Viewing file: SetVector.h (11.71 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- llvm/ADT/SetVector.h - Set with insert order iteration ---*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file implements a set that has insertion order iteration /// characteristics. This is useful for keeping a set of things that need to be /// visited later but in a deterministic order (insertion order). The interface /// is purposefully minimal. /// /// This file defines SetVector and SmallSetVector, which performs no /// allocations if the SetVector has less than a certain number of elements. /// //===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SETVECTOR_H #define LLVM_ADT_SETVECTOR_H
#include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Compiler.h" #include <cassert> #include <iterator>
namespace llvm {
/// A vector that has set insertion semantics. /// /// This adapter class provides a way to keep a set of things that also has the /// property of a deterministic iteration order. The order of iteration is the /// order of insertion. /// /// The key and value types are derived from the Set and Vector types /// respectively. This allows the vector-type operations and set-type operations /// to have different types. In particular, this is useful when storing pointers /// as "Foo *" values but looking them up as "const Foo *" keys. /// /// No constraint is placed on the key and value types, although it is assumed /// that value_type can be converted into key_type for insertion. Users must be /// aware of any loss of information in this conversion. For example, setting /// value_type to float and key_type to int can produce very surprising results, /// but it is not explicitly disallowed. /// /// The parameter N specifies the "small" size of the container, which is the /// number of elements upto which a linear scan over the Vector will be used /// when searching for elements instead of checking Set, due to it being better /// for performance. A value of 0 means that this mode of operation is not used, /// and is the default value. template <typename T, typename Vector = SmallVector<T, 0>, typename Set = DenseSet<T>, unsigned N = 0> class SetVector { // Much like in SmallPtrSet, this value should not be too high to prevent // excessively long linear scans from occuring. static_assert(N <= 32, "Small size should be less than or equal to 32!");
public: using value_type = typename Vector::value_type; using key_type = typename Set::key_type; using reference = value_type &; using const_reference = const value_type &; using set_type = Set; using vector_type = Vector; using iterator = typename vector_type::const_iterator; using const_iterator = typename vector_type::const_iterator; using reverse_iterator = typename vector_type::const_reverse_iterator; using const_reverse_iterator = typename vector_type::const_reverse_iterator; using size_type = typename vector_type::size_type;
/// Construct an empty SetVector SetVector() = default;
/// Initialize a SetVector with a range of elements template<typename It> SetVector(It Start, It End) { insert(Start, End); }
ArrayRef<value_type> getArrayRef() const { return vector_; }
/// Clear the SetVector and return the underlying vector. Vector takeVector() { set_.clear(); return std::move(vector_); }
/// Determine if the SetVector is empty or not. bool empty() const { return vector_.empty(); }
/// Determine the number of elements in the SetVector. size_type size() const { return vector_.size(); }
/// Get an iterator to the beginning of the SetVector. iterator begin() { return vector_.begin(); }
/// Get a const_iterator to the beginning of the SetVector. const_iterator begin() const { return vector_.begin(); }
/// Get an iterator to the end of the SetVector. iterator end() { return vector_.end(); }
/// Get a const_iterator to the end of the SetVector. const_iterator end() const { return vector_.end(); }
/// Get an reverse_iterator to the end of the SetVector. reverse_iterator rbegin() { return vector_.rbegin(); }
/// Get a const_reverse_iterator to the end of the SetVector. const_reverse_iterator rbegin() const { return vector_.rbegin(); }
/// Get a reverse_iterator to the beginning of the SetVector. reverse_iterator rend() { return vector_.rend(); }
/// Get a const_reverse_iterator to the beginning of the SetVector. const_reverse_iterator rend() const { return vector_.rend(); }
/// Return the first element of the SetVector. const value_type &front() const { assert(!empty() && "Cannot call front() on empty SetVector!"); return vector_.front(); }
/// Return the last element of the SetVector. const value_type &back() const { assert(!empty() && "Cannot call back() on empty SetVector!"); return vector_.back(); }
/// Index into the SetVector. const_reference operator[](size_type n) const { assert(n < vector_.size() && "SetVector access out of range!"); return vector_[n]; }
/// Insert a new element into the SetVector. /// \returns true if the element was inserted into the SetVector. bool insert(const value_type &X) { if constexpr (canBeSmall()) if (isSmall()) { if (!llvm::is_contained(vector_, X)) { vector_.push_back(X); if (vector_.size() > N) makeBig(); return true; } return false; }
bool result = set_.insert(X).second; if (result) vector_.push_back(X); return result; }
