Viewing file: ImmutableSet.h (37.16 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file defines the ImutAVLTree and ImmutableSet classes. /// //===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_IMMUTABLESET_H #define LLVM_ADT_IMMUTABLESET_H
#include "llvm/ADT/DenseMap.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/IntrusiveRefCntPtr.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/iterator.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/ErrorHandling.h" #include <cassert> #include <cstdint> #include <functional> #include <iterator> #include <new> #include <vector>
namespace llvm {
//===----------------------------------------------------------------------===// // Immutable AVL-Tree Definition. //===----------------------------------------------------------------------===//
template <typename ImutInfo> class ImutAVLFactory; template <typename ImutInfo> class ImutIntervalAVLFactory; template <typename ImutInfo> class ImutAVLTreeInOrderIterator; template <typename ImutInfo> class ImutAVLTreeGenericIterator;
template <typename ImutInfo > class ImutAVLTree { public: using key_type_ref = typename ImutInfo::key_type_ref; using value_type = typename ImutInfo::value_type; using value_type_ref = typename ImutInfo::value_type_ref; using Factory = ImutAVLFactory<ImutInfo>; using iterator = ImutAVLTreeInOrderIterator<ImutInfo>;
friend class ImutAVLFactory<ImutInfo>; friend class ImutIntervalAVLFactory<ImutInfo>; friend class ImutAVLTreeGenericIterator<ImutInfo>;
//===----------------------------------------------------===// // Public Interface. //===----------------------------------------------------===//
/// Return a pointer to the left subtree. This value /// is NULL if there is no left subtree. ImutAVLTree *getLeft() const { return left; }
/// Return a pointer to the right subtree. This value is /// NULL if there is no right subtree. ImutAVLTree *getRight() const { return right; }
/// getHeight - Returns the height of the tree. A tree with no subtrees /// has a height of 1. unsigned getHeight() const { return height; }
/// getValue - Returns the data value associated with the tree node. const value_type& getValue() const { return value; }
/// find - Finds the subtree associated with the specified key value. /// This method returns NULL if no matching subtree is found. ImutAVLTree* find(key_type_ref K) { ImutAVLTree *T = this; while (T) { key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue()); if (ImutInfo::isEqual(K,CurrentKey)) return T; else if (ImutInfo::isLess(K,CurrentKey)) T = T->getLeft(); else T = T->getRight(); } return nullptr; }
/// getMaxElement - Find the subtree associated with the highest ranged /// key value. ImutAVLTree* getMaxElement() { ImutAVLTree *T = this; ImutAVLTree *Right = T->getRight(); while (Right) { T = Right; Right = T->getRight(); } return T; }
/// size - Returns the number of nodes in the tree, which includes /// both leaves and non-leaf nodes. unsigned size() const { unsigned n = 1; if (const ImutAVLTree* L = getLeft()) n += L->size(); if (const ImutAVLTree* R = getRight()) n += R->size(); return n; }
/// begin - Returns an iterator that iterates over the nodes of the tree /// in an inorder traversal. The returned iterator thus refers to the /// the tree node with the minimum data element. iterator begin() const { return iterator(this); }
/// end - Returns an iterator for the tree that denotes the end of an /// inorder traversal. iterator end() const { return iterator(); }
bool isElementEqual(value_type_ref V) const { // Compare the keys. if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()), ImutInfo::KeyOfValue(V))) return false;
// Also compare the data values. if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()), ImutInfo::DataOfValue(V))) return false;
return true; }
bool isElementEqual(const ImutAVLTree* RHS) const { return isElementEqual(RHS->getValue()); }
