Viewing file: SmallVector.h (46.56 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file defines the SmallVector class. /// //===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SMALLVECTOR_H #define LLVM_ADT_SMALLVECTOR_H
#include "llvm/Support/Compiler.h" #include "llvm/Support/type_traits.h" #include <algorithm> #include <cassert> #include <cstddef> #include <cstdint> #include <cstdlib> #include <cstring> #include <functional> #include <initializer_list> #include <iterator> #include <limits> #include <memory> #include <new> #include <type_traits> #include <utility>
namespace llvm {
template <typename T> class ArrayRef;
template <typename IteratorT> class iterator_range;
template <class Iterator> using EnableIfConvertibleToInputIterator = std::enable_if_t<std::is_convertible< typename std::iterator_traits<Iterator>::iterator_category, std::input_iterator_tag>::value>;
/// This is all the stuff common to all SmallVectors. /// /// The template parameter specifies the type which should be used to hold the /// Size and Capacity of the SmallVector, so it can be adjusted. /// Using 32 bit size is desirable to shrink the size of the SmallVector. /// Using 64 bit size is desirable for cases like SmallVector<char>, where a /// 32 bit size would limit the vector to ~4GB. SmallVectors are used for /// buffering bitcode output - which can exceed 4GB. template <class Size_T> class SmallVectorBase { protected: void *BeginX; Size_T Size = 0, Capacity;
/// The maximum value of the Size_T used. static constexpr size_t SizeTypeMax() { return std::numeric_limits<Size_T>::max(); }
SmallVectorBase() = delete; SmallVectorBase(void *FirstEl, size_t TotalCapacity) : BeginX(FirstEl), Capacity(static_cast<Size_T>(TotalCapacity)) {}
/// This is a helper for \a grow() that's out of line to reduce code /// duplication. This function will report a fatal error if it can't grow at /// least to \p MinSize. void *mallocForGrow(void *FirstEl, size_t MinSize, size_t TSize, size_t &NewCapacity);
/// This is an implementation of the grow() method which only works /// on POD-like data types and is out of line to reduce code duplication. /// This function will report a fatal error if it cannot increase capacity. void grow_pod(void *FirstEl, size_t MinSize, size_t TSize);
/// If vector was first created with capacity 0, getFirstEl() points to the /// memory right after, an area unallocated. If a subsequent allocation, /// that grows the vector, happens to return the same pointer as getFirstEl(), /// get a new allocation, otherwise isSmall() will falsely return that no /// allocation was done (true) and the memory will not be freed in the /// destructor. If a VSize is given (vector size), also copy that many /// elements to the new allocation - used if realloca fails to increase /// space, and happens to allocate precisely at BeginX. /// This is unlikely to be called often, but resolves a memory leak when the /// situation does occur. void *replaceAllocation(void *NewElts, size_t TSize, size_t NewCapacity, size_t VSize = 0);
public: size_t size() const { return Size; } size_t capacity() const { return Capacity; }
[[nodiscard]] bool empty() const { return !Size; }
protected: /// Set the array size to \p N, which the current array must have enough /// capacity for. /// /// This does not construct or destroy any elements in the vector. void set_size(size_t N) { assert(N <= capacity()); // implies no overflow in assignment Size = static_cast<Size_T>(N); }
/// Set the array data pointer to \p Begin and capacity to \p N. /// /// This does not construct or destroy any elements in the vector. // This does not clean up any existing allocation. void set_allocation_range(void *Begin, size_t N) { assert(N <= SizeTypeMax()); BeginX = Begin; Capacity = static_cast<Size_T>(N); } };
template <class T> using SmallVectorSizeType = std::conditional_t<sizeof(T) < 4 && sizeof(void *) >= 8, uint64_t, uint32_t>;
/// Figure out the offset of the first element. template <class T, typename = void> struct SmallVectorAlignmentAndSize { alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof( SmallVectorBase<SmallVectorSizeType<T>>)]; alignas(T) char FirstEl[sizeof(T)]; };
/// This is the part of SmallVectorTemplateBase which does not depend on whether /// the type T is a POD. The extra dummy template argument is used by ArrayRef /// to avoid unnecessarily requiring T to be complete. template <typename T, typename = void> class SmallVectorTemplateCommon : public SmallVectorBase<SmallVectorSizeType<T>> { using Base = SmallVectorBase<SmallVectorSizeType<T>>;
protected: /// Find the address of the first element. For this pointer math to be valid /// with small-size of 0 for T with lots of alignment, it's important that /// SmallVectorStorage is properly-aligned even for small-size of 0. void *getFirstEl() const { return const_cast<void *>(reinterpret_cast<const void *>( reinterpret_cast<const char *>(this) + offsetof(SmallVectorAlignmentAndSize<T>, FirstEl))); } // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {}
void grow_pod(size_t MinSize, size_t TSize) { Base::grow_pod(getFirstEl(), MinSize, TSize); }
/// Return true if this is a smallvector which has not had dynamic /// memory allocated for it. bool isSmall() const { return this->BeginX == getFirstEl(); }
/// Put this vector in a state of being small. void resetToSmall() { this->BeginX = getFirstEl(); this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect. }
