Viewing file: iterator.h (13.65 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- iterator.h - Utilities for using and defining iterators --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_ITERATOR_H #define LLVM_ADT_ITERATOR_H
#include "llvm/ADT/iterator_range.h" #include <cstddef> #include <iterator> #include <type_traits> #include <utility>
namespace llvm {
/// CRTP base class which implements the entire standard iterator facade /// in terms of a minimal subset of the interface. /// /// Use this when it is reasonable to implement most of the iterator /// functionality in terms of a core subset. If you need special behavior or /// there are performance implications for this, you may want to override the /// relevant members instead. /// /// Note, one abstraction that this does *not* provide is implementing /// subtraction in terms of addition by negating the difference. Negation isn't /// always information preserving, and I can see very reasonable iterator /// designs where this doesn't work well. It doesn't really force much added /// boilerplate anyways. /// /// Another abstraction that this doesn't provide is implementing increment in /// terms of addition of one. These aren't equivalent for all iterator /// categories, and respecting that adds a lot of complexity for little gain. /// /// Iterators are expected to have const rules analogous to pointers, with a /// single, const-qualified operator*() that returns ReferenceT. This matches /// the second and third pointers in the following example: /// \code /// int Value; /// { int *I = &Value; } // ReferenceT 'int&' /// { int *const I = &Value; } // ReferenceT 'int&'; const /// { const int *I = &Value; } // ReferenceT 'const int&' /// { const int *const I = &Value; } // ReferenceT 'const int&'; const /// \endcode /// If an iterator facade returns a handle to its own state, then T (and /// PointerT and ReferenceT) should usually be const-qualified. Otherwise, if /// clients are expected to modify the handle itself, the field can be declared /// mutable or use const_cast. /// /// Classes wishing to use `iterator_facade_base` should implement the following /// methods: /// /// Forward Iterators: /// (All of the following methods) /// - DerivedT &operator=(const DerivedT &R); /// - bool operator==(const DerivedT &R) const; /// - T &operator*() const; /// - DerivedT &operator++(); /// /// Bidirectional Iterators: /// (All methods of forward iterators, plus the following) /// - DerivedT &operator--(); /// /// Random-access Iterators: /// (All methods of bidirectional iterators excluding the following) /// - DerivedT &operator++(); /// - DerivedT &operator--(); /// (and plus the following) /// - bool operator<(const DerivedT &RHS) const; /// - DifferenceTypeT operator-(const DerivedT &R) const; /// - DerivedT &operator+=(DifferenceTypeT N); /// - DerivedT &operator-=(DifferenceTypeT N); /// template <typename DerivedT, typename IteratorCategoryT, typename T, typename DifferenceTypeT = std::ptrdiff_t, typename PointerT = T *, typename ReferenceT = T &> class iterator_facade_base { public: using iterator_category = IteratorCategoryT; using value_type = T; using difference_type = DifferenceTypeT; using pointer = PointerT; using reference = ReferenceT;
protected: enum { IsRandomAccess = std::is_base_of<std::random_access_iterator_tag, IteratorCategoryT>::value, IsBidirectional = std::is_base_of<std::bidirectional_iterator_tag, IteratorCategoryT>::value, };
/// A proxy object for computing a reference via indirecting a copy of an /// iterator. This is used in APIs which need to produce a reference via /// indirection but for which the iterator object might be a temporary. The /// proxy preserves the iterator internally and exposes the indirected /// reference via a conversion operator. class ReferenceProxy { friend iterator_facade_base;
DerivedT I;
ReferenceProxy(DerivedT I) : I(std::move(I)) {}
public: operator ReferenceT() const { return *I; } };