/// isEqual - Compares two trees for structural equality and returns true /// if they are equal. This worst case performance of this operation is // linear in the sizes of the trees. bool isEqual(const ImutAVLTree& RHS) const { if (&RHS == this) return true;
iterator LItr = begin(), LEnd = end(); iterator RItr = RHS.begin(), REnd = RHS.end();
while (LItr != LEnd && RItr != REnd) { if (&*LItr == &*RItr) { LItr.skipSubTree(); RItr.skipSubTree(); continue; }
if (!LItr->isElementEqual(&*RItr)) return false;
++LItr; ++RItr; }
return LItr == LEnd && RItr == REnd; }
/// isNotEqual - Compares two trees for structural inequality. Performance /// is the same is isEqual. bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); }
/// contains - Returns true if this tree contains a subtree (node) that /// has an data element that matches the specified key. Complexity /// is logarithmic in the size of the tree. bool contains(key_type_ref K) { return (bool) find(K); }
/// validateTree - A utility method that checks that the balancing and /// ordering invariants of the tree are satisfied. It is a recursive /// method that returns the height of the tree, which is then consumed /// by the enclosing validateTree call. External callers should ignore the /// return value. An invalid tree will cause an assertion to fire in /// a debug build. unsigned validateTree() const { unsigned HL = getLeft() ? getLeft()->validateTree() : 0; unsigned HR = getRight() ? getRight()->validateTree() : 0; (void) HL; (void) HR;
assert(getHeight() == ( HL > HR ? HL : HR ) + 1 && "Height calculation wrong");
assert((HL > HR ? HL-HR : HR-HL) <= 2 && "Balancing invariant violated");
assert((!getLeft() || ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()), ImutInfo::KeyOfValue(getValue()))) && "Value in left child is not less that current value");
assert((!getRight() || ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()), ImutInfo::KeyOfValue(getRight()->getValue()))) && "Current value is not less that value of right child");
return getHeight(); }
//===----------------------------------------------------===// // Internal values. //===----------------------------------------------------===//
private: Factory *factory; ImutAVLTree *left; ImutAVLTree *right; ImutAVLTree *prev = nullptr; ImutAVLTree *next = nullptr;
unsigned height : 28; bool IsMutable : 1; bool IsDigestCached : 1; bool IsCanonicalized : 1;
value_type value; uint32_t digest = 0; uint32_t refCount = 0;
//===----------------------------------------------------===// // Internal methods (node manipulation; used by Factory). //===----------------------------------------------------===//
private: /// ImutAVLTree - Internal constructor that is only called by /// ImutAVLFactory. ImutAVLTree(Factory *f, ImutAVLTree* l, ImutAVLTree* r, value_type_ref v, unsigned height) : factory(f), left(l), right(r), height(height), IsMutable(true), IsDigestCached(false), IsCanonicalized(false), value(v) { if (left) left->retain(); if (right) right->retain(); }
/// isMutable - Returns true if the left and right subtree references /// (as well as height) can be changed. If this method returns false, /// the tree is truly immutable. Trees returned from an ImutAVLFactory /// object should always have this method return true. Further, if this /// method returns false for an instance of ImutAVLTree, all subtrees /// will also have this method return false. The converse is not true. bool isMutable() const { return IsMutable; }
/// hasCachedDigest - Returns true if the digest for this tree is cached. /// This can only be true if the tree is immutable. bool hasCachedDigest() const { return IsDigestCached; }
//===----------------------------------------------------===// // Mutating operations. A tree root can be manipulated as // long as its reference has not "escaped" from internal // methods of a factory object (see below). When a tree // pointer is externally viewable by client code, the // internal "mutable bit" is cleared to mark the tree // immutable. Note that a tree that still has its mutable // bit set may have children (subtrees) that are themselves // immutable. //===----------------------------------------------------===//