/// Return true if V is an internal reference to the given range. bool isReferenceToRange(const void *V, const void *First, const void *Last) const { // Use std::less to avoid UB. std::less<> LessThan; return !LessThan(V, First) && LessThan(V, Last); }
/// Return true if V is an internal reference to this vector. bool isReferenceToStorage(const void *V) const { return isReferenceToRange(V, this->begin(), this->end()); }
/// Return true if First and Last form a valid (possibly empty) range in this /// vector's storage. bool isRangeInStorage(const void *First, const void *Last) const { // Use std::less to avoid UB. std::less<> LessThan; return !LessThan(First, this->begin()) && !LessThan(Last, First) && !LessThan(this->end(), Last); }
/// Return true unless Elt will be invalidated by resizing the vector to /// NewSize. bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { // Past the end. if (LLVM_LIKELY(!isReferenceToStorage(Elt))) return true;
// Return false if Elt will be destroyed by shrinking. if (NewSize <= this->size()) return Elt < this->begin() + NewSize;
// Return false if we need to grow. return NewSize <= this->capacity(); }
/// Check whether Elt will be invalidated by resizing the vector to NewSize. void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { assert(isSafeToReferenceAfterResize(Elt, NewSize) && "Attempting to reference an element of the vector in an operation " "that invalidates it"); }
/// Check whether Elt will be invalidated by increasing the size of the /// vector by N. void assertSafeToAdd(const void *Elt, size_t N = 1) { this->assertSafeToReferenceAfterResize(Elt, this->size() + N); }
/// Check whether any part of the range will be invalidated by clearing. void assertSafeToReferenceAfterClear(const T *From, const T *To) { if (From == To) return; this->assertSafeToReferenceAfterResize(From, 0); this->assertSafeToReferenceAfterResize(To - 1, 0); } template < class ItTy, std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value, bool> = false> void assertSafeToReferenceAfterClear(ItTy, ItTy) {}
/// Check whether any part of the range will be invalidated by growing. void assertSafeToAddRange(const T *From, const T *To) { if (From == To) return; this->assertSafeToAdd(From, To - From); this->assertSafeToAdd(To - 1, To - From); } template < class ItTy, std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value, bool> = false> void assertSafeToAddRange(ItTy, ItTy) {}
/// Reserve enough space to add one element, and return the updated element /// pointer in case it was a reference to the storage. template <class U> static const T *reserveForParamAndGetAddressImpl(U *This, const T &Elt, size_t N) { size_t NewSize = This->size() + N; if (LLVM_LIKELY(NewSize <= This->capacity())) return &Elt;
bool ReferencesStorage = false; int64_t Index = -1; if (!U::TakesParamByValue) { if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))) { ReferencesStorage = true; Index = &Elt - This->begin(); } } This->grow(NewSize); return ReferencesStorage ? This->begin() + Index : &Elt; }
public: using size_type = size_t; using difference_type = ptrdiff_t; using value_type = T; using iterator = T *; using const_iterator = const T *;
using const_reverse_iterator = std::reverse_iterator<const_iterator>; using reverse_iterator = std::reverse_iterator<iterator>;
using reference = T &; using const_reference = const T &; using pointer = T *; using const_pointer = const T *;
using Base::capacity; using Base::empty; using Base::size;
// forward iterator creation methods. iterator begin() { return (iterator)this->BeginX; } const_iterator begin() const { return (const_iterator)this->BeginX; } iterator end() { return begin() + size(); } const_iterator end() const { return begin() + size(); }
// reverse iterator creation methods. reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
size_type size_in_bytes() const { return size() * sizeof(T); } size_type max_size() const { return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T)); }
size_t capacity_in_bytes() const { return capacity() * sizeof(T); }
/// Return a pointer to the vector's buffer, even if empty(). pointer data() { return pointer(begin()); } /// Return a pointer to the vector's buffer, even if empty(). const_pointer data() const { return const_pointer(begin()); }
reference operator[](size_type idx) { assert(idx < size()); return begin()[idx]; } const_reference operator[](size_type idx) const { assert(idx < size()); return begin()[idx]; }
reference front() { assert(!empty()); return begin()[0]; } const_reference front() const { assert(!empty()); return begin()[0]; }
reference back() { assert(!empty()); return end()[-1]; } const_reference back() const { assert(!empty()); return end()[-1]; } };
/// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put /// method implementations that are designed to work with non-trivial T's. /// /// We approximate is_trivially_copyable with trivial move/copy construction and /// trivial destruction. While the standard doesn't specify that you're allowed /// copy these types with memcpy, there is no way for the type to observe this. /// This catches the important case of std::pair<POD, POD>, which is not /// trivially assignable. template <typename T, bool = (std::is_trivially_copy_constructible<T>::value) && (std::is_trivially_move_constructible<T>::value) && std::is_trivially_destructible<T>::value> class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> { friend class SmallVectorTemplateCommon<T>;
