResultImpl(Function &F, FunctionAnalysisManager &AM, AAResults &AAResults) { AAResults.addAAResult(AM.template getResult<AnalysisT>(F)); AAResults.addAADependencyID(AnalysisT::ID()); }
template <typename AnalysisT> static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM, AAResults &AAResults) { auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); if (auto *R = MAMProxy.template getCachedResult<AnalysisT>(*F.getParent())) { AAResults.addAAResult(*R); MAMProxy .template registerOuterAnalysisInvalidation<AnalysisT, AAManager>(); } } };
/// A wrapper pass to provide the legacy pass manager access to a suitably /// prepared AAResults object. class AAResultsWrapperPass : public FunctionPass { std::unique_ptr<AAResults> AAR;
public: static char ID;
AAResultsWrapperPass();
AAResults &getAAResults() { return *AAR; } const AAResults &getAAResults() const { return *AAR; }
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override; };
/// A wrapper pass for external alias analyses. This just squirrels away the /// callback used to run any analyses and register their results. struct ExternalAAWrapperPass : ImmutablePass { using CallbackT = std::function<void(Pass &, Function &, AAResults &)>;
CallbackT CB;
static char ID;
ExternalAAWrapperPass();
explicit ExternalAAWrapperPass(CallbackT CB);
void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesAll(); } };
/// A wrapper pass around a callback which can be used to populate the /// AAResults in the AAResultsWrapperPass from an external AA. /// /// The callback provided here will be used each time we prepare an AAResults /// object, and will receive a reference to the function wrapper pass, the /// function, and the AAResults object to populate. This should be used when /// setting up a custom pass pipeline to inject a hook into the AA results. ImmutablePass *createExternalAAWrapperPass( std::function<void(Pass &, Function &, AAResults &)> Callback);
} // end namespace llvm
#endif // LLVM_ANALYSIS_ALIASANALYSIS_H
|