/// markImmutable - Clears the mutable flag for a tree. After this happens, /// it is an error to call setLeft(), setRight(), and setHeight(). void markImmutable() { assert(isMutable() && "Mutable flag already removed."); IsMutable = false; }
/// markedCachedDigest - Clears the NoCachedDigest flag for a tree. void markedCachedDigest() { assert(!hasCachedDigest() && "NoCachedDigest flag already removed."); IsDigestCached = true; }
/// setHeight - Changes the height of the tree. Used internally by /// ImutAVLFactory. void setHeight(unsigned h) { assert(isMutable() && "Only a mutable tree can have its height changed."); height = h; }
static uint32_t computeDigest(ImutAVLTree *L, ImutAVLTree *R, value_type_ref V) { uint32_t digest = 0;
if (L) digest += L->computeDigest();
// Compute digest of stored data. FoldingSetNodeID ID; ImutInfo::Profile(ID,V); digest += ID.ComputeHash();
if (R) digest += R->computeDigest();
return digest; }
uint32_t computeDigest() { // Check the lowest bit to determine if digest has actually been // pre-computed. if (hasCachedDigest()) return digest;
uint32_t X = computeDigest(getLeft(), getRight(), getValue()); digest = X; markedCachedDigest(); return X; }
//===----------------------------------------------------===// // Reference count operations. //===----------------------------------------------------===//
public: void retain() { ++refCount; }
void release() { assert(refCount > 0); if (--refCount == 0) destroy(); }
void destroy() { if (left) left->release(); if (right) right->release(); if (IsCanonicalized) { if (next) next->prev = prev;
if (prev) prev->next = next; else factory->Cache[factory->maskCacheIndex(computeDigest())] = next; }
// We need to clear the mutability bit in case we are // destroying the node as part of a sweep in ImutAVLFactory::recoverNodes(). IsMutable = false; factory->freeNodes.push_back(this); } };
template <typename ImutInfo> struct IntrusiveRefCntPtrInfo<ImutAVLTree<ImutInfo>> { static void retain(ImutAVLTree<ImutInfo> *Tree) { Tree->retain(); } static void release(ImutAVLTree<ImutInfo> *Tree) { Tree->release(); } };
//===----------------------------------------------------------------------===// // Immutable AVL-Tree Factory class. //===----------------------------------------------------------------------===//
template <typename ImutInfo > class ImutAVLFactory { friend class ImutAVLTree<ImutInfo>;
using TreeTy = ImutAVLTree<ImutInfo>; using value_type_ref = typename TreeTy::value_type_ref; using key_type_ref = typename TreeTy::key_type_ref; using CacheTy = DenseMap<unsigned, TreeTy*>;
CacheTy Cache; uintptr_t Allocator; std::vector<TreeTy*> createdNodes; std::vector<TreeTy*> freeNodes;
bool ownsAllocator() const { return (Allocator & 0x1) == 0; }
BumpPtrAllocator& getAllocator() const { return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1); }
//===--------------------------------------------------===// // Public interface. //===--------------------------------------------------===//
public: ImutAVLFactory() : Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {}
ImutAVLFactory(BumpPtrAllocator& Alloc) : Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {}
~ImutAVLFactory() { if (ownsAllocator()) delete &getAllocator(); }
TreeTy* add(TreeTy* T, value_type_ref V) { T = add_internal(V,T); markImmutable(T); recoverNodes(); return T; }
TreeTy* remove(TreeTy* T, key_type_ref V) { T = remove_internal(V,T); markImmutable(T); recoverNodes(); return T; }
TreeTy* getEmptyTree() const { return nullptr; }
protected: //===--------------------------------------------------===// // A bunch of quick helper functions used for reasoning // about the properties of trees and their children. // These have succinct names so that the balancing code // is as terse (and readable) as possible. //===--------------------------------------------------===//