protected: static constexpr bool TakesParamByValue = false; using ValueParamT = const T &;
SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
static void destroy_range(T *S, T *E) { while (S != E) { --E; E->~T(); } }
/// Move the range [I, E) into the uninitialized memory starting with "Dest", /// constructing elements as needed. template<typename It1, typename It2> static void uninitialized_move(It1 I, It1 E, It2 Dest) { std::uninitialized_move(I, E, Dest); }
/// Copy the range [I, E) onto the uninitialized memory starting with "Dest", /// constructing elements as needed. template<typename It1, typename It2> static void uninitialized_copy(It1 I, It1 E, It2 Dest) { std::uninitialized_copy(I, E, Dest); }
/// Grow the allocated memory (without initializing new elements), doubling /// the size of the allocated memory. Guarantees space for at least one more /// element, or MinSize more elements if specified. void grow(size_t MinSize = 0);
/// Create a new allocation big enough for \p MinSize and pass back its size /// in \p NewCapacity. This is the first section of \a grow(). T *mallocForGrow(size_t MinSize, size_t &NewCapacity);
/// Move existing elements over to the new allocation \p NewElts, the middle /// section of \a grow(). void moveElementsForGrow(T *NewElts);
/// Transfer ownership of the allocation, finishing up \a grow(). void takeAllocationForGrow(T *NewElts, size_t NewCapacity);
/// Reserve enough space to add one element, and return the updated element /// pointer in case it was a reference to the storage. const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { return this->reserveForParamAndGetAddressImpl(this, Elt, N); }
/// Reserve enough space to add one element, and return the updated element /// pointer in case it was a reference to the storage. T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { return const_cast<T *>( this->reserveForParamAndGetAddressImpl(this, Elt, N)); }
static T &&forward_value_param(T &&V) { return std::move(V); } static const T &forward_value_param(const T &V) { return V; }
void growAndAssign(size_t NumElts, const T &Elt) { // Grow manually in case Elt is an internal reference. size_t NewCapacity; T *NewElts = mallocForGrow(NumElts, NewCapacity); std::uninitialized_fill_n(NewElts, NumElts, Elt); this->destroy_range(this->begin(), this->end()); takeAllocationForGrow(NewElts, NewCapacity); this->set_size(NumElts); }
template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) { // Grow manually in case one of Args is an internal reference. size_t NewCapacity; T *NewElts = mallocForGrow(0, NewCapacity); ::new ((void *)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...); moveElementsForGrow(NewElts); takeAllocationForGrow(NewElts, NewCapacity); this->set_size(this->size() + 1); return this->back(); }
public: void push_back(const T &Elt) { const T *EltPtr = reserveForParamAndGetAddress(Elt); ::new ((void *)this->end()) T(*EltPtr); this->set_size(this->size() + 1); }
void push_back(T &&Elt) { T *EltPtr = reserveForParamAndGetAddress(Elt); ::new ((void *)this->end()) T(::std::move(*EltPtr)); this->set_size(this->size() + 1); }
void pop_back() { this->set_size(this->size() - 1); this->end()->~T(); } };
// Define this out-of-line to dissuade the C++ compiler from inlining it. template <typename T, bool TriviallyCopyable> void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) { size_t NewCapacity; T *NewElts = mallocForGrow(MinSize, NewCapacity); moveElementsForGrow(NewElts); takeAllocationForGrow(NewElts, NewCapacity); }
template <typename T, bool TriviallyCopyable> T *SmallVectorTemplateBase<T, TriviallyCopyable>::mallocForGrow( size_t MinSize, size_t &NewCapacity) { return static_cast<T *>( SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow( this->getFirstEl(), MinSize, sizeof(T), NewCapacity)); }
// Define this out-of-line to dissuade the C++ compiler from inlining it. template <typename T, bool TriviallyCopyable> void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow( T *NewElts) { // Move the elements over. this->uninitialized_move(this->begin(), this->end(), NewElts);
// Destroy the original elements. destroy_range(this->begin(), this->end()); }
// Define this out-of-line to dissuade the C++ compiler from inlining it. template <typename T, bool TriviallyCopyable> void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow( T *NewElts, size_t NewCapacity) { // If this wasn't grown from the inline copy, deallocate the old space. if (!this->isSmall()) free(this->begin());
this->set_allocation_range(NewElts, NewCapacity); }
/// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put /// method implementations that are designed to work with trivially copyable /// T's. This allows using memcpy in place of copy/move construction and /// skipping destruction. template <typename T> class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> { friend class SmallVectorTemplateCommon<T>;
protected: /// True if it's cheap enough to take parameters by value. Doing so avoids /// overhead related to mitigations for reference invalidation. static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *);
/// Either const T& or T, depending on whether it's cheap enough to take /// parameters by value. using ValueParamT = std::conditional_t<TakesParamByValue, T, const T &>;
SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
// No need to do a destroy loop for POD's. static void destroy_range(T *, T *) {}