/// Insert a range of elements into the SetVector. template<typename It> void insert(It Start, It End) { for (; Start != End; ++Start) insert(*Start); }
/// Remove an item from the set vector. bool remove(const value_type& X) { if constexpr (canBeSmall()) if (isSmall()) { typename vector_type::iterator I = find(vector_, X); if (I != vector_.end()) { vector_.erase(I); return true; } return false; }
if (set_.erase(X)) { typename vector_type::iterator I = find(vector_, X); assert(I != vector_.end() && "Corrupted SetVector instances!"); vector_.erase(I); return true; } return false; }
/// Erase a single element from the set vector. /// \returns an iterator pointing to the next element that followed the /// element erased. This is the end of the SetVector if the last element is /// erased. iterator erase(const_iterator I) { if constexpr (canBeSmall()) if (isSmall()) return vector_.erase(I);
const key_type &V = *I; assert(set_.count(V) && "Corrupted SetVector instances!"); set_.erase(V); return vector_.erase(I); }
/// Remove items from the set vector based on a predicate function. /// /// This is intended to be equivalent to the following code, if we could /// write it: /// /// \code /// V.erase(remove_if(V, P), V.end()); /// \endcode /// /// However, SetVector doesn't expose non-const iterators, making any /// algorithm like remove_if impossible to use. /// /// \returns true if any element is removed. template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) { typename vector_type::iterator I = [this, P] { if constexpr (canBeSmall()) if (isSmall()) return llvm::remove_if(vector_, P);
return llvm::remove_if(vector_, TestAndEraseFromSet<UnaryPredicate>(P, set_)); }();
if (I == vector_.end()) return false; vector_.erase(I, vector_.end()); return true; }
/// Check if the SetVector contains the given key. bool contains(const key_type &key) const { if constexpr (canBeSmall()) if (isSmall()) return is_contained(vector_, key);
return set_.find(key) != set_.end(); }
/// Count the number of elements of a given key in the SetVector. /// \returns 0 if the element is not in the SetVector, 1 if it is. size_type count(const key_type &key) const { if constexpr (canBeSmall()) if (isSmall()) return is_contained(vector_, key);
return set_.count(key); }
/// Completely clear the SetVector void clear() { set_.clear(); vector_.clear(); }
/// Remove the last element of the SetVector. void pop_back() { assert(!empty() && "Cannot remove an element from an empty SetVector!"); set_.erase(back()); vector_.pop_back(); }
[[nodiscard]] value_type pop_back_val() { value_type Ret = back(); pop_back(); return Ret; }
bool operator==(const SetVector &that) const { return vector_ == that.vector_; }
bool operator!=(const SetVector &that) const { return vector_ != that.vector_; }
/// Compute This := This u S, return whether 'This' changed. /// TODO: We should be able to use set_union from SetOperations.h, but /// SetVector interface is inconsistent with DenseSet. template <class STy> bool set_union(const STy &S) { bool Changed = false;
for (typename STy::const_iterator SI = S.begin(), SE = S.end(); SI != SE; ++SI) if (insert(*SI)) Changed = true;
return Changed; }
/// Compute This := This - B /// TODO: We should be able to use set_subtract from SetOperations.h, but /// SetVector interface is inconsistent with DenseSet. template <class STy> void set_subtract(const STy &S) { for (typename STy::const_iterator SI = S.begin(), SE = S.end(); SI != SE; ++SI) remove(*SI); }
void swap(SetVector<T, Vector, Set, N> &RHS) { set_.swap(RHS.set_); vector_.swap(RHS.vector_); }
private: /// A wrapper predicate designed for use with std::remove_if. /// /// This predicate wraps a predicate suitable for use with std::remove_if to /// call set_.erase(x) on each element which is slated for removal. template <typename UnaryPredicate> class TestAndEraseFromSet { UnaryPredicate P; set_type &set_;
public: TestAndEraseFromSet(UnaryPredicate P, set_type &set_) : P(std::move(P)), set_(set_) {}
template <typename ArgumentT> bool operator()(const ArgumentT &Arg) { if (P(Arg)) { set_.erase(Arg); return true; } return false; } };
[[nodiscard]] static constexpr bool canBeSmall() { return N != 0; }
[[nodiscard]] bool isSmall() const { return set_.empty(); }
void makeBig() { if constexpr (canBeSmall()) for (const auto &entry : vector_) set_.insert(entry); }
set_type set_; ///< The set. vector_type vector_; ///< The vector. };
/// A SetVector that performs no allocations if smaller than /// a certain size. template <typename T, unsigned N> class SmallSetVector : public SetVector<T, SmallVector<T, N>, DenseSet<T>, N> { public: SmallSetVector() = default;
/// Initialize a SmallSetVector with a range of elements template<typename It> SmallSetVector(It Start, It End) { this->insert(Start, End); } };
} // end namespace llvm
namespace std {
/// Implement std::swap in terms of SetVector swap. template <typename T, typename V, typename S, unsigned N> inline void swap(llvm::SetVector<T, V, S, N> &LHS, llvm::SetVector<T, V, S, N> &RHS) { LHS.swap(RHS); }
/// Implement std::swap in terms of SmallSetVector swap. template<typename T, unsigned N> inline void swap(llvm::SmallSetVector<T, N> &LHS, llvm::SmallSetVector<T, N> &RHS) { LHS.swap(RHS); }
} // end namespace std
#endif // LLVM_ADT_SETVECTOR_H
|