bool isEmpty(TreeTy* T) const { return !T; } unsigned getHeight(TreeTy* T) const { return T ? T->getHeight() : 0; } TreeTy* getLeft(TreeTy* T) const { return T->getLeft(); } TreeTy* getRight(TreeTy* T) const { return T->getRight(); } value_type_ref getValue(TreeTy* T) const { return T->value; }
// Make sure the index is not the Tombstone or Entry key of the DenseMap. static unsigned maskCacheIndex(unsigned I) { return (I & ~0x02); }
unsigned incrementHeight(TreeTy* L, TreeTy* R) const { unsigned hl = getHeight(L); unsigned hr = getHeight(R); return (hl > hr ? hl : hr) + 1; }
static bool compareTreeWithSection(TreeTy* T, typename TreeTy::iterator& TI, typename TreeTy::iterator& TE) { typename TreeTy::iterator I = T->begin(), E = T->end(); for ( ; I!=E ; ++I, ++TI) { if (TI == TE || !I->isElementEqual(&*TI)) return false; } return true; }
//===--------------------------------------------------===// // "createNode" is used to generate new tree roots that link // to other trees. The function may also simply move links // in an existing root if that root is still marked mutable. // This is necessary because otherwise our balancing code // would leak memory as it would create nodes that are // then discarded later before the finished tree is // returned to the caller. //===--------------------------------------------------===//
TreeTy* createNode(TreeTy* L, value_type_ref V, TreeTy* R) { BumpPtrAllocator& A = getAllocator(); TreeTy* T; if (!freeNodes.empty()) { T = freeNodes.back(); freeNodes.pop_back(); assert(T != L); assert(T != R); } else { T = (TreeTy*) A.Allocate<TreeTy>(); } new (T) TreeTy(this, L, R, V, incrementHeight(L,R)); createdNodes.push_back(T); return T; }
TreeTy* createNode(TreeTy* newLeft, TreeTy* oldTree, TreeTy* newRight) { return createNode(newLeft, getValue(oldTree), newRight); }
void recoverNodes() { for (unsigned i = 0, n = createdNodes.size(); i < n; ++i) { TreeTy *N = createdNodes[i]; if (N->isMutable() && N->refCount == 0) N->destroy(); } createdNodes.clear(); }
/// balanceTree - Used by add_internal and remove_internal to /// balance a newly created tree. TreeTy* balanceTree(TreeTy* L, value_type_ref V, TreeTy* R) { unsigned hl = getHeight(L); unsigned hr = getHeight(R);
if (hl > hr + 2) { assert(!isEmpty(L) && "Left tree cannot be empty to have a height >= 2");
TreeTy *LL = getLeft(L); TreeTy *LR = getRight(L);
if (getHeight(LL) >= getHeight(LR)) return createNode(LL, L, createNode(LR,V,R));
assert(!isEmpty(LR) && "LR cannot be empty because it has a height >= 1");
TreeTy *LRL = getLeft(LR); TreeTy *LRR = getRight(LR);
return createNode(createNode(LL,L,LRL), LR, createNode(LRR,V,R)); }
if (hr > hl + 2) { assert(!isEmpty(R) && "Right tree cannot be empty to have a height >= 2");
TreeTy *RL = getLeft(R); TreeTy *RR = getRight(R);
if (getHeight(RR) >= getHeight(RL)) return createNode(createNode(L,V,RL), R, RR);
assert(!isEmpty(RL) && "RL cannot be empty because it has a height >= 1");
TreeTy *RLL = getLeft(RL); TreeTy *RLR = getRight(RL);
return createNode(createNode(L,V,RLL), RL, createNode(RLR,R,RR)); }
return createNode(L,V,R); }
/// add_internal - Creates a new tree that includes the specified /// data and the data from the original tree. If the original tree /// already contained the data item, the original tree is returned. TreeTy* add_internal(value_type_ref V, TreeTy* T) { if (isEmpty(T)) return createNode(T, V, T); assert(!T->isMutable());
key_type_ref K = ImutInfo::KeyOfValue(V); key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
if (ImutInfo::isEqual(K,KCurrent)) return createNode(getLeft(T), V, getRight(T)); else if (ImutInfo::isLess(K,KCurrent)) return balanceTree(add_internal(V, getLeft(T)), getValue(T), getRight(T)); else return balanceTree(getLeft(T), getValue(T), add_internal(V, getRight(T))); }
/// remove_internal - Creates a new tree that includes all the data /// from the original tree except the specified data. If the /// specified data did not exist in the original tree, the original /// tree is returned. TreeTy* remove_internal(key_type_ref K, TreeTy* T) { if (isEmpty(T)) return T;