/// Move the range [I, E) onto the uninitialized memory /// starting with "Dest", constructing elements into it as needed. template<typename It1, typename It2> static void uninitialized_move(It1 I, It1 E, It2 Dest) { // Just do a copy. uninitialized_copy(I, E, Dest); }
/// Copy the range [I, E) onto the uninitialized memory /// starting with "Dest", constructing elements into it as needed. template<typename It1, typename It2> static void uninitialized_copy(It1 I, It1 E, It2 Dest) { // Arbitrary iterator types; just use the basic implementation. std::uninitialized_copy(I, E, Dest); }
/// Copy the range [I, E) onto the uninitialized memory /// starting with "Dest", constructing elements into it as needed. template <typename T1, typename T2> static void uninitialized_copy( T1 *I, T1 *E, T2 *Dest, std::enable_if_t<std::is_same<std::remove_const_t<T1>, T2>::value> * = nullptr) { // Use memcpy for PODs iterated by pointers (which includes SmallVector // iterators): std::uninitialized_copy optimizes to memmove, but we can // use memcpy here. Note that I and E are iterators and thus might be // invalid for memcpy if they are equal. if (I != E) memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T)); }
/// Double the size of the allocated memory, guaranteeing space for at /// least one more element or MinSize if specified. void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); }
/// Reserve enough space to add one element, and return the updated element /// pointer in case it was a reference to the storage. const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { return this->reserveForParamAndGetAddressImpl(this, Elt, N); }
/// Reserve enough space to add one element, and return the updated element /// pointer in case it was a reference to the storage. T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { return const_cast<T *>( this->reserveForParamAndGetAddressImpl(this, Elt, N)); }
/// Copy \p V or return a reference, depending on \a ValueParamT. static ValueParamT forward_value_param(ValueParamT V) { return V; }
void growAndAssign(size_t NumElts, T Elt) { // Elt has been copied in case it's an internal reference, side-stepping // reference invalidation problems without losing the realloc optimization. this->set_size(0); this->grow(NumElts); std::uninitialized_fill_n(this->begin(), NumElts, Elt); this->set_size(NumElts); }
template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) { // Use push_back with a copy in case Args has an internal reference, // side-stepping reference invalidation problems without losing the realloc // optimization. push_back(T(std::forward<ArgTypes>(Args)...)); return this->back(); }
public: void push_back(ValueParamT Elt) { const T *EltPtr = reserveForParamAndGetAddress(Elt); memcpy(reinterpret_cast<void *>(this->end()), EltPtr, sizeof(T)); this->set_size(this->size() + 1); }
void pop_back() { this->set_size(this->size() - 1); } };
/// This class consists of common code factored out of the SmallVector class to /// reduce code duplication based on the SmallVector 'N' template parameter. template <typename T> class SmallVectorImpl : public SmallVectorTemplateBase<T> { using SuperClass = SmallVectorTemplateBase<T>;
public: using iterator = typename SuperClass::iterator; using const_iterator = typename SuperClass::const_iterator; using reference = typename SuperClass::reference; using size_type = typename SuperClass::size_type;
protected: using SmallVectorTemplateBase<T>::TakesParamByValue; using ValueParamT = typename SuperClass::ValueParamT;
// Default ctor - Initialize to empty. explicit SmallVectorImpl(unsigned N) : SmallVectorTemplateBase<T>(N) {}
void assignRemote(SmallVectorImpl &&RHS) { this->destroy_range(this->begin(), this->end()); if (!this->isSmall()) free(this->begin()); this->BeginX = RHS.BeginX; this->Size = RHS.Size; this->Capacity = RHS.Capacity; RHS.resetToSmall(); }
~SmallVectorImpl() { // Subclass has already destructed this vector's elements. // If this wasn't grown from the inline copy, deallocate the old space. if (!this->isSmall()) free(this->begin()); }
public: SmallVectorImpl(const SmallVectorImpl &) = delete;
void clear() { this->destroy_range(this->begin(), this->end()); this->Size = 0; }
private: // Make set_size() private to avoid misuse in subclasses. using SuperClass::set_size;
template <bool ForOverwrite> void resizeImpl(size_type N) { if (N == this->size()) return;
if (N < this->size()) { this->truncate(N); return; }
this->reserve(N); for (auto I = this->end(), E = this->begin() + N; I != E; ++I) if (ForOverwrite) new (&*I) T; else new (&*I) T(); this->set_size(N); }
public: void resize(size_type N) { resizeImpl<false>(N); }
/// Like resize, but \ref T is POD, the new values won't be initialized. void resize_for_overwrite(size_type N) { resizeImpl<true>(N); }
/// Like resize, but requires that \p N is less than \a size(). void truncate(size_type N) { assert(this->size() >= N && "Cannot increase size with truncate"); this->destroy_range(this->begin() + N, this->end()); this->set_size(N); }
void resize(size_type N, ValueParamT NV) { if (N == this->size()) return;
if (N < this->size()) { this->truncate(N); return; }
// N > this->size(). Defer to append. this->append(N - this->size(), NV); }
void reserve(size_type N) { if (this->capacity() < N) this->grow(N); }
void pop_back_n(size_type NumItems) { assert(this->size() >= NumItems); truncate(this->size() - NumItems); }
[[nodiscard]] T pop_back_val() { T Result = ::std::move(this->back()); this->pop_back(); return Result; }