/// A proxy object for computing a pointer via indirecting a copy of a /// reference. This is used in APIs which need to produce a pointer but for /// which the reference might be a temporary. The proxy preserves the /// reference internally and exposes the pointer via a arrow operator. class PointerProxy { friend iterator_facade_base;
ReferenceT R;
template <typename RefT> PointerProxy(RefT &&R) : R(std::forward<RefT>(R)) {}
public: PointerT operator->() const { return &R; } };
public: DerivedT operator+(DifferenceTypeT n) const { static_assert(std::is_base_of<iterator_facade_base, DerivedT>::value, "Must pass the derived type to this template!"); static_assert( IsRandomAccess, "The '+' operator is only defined for random access iterators."); DerivedT tmp = *static_cast<const DerivedT *>(this); tmp += n; return tmp; } friend DerivedT operator+(DifferenceTypeT n, const DerivedT &i) { static_assert( IsRandomAccess, "The '+' operator is only defined for random access iterators."); return i + n; } DerivedT operator-(DifferenceTypeT n) const { static_assert( IsRandomAccess, "The '-' operator is only defined for random access iterators."); DerivedT tmp = *static_cast<const DerivedT *>(this); tmp -= n; return tmp; }
DerivedT &operator++() { static_assert(std::is_base_of<iterator_facade_base, DerivedT>::value, "Must pass the derived type to this template!"); return static_cast<DerivedT *>(this)->operator+=(1); } DerivedT operator++(int) { DerivedT tmp = *static_cast<DerivedT *>(this); ++*static_cast<DerivedT *>(this); return tmp; } DerivedT &operator--() { static_assert( IsBidirectional, "The decrement operator is only defined for bidirectional iterators."); return static_cast<DerivedT *>(this)->operator-=(1); } DerivedT operator--(int) { static_assert( IsBidirectional, "The decrement operator is only defined for bidirectional iterators."); DerivedT tmp = *static_cast<DerivedT *>(this); --*static_cast<DerivedT *>(this); return tmp; }
#ifndef __cpp_impl_three_way_comparison bool operator!=(const DerivedT &RHS) const { return !(static_cast<const DerivedT &>(*this) == RHS); } #endif
bool operator>(const DerivedT &RHS) const { static_assert( IsRandomAccess, "Relational operators are only defined for random access iterators."); return !(static_cast<const DerivedT &>(*this) < RHS) && !(static_cast<const DerivedT &>(*this) == RHS); } bool operator<=(const DerivedT &RHS) const { static_assert( IsRandomAccess, "Relational operators are only defined for random access iterators."); return !(static_cast<const DerivedT &>(*this) > RHS); } bool operator>=(const DerivedT &RHS) const { static_assert( IsRandomAccess, "Relational operators are only defined for random access iterators."); return !(static_cast<const DerivedT &>(*this) < RHS); }
PointerProxy operator->() const { return static_cast<const DerivedT *>(this)->operator*(); } ReferenceProxy operator[](DifferenceTypeT n) const { static_assert(IsRandomAccess, "Subscripting is only defined for random access iterators."); return static_cast<const DerivedT *>(this)->operator+(n); } };
/// CRTP base class for adapting an iterator to a different type. /// /// This class can be used through CRTP to adapt one iterator into another. /// Typically this is done through providing in the derived class a custom \c /// operator* implementation. Other methods can be overridden as well. template < typename DerivedT, typename WrappedIteratorT, typename IteratorCategoryT = typename std::iterator_traits<WrappedIteratorT>::iterator_category, typename T = typename std::iterator_traits<WrappedIteratorT>::value_type, typename DifferenceTypeT = typename std::iterator_traits<WrappedIteratorT>::difference_type, typename PointerT = std::conditional_t< std::is_same<T, typename std::iterator_traits< WrappedIteratorT>::value_type>::value, typename std::iterator_traits<WrappedIteratorT>::pointer, T *>, typename ReferenceT = std::conditional_t< std::is_same<T, typename std::iterator_traits< WrappedIteratorT>::value_type>::value, typename std::iterator_traits<WrappedIteratorT>::reference, T &>> class iterator_adaptor_base : public iterator_facade_base<DerivedT, IteratorCategoryT, T, DifferenceTypeT, PointerT, ReferenceT> { using BaseT = typename iterator_adaptor_base::iterator_facade_base;
protected: WrappedIteratorT I;