assert(!T->isMutable());
key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
if (ImutInfo::isEqual(K,KCurrent)) { return combineTrees(getLeft(T), getRight(T)); } else if (ImutInfo::isLess(K,KCurrent)) { return balanceTree(remove_internal(K, getLeft(T)), getValue(T), getRight(T)); } else { return balanceTree(getLeft(T), getValue(T), remove_internal(K, getRight(T))); } }
TreeTy* combineTrees(TreeTy* L, TreeTy* R) { if (isEmpty(L)) return R; if (isEmpty(R)) return L; TreeTy* OldNode; TreeTy* newRight = removeMinBinding(R,OldNode); return balanceTree(L, getValue(OldNode), newRight); }
TreeTy* removeMinBinding(TreeTy* T, TreeTy*& Noderemoved) { assert(!isEmpty(T)); if (isEmpty(getLeft(T))) { Noderemoved = T; return getRight(T); } return balanceTree(removeMinBinding(getLeft(T), Noderemoved), getValue(T), getRight(T)); }
/// markImmutable - Clears the mutable bits of a root and all of its /// descendants. void markImmutable(TreeTy* T) { if (!T || !T->isMutable()) return; T->markImmutable(); markImmutable(getLeft(T)); markImmutable(getRight(T)); }
public: TreeTy *getCanonicalTree(TreeTy *TNew) { if (!TNew) return nullptr;
if (TNew->IsCanonicalized) return TNew;
// Search the hashtable for another tree with the same digest, and // if find a collision compare those trees by their contents. unsigned digest = TNew->computeDigest(); TreeTy *&entry = Cache[maskCacheIndex(digest)]; do { if (!entry) break; for (TreeTy *T = entry ; T != nullptr; T = T->next) { // Compare the Contents('T') with Contents('TNew') typename TreeTy::iterator TI = T->begin(), TE = T->end(); if (!compareTreeWithSection(TNew, TI, TE)) continue; if (TI != TE) continue; // T has more contents than TNew. // Trees did match! Return 'T'. if (TNew->refCount == 0) TNew->destroy(); return T; } entry->prev = TNew; TNew->next = entry; } while (false);
entry = TNew; TNew->IsCanonicalized = true; return TNew; } };
//===----------------------------------------------------------------------===// // Immutable AVL-Tree Iterators. //===----------------------------------------------------------------------===//
template <typename ImutInfo> class ImutAVLTreeGenericIterator { SmallVector<uintptr_t,20> stack;
public: using iterator_category = std::bidirectional_iterator_tag; using value_type = ImutAVLTree<ImutInfo>; using difference_type = std::ptrdiff_t; using pointer = value_type *; using reference = value_type &;
enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3, Flags=0x3 };
using TreeTy = ImutAVLTree<ImutInfo>;
ImutAVLTreeGenericIterator() = default; ImutAVLTreeGenericIterator(const TreeTy *Root) { if (Root) stack.push_back(reinterpret_cast<uintptr_t>(Root)); }
TreeTy &operator*() const { assert(!stack.empty()); return *reinterpret_cast<TreeTy *>(stack.back() & ~Flags); } TreeTy *operator->() const { return &*this; }
uintptr_t getVisitState() const { assert(!stack.empty()); return stack.back() & Flags; }
bool atEnd() const { return stack.empty(); }
bool atBeginning() const { return stack.size() == 1 && getVisitState() == VisitedNone; }
void skipToParent() { assert(!stack.empty()); stack.pop_back(); if (stack.empty()) return; switch (getVisitState()) { case VisitedNone: stack.back() |= VisitedLeft; break; case VisitedLeft: stack.back() |= VisitedRight; break; default: llvm_unreachable("Unreachable."); } }
bool operator==(const ImutAVLTreeGenericIterator &x) const { return stack == x.stack; }
bool operator!=(const ImutAVLTreeGenericIterator &x) const { return !(*this == x); }
ImutAVLTreeGenericIterator &operator++() { assert(!stack.empty()); TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags); assert(Current); switch (getVisitState()) { case VisitedNone: if (TreeTy* L = Current->getLeft()) stack.push_back(reinterpret_cast<uintptr_t>(L)); else stack.back() |= VisitedLeft; break; case VisitedLeft: if (TreeTy* R = Current->getRight()) stack.push_back(reinterpret_cast<uintptr_t>(R)); else stack.back() |= VisitedRight; break; case VisitedRight: skipToParent(); break; default: llvm_unreachable("Unreachable."); } return *this; }