void swap(SmallVectorImpl &RHS);
/// Add the specified range to the end of the SmallVector. template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> void append(ItTy in_start, ItTy in_end) { this->assertSafeToAddRange(in_start, in_end); size_type NumInputs = std::distance(in_start, in_end); this->reserve(this->size() + NumInputs); this->uninitialized_copy(in_start, in_end, this->end()); this->set_size(this->size() + NumInputs); }
/// Append \p NumInputs copies of \p Elt to the end. void append(size_type NumInputs, ValueParamT Elt) { const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs); std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr); this->set_size(this->size() + NumInputs); }
void append(std::initializer_list<T> IL) { append(IL.begin(), IL.end()); }
void append(const SmallVectorImpl &RHS) { append(RHS.begin(), RHS.end()); }
void assign(size_type NumElts, ValueParamT Elt) { // Note that Elt could be an internal reference. if (NumElts > this->capacity()) { this->growAndAssign(NumElts, Elt); return; }
// Assign over existing elements. std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt); if (NumElts > this->size()) std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt); else if (NumElts < this->size()) this->destroy_range(this->begin() + NumElts, this->end()); this->set_size(NumElts); }
// FIXME: Consider assigning over existing elements, rather than clearing & // re-initializing them - for all assign(...) variants.
template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> void assign(ItTy in_start, ItTy in_end) { this->assertSafeToReferenceAfterClear(in_start, in_end); clear(); append(in_start, in_end); }
void assign(std::initializer_list<T> IL) { clear(); append(IL); }
void assign(const SmallVectorImpl &RHS) { assign(RHS.begin(), RHS.end()); }
iterator erase(const_iterator CI) { // Just cast away constness because this is a non-const member function. iterator I = const_cast<iterator>(CI);
assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds.");
iterator N = I; // Shift all elts down one. std::move(I+1, this->end(), I); // Drop the last elt. this->pop_back(); return(N); }
iterator erase(const_iterator CS, const_iterator CE) { // Just cast away constness because this is a non-const member function. iterator S = const_cast<iterator>(CS); iterator E = const_cast<iterator>(CE);
assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds.");
iterator N = S; // Shift all elts down. iterator I = std::move(E, this->end(), S); // Drop the last elts. this->destroy_range(I, this->end()); this->set_size(I - this->begin()); return(N); }
private: template <class ArgType> iterator insert_one_impl(iterator I, ArgType &&Elt) { // Callers ensure that ArgType is derived from T. static_assert( std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>, T>::value, "ArgType must be derived from T!");
if (I == this->end()) { // Important special case for empty vector. this->push_back(::std::forward<ArgType>(Elt)); return this->end()-1; }
assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
// Grow if necessary. size_t Index = I - this->begin(); std::remove_reference_t<ArgType> *EltPtr = this->reserveForParamAndGetAddress(Elt); I = this->begin() + Index;
::new ((void*) this->end()) T(::std::move(this->back())); // Push everything else over. std::move_backward(I, this->end()-1, this->end()); this->set_size(this->size() + 1);
// If we just moved the element we're inserting, be sure to update // the reference (never happens if TakesParamByValue). static_assert(!TakesParamByValue || std::is_same<ArgType, T>::value, "ArgType must be 'T' when taking by value!"); if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end())) ++EltPtr;
*I = ::std::forward<ArgType>(*EltPtr); return I; }
public: iterator insert(iterator I, T &&Elt) { return insert_one_impl(I, this->forward_value_param(std::move(Elt))); }
iterator insert(iterator I, const T &Elt) { return insert_one_impl(I, this->forward_value_param(Elt)); }
iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) { // Convert iterator to elt# to avoid invalidating iterator when we reserve() size_t InsertElt = I - this->begin();
if (I == this->end()) { // Important special case for empty vector. append(NumToInsert, Elt); return this->begin()+InsertElt; }
assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
// Ensure there is enough space, and get the (maybe updated) address of // Elt. const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert);
// Uninvalidate the iterator. I = this->begin()+InsertElt;
// If there are more elements between the insertion point and the end of the // range than there are being inserted, we can use a simple approach to // insertion. Since we already reserved space, we know that this won't // reallocate the vector. if (size_t(this->end()-I) >= NumToInsert) { T *OldEnd = this->end(); append(std::move_iterator<iterator>(this->end() - NumToInsert), std::move_iterator<iterator>(this->end()));
// Copy the existing elements that get replaced. std::move_backward(I, OldEnd-NumToInsert, OldEnd);
// If we just moved the element we're inserting, be sure to update // the reference (never happens if TakesParamByValue). if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) EltPtr += NumToInsert;
std::fill_n(I, NumToInsert, *EltPtr); return I; }
// Otherwise, we're inserting more elements than exist already, and we're // not inserting at the end.