iterator_adaptor_base() = default;
explicit iterator_adaptor_base(WrappedIteratorT u) : I(std::move(u)) { static_assert(std::is_base_of<iterator_adaptor_base, DerivedT>::value, "Must pass the derived type to this template!"); }
const WrappedIteratorT &wrapped() const { return I; }
public: using difference_type = DifferenceTypeT;
DerivedT &operator+=(difference_type n) { static_assert( BaseT::IsRandomAccess, "The '+=' operator is only defined for random access iterators."); I += n; return *static_cast<DerivedT *>(this); } DerivedT &operator-=(difference_type n) { static_assert( BaseT::IsRandomAccess, "The '-=' operator is only defined for random access iterators."); I -= n; return *static_cast<DerivedT *>(this); } using BaseT::operator-; difference_type operator-(const DerivedT &RHS) const { static_assert( BaseT::IsRandomAccess, "The '-' operator is only defined for random access iterators."); return I - RHS.I; }
// We have to explicitly provide ++ and -- rather than letting the facade // forward to += because WrappedIteratorT might not support +=. using BaseT::operator++; DerivedT &operator++() { ++I; return *static_cast<DerivedT *>(this); } using BaseT::operator--; DerivedT &operator--() { static_assert( BaseT::IsBidirectional, "The decrement operator is only defined for bidirectional iterators."); --I; return *static_cast<DerivedT *>(this); }
friend bool operator==(const iterator_adaptor_base &LHS, const iterator_adaptor_base &RHS) { return LHS.I == RHS.I; } friend bool operator<(const iterator_adaptor_base &LHS, const iterator_adaptor_base &RHS) { static_assert( BaseT::IsRandomAccess, "Relational operators are only defined for random access iterators."); return LHS.I < RHS.I; }
ReferenceT operator*() const { return *I; } };
/// An iterator type that allows iterating over the pointees via some /// other iterator. /// /// The typical usage of this is to expose a type that iterates over Ts, but /// which is implemented with some iterator over T*s: /// /// \code /// using iterator = pointee_iterator<SmallVectorImpl<T *>::iterator>; /// \endcode template <typename WrappedIteratorT, typename T = std::remove_reference_t<decltype( **std::declval<WrappedIteratorT>())>> struct pointee_iterator : iterator_adaptor_base< pointee_iterator<WrappedIteratorT, T>, WrappedIteratorT, typename std::iterator_traits<WrappedIteratorT>::iterator_category, T> { pointee_iterator() = default; template <typename U> pointee_iterator(U &&u) : pointee_iterator::iterator_adaptor_base(std::forward<U &&>(u)) {}
T &operator*() const { return **this->I; } };
template <typename RangeT, typename WrappedIteratorT = decltype(std::begin(std::declval<RangeT>()))> iterator_range<pointee_iterator<WrappedIteratorT>> make_pointee_range(RangeT &&Range) { using PointeeIteratorT = pointee_iterator<WrappedIteratorT>; return make_range(PointeeIteratorT(std::begin(std::forward<RangeT>(Range))), PointeeIteratorT(std::end(std::forward<RangeT>(Range)))); }
template <typename WrappedIteratorT, typename T = decltype(&*std::declval<WrappedIteratorT>())> class pointer_iterator : public iterator_adaptor_base< pointer_iterator<WrappedIteratorT, T>, WrappedIteratorT, typename std::iterator_traits<WrappedIteratorT>::iterator_category, T> { mutable T Ptr;
public: pointer_iterator() = default;
explicit pointer_iterator(WrappedIteratorT u) : pointer_iterator::iterator_adaptor_base(std::move(u)) {}
T &operator*() const { return Ptr = &*this->I; } };
template <typename RangeT, typename WrappedIteratorT = decltype(std::begin(std::declval<RangeT>()))> iterator_range<pointer_iterator<WrappedIteratorT>> make_pointer_range(RangeT &&Range) { using PointerIteratorT = pointer_iterator<WrappedIteratorT>; return make_range(PointerIteratorT(std::begin(std::forward<RangeT>(Range))), PointerIteratorT(std::end(std::forward<RangeT>(Range)))); }
template <typename WrappedIteratorT, typename T1 = std::remove_reference_t<decltype( **std::declval<WrappedIteratorT>())>, typename T2 = std::add_pointer_t<T1>> using raw_pointer_iterator = pointer_iterator<pointee_iterator<WrappedIteratorT, T1>, T2>;
} // end namespace llvm
#endif // LLVM_ADT_ITERATOR_H
|