ImutAVLTreeGenericIterator &operator--() { assert(!stack.empty()); TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags); assert(Current); switch (getVisitState()) { case VisitedNone: stack.pop_back(); break; case VisitedLeft: stack.back() &= ~Flags; // Set state to "VisitedNone." if (TreeTy* L = Current->getLeft()) stack.push_back(reinterpret_cast<uintptr_t>(L) | VisitedRight); break; case VisitedRight: stack.back() &= ~Flags; stack.back() |= VisitedLeft; if (TreeTy* R = Current->getRight()) stack.push_back(reinterpret_cast<uintptr_t>(R) | VisitedRight); break; default: llvm_unreachable("Unreachable."); } return *this; } };
template <typename ImutInfo> class ImutAVLTreeInOrderIterator { using InternalIteratorTy = ImutAVLTreeGenericIterator<ImutInfo>;
InternalIteratorTy InternalItr;
public: using iterator_category = std::bidirectional_iterator_tag; using value_type = ImutAVLTree<ImutInfo>; using difference_type = std::ptrdiff_t; using pointer = value_type *; using reference = value_type &;
using TreeTy = ImutAVLTree<ImutInfo>;
ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) { if (Root) ++*this; // Advance to first element. }
ImutAVLTreeInOrderIterator() : InternalItr() {}
bool operator==(const ImutAVLTreeInOrderIterator &x) const { return InternalItr == x.InternalItr; }
bool operator!=(const ImutAVLTreeInOrderIterator &x) const { return !(*this == x); }
TreeTy &operator*() const { return *InternalItr; } TreeTy *operator->() const { return &*InternalItr; }
ImutAVLTreeInOrderIterator &operator++() { do ++InternalItr; while (!InternalItr.atEnd() && InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
return *this; }
ImutAVLTreeInOrderIterator &operator--() { do --InternalItr; while (!InternalItr.atBeginning() && InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
return *this; }
void skipSubTree() { InternalItr.skipToParent();
while (!InternalItr.atEnd() && InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft) ++InternalItr; } };
/// Generic iterator that wraps a T::TreeTy::iterator and exposes /// iterator::getValue() on dereference. template <typename T> struct ImutAVLValueIterator : iterator_adaptor_base< ImutAVLValueIterator<T>, typename T::TreeTy::iterator, typename std::iterator_traits< typename T::TreeTy::iterator>::iterator_category, const typename T::value_type> { ImutAVLValueIterator() = default; explicit ImutAVLValueIterator(typename T::TreeTy *Tree) : ImutAVLValueIterator::iterator_adaptor_base(Tree) {}
typename ImutAVLValueIterator::reference operator*() const { return this->I->getValue(); } };
//===----------------------------------------------------------------------===// // Trait classes for Profile information. //===----------------------------------------------------------------------===//
/// Generic profile template. The default behavior is to invoke the /// profile method of an object. Specializations for primitive integers /// and generic handling of pointers is done below. template <typename T> struct ImutProfileInfo { using value_type = const T; using value_type_ref = const T&;
static void Profile(FoldingSetNodeID &ID, value_type_ref X) { FoldingSetTrait<T>::Profile(X,ID); } };
/// Profile traits for integers. template <typename T> struct ImutProfileInteger { using value_type = const T; using value_type_ref = const T&;
static void Profile(FoldingSetNodeID &ID, value_type_ref X) { ID.AddInteger(X); } };
#define PROFILE_INTEGER_INFO(X)\ template<> struct ImutProfileInfo<X> : ImutProfileInteger<X> {};
PROFILE_INTEGER_INFO(char) PROFILE_INTEGER_INFO(unsigned char) PROFILE_INTEGER_INFO(short) PROFILE_INTEGER_INFO(unsigned short) PROFILE_INTEGER_INFO(unsigned) PROFILE_INTEGER_INFO(signed) PROFILE_INTEGER_INFO(long) PROFILE_INTEGER_INFO(unsigned long) PROFILE_INTEGER_INFO(long long) PROFILE_INTEGER_INFO(unsigned long long)
#undef PROFILE_INTEGER_INFO
/// Profile traits for booleans. template <> struct ImutProfileInfo<bool> { using value_type = const bool; using value_type_ref = const bool&;