// Move over the elements that we're about to overwrite. T *OldEnd = this->end(); this->set_size(this->size() + NumToInsert); size_t NumOverwritten = OldEnd-I; this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
// If we just moved the element we're inserting, be sure to update // the reference (never happens if TakesParamByValue). if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) EltPtr += NumToInsert;
// Replace the overwritten part. std::fill_n(I, NumOverwritten, *EltPtr);
// Insert the non-overwritten middle part. std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr); return I; }
template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> iterator insert(iterator I, ItTy From, ItTy To) { // Convert iterator to elt# to avoid invalidating iterator when we reserve() size_t InsertElt = I - this->begin();
if (I == this->end()) { // Important special case for empty vector. append(From, To); return this->begin()+InsertElt; }
assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
// Check that the reserve that follows doesn't invalidate the iterators. this->assertSafeToAddRange(From, To);
size_t NumToInsert = std::distance(From, To);
// Ensure there is enough space. reserve(this->size() + NumToInsert);
// Uninvalidate the iterator. I = this->begin()+InsertElt;
// If there are more elements between the insertion point and the end of the // range than there are being inserted, we can use a simple approach to // insertion. Since we already reserved space, we know that this won't // reallocate the vector. if (size_t(this->end()-I) >= NumToInsert) { T *OldEnd = this->end(); append(std::move_iterator<iterator>(this->end() - NumToInsert), std::move_iterator<iterator>(this->end()));
// Copy the existing elements that get replaced. std::move_backward(I, OldEnd-NumToInsert, OldEnd);
std::copy(From, To, I); return I; }
// Otherwise, we're inserting more elements than exist already, and we're // not inserting at the end.
// Move over the elements that we're about to overwrite. T *OldEnd = this->end(); this->set_size(this->size() + NumToInsert); size_t NumOverwritten = OldEnd-I; this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
// Replace the overwritten part. for (T *J = I; NumOverwritten > 0; --NumOverwritten) { *J = *From; ++J; ++From; }
// Insert the non-overwritten middle part. this->uninitialized_copy(From, To, OldEnd); return I; }
void insert(iterator I, std::initializer_list<T> IL) { insert(I, IL.begin(), IL.end()); }
template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) { if (LLVM_UNLIKELY(this->size() >= this->capacity())) return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...);
::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...); this->set_size(this->size() + 1); return this->back(); }
SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
bool operator==(const SmallVectorImpl &RHS) const { if (this->size() != RHS.size()) return false; return std::equal(this->begin(), this->end(), RHS.begin()); } bool operator!=(const SmallVectorImpl &RHS) const { return !(*this == RHS); }
bool operator<(const SmallVectorImpl &RHS) const { return std::lexicographical_compare(this->begin(), this->end(), RHS.begin(), RHS.end()); } bool operator>(const SmallVectorImpl &RHS) const { return RHS < *this; } bool operator<=(const SmallVectorImpl &RHS) const { return !(*this > RHS); } bool operator>=(const SmallVectorImpl &RHS) const { return !(*this < RHS); } };
template <typename T> void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) { if (this == &RHS) return;
// We can only avoid copying elements if neither vector is small. if (!this->isSmall() && !RHS.isSmall()) { std::swap(this->BeginX, RHS.BeginX); std::swap(this->Size, RHS.Size); std::swap(this->Capacity, RHS.Capacity); return; } this->reserve(RHS.size()); RHS.reserve(this->size());
// Swap the shared elements. size_t NumShared = this->size(); if (NumShared > RHS.size()) NumShared = RHS.size(); for (size_type i = 0; i != NumShared; ++i) std::swap((*this)[i], RHS[i]);
// Copy over the extra elts. if (this->size() > RHS.size()) { size_t EltDiff = this->size() - RHS.size(); this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end()); RHS.set_size(RHS.size() + EltDiff); this->destroy_range(this->begin()+NumShared, this->end()); this->set_size(NumShared); } else if (RHS.size() > this->size()) { size_t EltDiff = RHS.size() - this->size(); this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end()); this->set_size(this->size() + EltDiff); this->destroy_range(RHS.begin()+NumShared, RHS.end()); RHS.set_size(NumShared); } }
template <typename T> SmallVectorImpl<T> &SmallVectorImpl<T>:: operator=(const SmallVectorImpl<T> &RHS) { // Avoid self-assignment. if (this == &RHS) return *this;
// If we already have sufficient space, assign the common elements, then // destroy any excess. size_t RHSSize = RHS.size(); size_t CurSize = this->size(); if (CurSize >= RHSSize) { // Assign common elements. iterator NewEnd; if (RHSSize) NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin()); else NewEnd = this->begin();