static void Profile(FoldingSetNodeID &ID, value_type_ref X) { ID.AddBoolean(X); } };
/// Generic profile trait for pointer types. We treat pointers as /// references to unique objects. template <typename T> struct ImutProfileInfo<T*> { using value_type = const T*; using value_type_ref = value_type;
static void Profile(FoldingSetNodeID &ID, value_type_ref X) { ID.AddPointer(X); } };
//===----------------------------------------------------------------------===// // Trait classes that contain element comparison operators and type // definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap. These // inherit from the profile traits (ImutProfileInfo) to include operations // for element profiling. //===----------------------------------------------------------------------===//
/// ImutContainerInfo - Generic definition of comparison operations for /// elements of immutable containers that defaults to using /// std::equal_to<> and std::less<> to perform comparison of elements. template <typename T> struct ImutContainerInfo : public ImutProfileInfo<T> { using value_type = typename ImutProfileInfo<T>::value_type; using value_type_ref = typename ImutProfileInfo<T>::value_type_ref; using key_type = value_type; using key_type_ref = value_type_ref; using data_type = bool; using data_type_ref = bool;
static key_type_ref KeyOfValue(value_type_ref D) { return D; } static data_type_ref DataOfValue(value_type_ref) { return true; }
static bool isEqual(key_type_ref LHS, key_type_ref RHS) { return std::equal_to<key_type>()(LHS,RHS); }
static bool isLess(key_type_ref LHS, key_type_ref RHS) { return std::less<key_type>()(LHS,RHS); }
static bool isDataEqual(data_type_ref, data_type_ref) { return true; } };
/// ImutContainerInfo - Specialization for pointer values to treat pointers /// as references to unique objects. Pointers are thus compared by /// their addresses. template <typename T> struct ImutContainerInfo<T*> : public ImutProfileInfo<T*> { using value_type = typename ImutProfileInfo<T*>::value_type; using value_type_ref = typename ImutProfileInfo<T*>::value_type_ref; using key_type = value_type; using key_type_ref = value_type_ref; using data_type = bool; using data_type_ref = bool;
static key_type_ref KeyOfValue(value_type_ref D) { return D; } static data_type_ref DataOfValue(value_type_ref) { return true; }
static bool isEqual(key_type_ref LHS, key_type_ref RHS) { return LHS == RHS; }
static bool isLess(key_type_ref LHS, key_type_ref RHS) { return LHS < RHS; }
static bool isDataEqual(data_type_ref, data_type_ref) { return true; } };
//===----------------------------------------------------------------------===// // Immutable Set //===----------------------------------------------------------------------===//
template <typename ValT, typename ValInfo = ImutContainerInfo<ValT>> class ImmutableSet { public: using value_type = typename ValInfo::value_type; using value_type_ref = typename ValInfo::value_type_ref; using TreeTy = ImutAVLTree<ValInfo>;
private: IntrusiveRefCntPtr<TreeTy> Root;
public: /// Constructs a set from a pointer to a tree root. In general one /// should use a Factory object to create sets instead of directly /// invoking the constructor, but there are cases where make this /// constructor public is useful. explicit ImmutableSet(TreeTy *R) : Root(R) {}
class Factory { typename TreeTy::Factory F; const bool Canonicalize;
public: Factory(bool canonicalize = true) : Canonicalize(canonicalize) {}
Factory(BumpPtrAllocator& Alloc, bool canonicalize = true) : F(Alloc), Canonicalize(canonicalize) {}
Factory(const Factory& RHS) = delete; void operator=(const Factory& RHS) = delete;
/// getEmptySet - Returns an immutable set that contains no elements. ImmutableSet getEmptySet() { return ImmutableSet(F.getEmptyTree()); }