// Destroy excess elements. this->destroy_range(NewEnd, this->end());
// Trim. this->set_size(RHSSize); return *this; }
// If we have to grow to have enough elements, destroy the current elements. // This allows us to avoid copying them during the grow. // FIXME: don't do this if they're efficiently moveable. if (this->capacity() < RHSSize) { // Destroy current elements. this->clear(); CurSize = 0; this->grow(RHSSize); } else if (CurSize) { // Otherwise, use assignment for the already-constructed elements. std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin()); }
// Copy construct the new elements in place. this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(), this->begin()+CurSize);
// Set end. this->set_size(RHSSize); return *this; }
template <typename T> SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) { // Avoid self-assignment. if (this == &RHS) return *this;
// If the RHS isn't small, clear this vector and then steal its buffer. if (!RHS.isSmall()) { this->assignRemote(std::move(RHS)); return *this; }
// If we already have sufficient space, assign the common elements, then // destroy any excess. size_t RHSSize = RHS.size(); size_t CurSize = this->size(); if (CurSize >= RHSSize) { // Assign common elements. iterator NewEnd = this->begin(); if (RHSSize) NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);
// Destroy excess elements and trim the bounds. this->destroy_range(NewEnd, this->end()); this->set_size(RHSSize);
// Clear the RHS. RHS.clear();
return *this; }
// If we have to grow to have enough elements, destroy the current elements. // This allows us to avoid copying them during the grow. // FIXME: this may not actually make any sense if we can efficiently move // elements. if (this->capacity() < RHSSize) { // Destroy current elements. this->clear(); CurSize = 0; this->grow(RHSSize); } else if (CurSize) { // Otherwise, use assignment for the already-constructed elements. std::move(RHS.begin(), RHS.begin()+CurSize, this->begin()); }
// Move-construct the new elements in place. this->uninitialized_move(RHS.begin()+CurSize, RHS.end(), this->begin()+CurSize);
// Set end. this->set_size(RHSSize);
RHS.clear(); return *this; }
/// Storage for the SmallVector elements. This is specialized for the N=0 case /// to avoid allocating unnecessary storage. template <typename T, unsigned N> struct SmallVectorStorage { alignas(T) char InlineElts[N * sizeof(T)]; };
/// We need the storage to be properly aligned even for small-size of 0 so that /// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is /// well-defined. template <typename T> struct alignas(T) SmallVectorStorage<T, 0> {};
/// Forward declaration of SmallVector so that /// calculateSmallVectorDefaultInlinedElements can reference /// `sizeof(SmallVector<T, 0>)`. template <typename T, unsigned N> class LLVM_GSL_OWNER SmallVector;
/// Helper class for calculating the default number of inline elements for /// `SmallVector<T>`. /// /// This should be migrated to a constexpr function when our minimum /// compiler support is enough for multi-statement constexpr functions. template <typename T> struct CalculateSmallVectorDefaultInlinedElements { // Parameter controlling the default number of inlined elements // for `SmallVector<T>`. // // The default number of inlined elements ensures that // 1. There is at least one inlined element. // 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless // it contradicts 1. static constexpr size_t kPreferredSmallVectorSizeof = 64;
// static_assert that sizeof(T) is not "too big". // // Because our policy guarantees at least one inlined element, it is possible // for an arbitrarily large inlined element to allocate an arbitrarily large // amount of inline storage. We generally consider it an antipattern for a // SmallVector to allocate an excessive amount of inline storage, so we want // to call attention to these cases and make sure that users are making an // intentional decision if they request a lot of inline storage. // // We want this assertion to trigger in pathological cases, but otherwise // not be too easy to hit. To accomplish that, the cutoff is actually somewhat // larger than kPreferredSmallVectorSizeof (otherwise, // `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that // pattern seems useful in practice). // // One wrinkle is that this assertion is in theory non-portable, since // sizeof(T) is in general platform-dependent. However, we don't expect this // to be much of an issue, because most LLVM development happens on 64-bit // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for // 32-bit hosts, dodging the issue. The reverse situation, where development // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a // 64-bit host, is expected to be very rare. static_assert( sizeof(T) <= 256, "You are trying to use a default number of inlined elements for " "`SmallVector<T>` but `sizeof(T)` is really big! Please use an " "explicit number of inlined elements with `SmallVector<T, N>` to make " "sure you really want that much inline storage.");
// Discount the size of the header itself when calculating the maximum inline // bytes. static constexpr size_t PreferredInlineBytes = kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>); static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T); static constexpr size_t value = NumElementsThatFit == 0 ? 1 : NumElementsThatFit; };
/// This is a 'vector' (really, a variable-sized array), optimized /// for the case when the array is small. It contains some number of elements /// in-place, which allows it to avoid heap allocation when the actual number of /// elements is below that threshold. This allows normal "small" cases to be /// fast without losing generality for large inputs. /// /// \note /// In the absence of a well-motivated choice for the number of inlined /// elements \p N, it is recommended to use \c SmallVector<T> (that is, /// omitting the \p N). This will choose a default number of inlined elements /// reasonable for allocation on the stack (for example, trying to keep \c /// sizeof(SmallVector<T>) around 64 bytes). /// /// \warning This does not attempt to be exception safe. /// /// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h template <typename T, unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value> class LLVM_GSL_OWNER SmallVector : public SmallVectorImpl<T>, SmallVectorStorage<T, N> { public: SmallVector() : SmallVectorImpl<T>(N) {}
~SmallVector() { // Destroy the constructed elements in the vector. this->destroy_range(this->begin(), this->end()); }
explicit SmallVector(size_t Size) : SmallVectorImpl<T>(N) { this->resize(Size); }
SmallVector(size_t Size, const T &Value) : SmallVectorImpl<T>(N) { this->assign(Size, Value); }
template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) { this->append(S, E); }
template <typename RangeTy> explicit SmallVector(const iterator_range<RangeTy> &R) : SmallVectorImpl<T>(N) { this->append(R.begin(), R.end()); }
SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) { this->append(IL); }
template <typename U, typename = std::enable_if_t<std::is_convertible<U, T>::value>> explicit SmallVector(ArrayRef<U> A) : SmallVectorImpl<T>(N) { this->append(A.begin(), A.end()); }
SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) { if (!RHS.empty()) SmallVectorImpl<T>::operator=(RHS); }
SmallVector &operator=(const SmallVector &RHS) { SmallVectorImpl<T>::operator=(RHS); return *this; }
SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) { if (!RHS.empty()) SmallVectorImpl<T>::operator=(::std::move(RHS)); }
SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) { if (!RHS.empty()) SmallVectorImpl<T>::operator=(::std::move(RHS)); }
SmallVector &operator=(SmallVector &&RHS) { if (N) { SmallVectorImpl<T>::operator=(::std::move(RHS)); return *this; } // SmallVectorImpl<T>::operator= does not leverage N==0. Optimize the // case. if (this == &RHS) return *this; if (RHS.empty()) { this->destroy_range(this->begin(), this->end()); this->Size = 0; } else { this->assignRemote(std::move(RHS)); } return *this; }
SmallVector &operator=(SmallVectorImpl<T> &&RHS) { SmallVectorImpl<T>::operator=(::std::move(RHS)); return *this; }
SmallVector &operator=(std::initializer_list<T> IL) { this->assign(IL); return *this; } };
template <typename T, unsigned N> inline size_t capacity_in_bytes(const SmallVector<T, N> &X) { return X.capacity_in_bytes(); }
template <typename RangeType> using ValueTypeFromRangeType = std::remove_const_t<std::remove_reference_t<decltype(*std::begin( std::declval<RangeType &>()))>>;
/// Given a range of type R, iterate the entire range and return a /// SmallVector with elements of the vector. This is useful, for example, /// when you want to iterate a range and then sort the results. template <unsigned Size, typename R> SmallVector<ValueTypeFromRangeType<R>, Size> to_vector(R &&Range) { return {std::begin(Range), std::end(Range)}; } template <typename R> SmallVector<ValueTypeFromRangeType<R>> to_vector(R &&Range) { return {std::begin(Range), std::end(Range)}; }
template <typename Out, unsigned Size, typename R> SmallVector<Out, Size> to_vector_of(R &&Range) { return {std::begin(Range), std::end(Range)}; }
template <typename Out, typename R> SmallVector<Out> to_vector_of(R &&Range) { return {std::begin(Range), std::end(Range)}; }
// Explicit instantiations extern template class llvm::SmallVectorBase<uint32_t>; #if SIZE_MAX > UINT32_MAX extern template class llvm::SmallVectorBase<uint64_t>; #endif
} // end namespace llvm
namespace std {
/// Implement std::swap in terms of SmallVector swap. template<typename T> inline void swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) { LHS.swap(RHS); }
/// Implement std::swap in terms of SmallVector swap. template<typename T, unsigned N> inline void swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) { LHS.swap(RHS); }
} // end namespace std
#endif // LLVM_ADT_SMALLVECTOR_H
|