/// add - Creates a new immutable set that contains all of the values /// of the original set with the addition of the specified value. If /// the original set already included the value, then the original set is /// returned and no memory is allocated. The time and space complexity /// of this operation is logarithmic in the size of the original set. /// The memory allocated to represent the set is released when the /// factory object that created the set is destroyed. [[nodiscard]] ImmutableSet add(ImmutableSet Old, value_type_ref V) { TreeTy *NewT = F.add(Old.Root.get(), V); return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT); }
/// remove - Creates a new immutable set that contains all of the values /// of the original set with the exception of the specified value. If /// the original set did not contain the value, the original set is /// returned and no memory is allocated. The time and space complexity /// of this operation is logarithmic in the size of the original set. /// The memory allocated to represent the set is released when the /// factory object that created the set is destroyed. [[nodiscard]] ImmutableSet remove(ImmutableSet Old, value_type_ref V) { TreeTy *NewT = F.remove(Old.Root.get(), V); return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT); }
BumpPtrAllocator& getAllocator() { return F.getAllocator(); }
typename TreeTy::Factory *getTreeFactory() const { return const_cast<typename TreeTy::Factory *>(&F); } };
friend class Factory;
/// Returns true if the set contains the specified value. bool contains(value_type_ref V) const { return Root ? Root->contains(V) : false; }
bool operator==(const ImmutableSet &RHS) const { return Root && RHS.Root ? Root->isEqual(*RHS.Root.get()) : Root == RHS.Root; }
bool operator!=(const ImmutableSet &RHS) const { return Root && RHS.Root ? Root->isNotEqual(*RHS.Root.get()) : Root != RHS.Root; }
TreeTy *getRoot() { if (Root) { Root->retain(); } return Root.get(); }
TreeTy *getRootWithoutRetain() const { return Root.get(); }
/// isEmpty - Return true if the set contains no elements. bool isEmpty() const { return !Root; }
/// isSingleton - Return true if the set contains exactly one element. /// This method runs in constant time. bool isSingleton() const { return getHeight() == 1; }
//===--------------------------------------------------===// // Iterators. //===--------------------------------------------------===//
using iterator = ImutAVLValueIterator<ImmutableSet>;
iterator begin() const { return iterator(Root.get()); } iterator end() const { return iterator(); }
//===--------------------------------------------------===// // Utility methods. //===--------------------------------------------------===//
unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
static void Profile(FoldingSetNodeID &ID, const ImmutableSet &S) { ID.AddPointer(S.Root.get()); }
void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); }
//===--------------------------------------------------===// // For testing. //===--------------------------------------------------===//
void validateTree() const { if (Root) Root->validateTree(); } };
// NOTE: This may some day replace the current ImmutableSet. template <typename ValT, typename ValInfo = ImutContainerInfo<ValT>> class ImmutableSetRef { public: using value_type = typename ValInfo::value_type; using value_type_ref = typename ValInfo::value_type_ref; using TreeTy = ImutAVLTree<ValInfo>; using FactoryTy = typename TreeTy::Factory;
private: IntrusiveRefCntPtr<TreeTy> Root; FactoryTy *Factory;
public: /// Constructs a set from a pointer to a tree root. In general one /// should use a Factory object to create sets instead of directly /// invoking the constructor, but there are cases where make this /// constructor public is useful. ImmutableSetRef(TreeTy *R, FactoryTy *F) : Root(R), Factory(F) {}
static ImmutableSetRef getEmptySet(FactoryTy *F) { return ImmutableSetRef(0, F); }
ImmutableSetRef add(value_type_ref V) { return ImmutableSetRef(Factory->add(Root.get(), V), Factory); }
ImmutableSetRef remove(value_type_ref V) { return ImmutableSetRef(Factory->remove(Root.get(), V), Factory); }
/// Returns true if the set contains the specified value. bool contains(value_type_ref V) const { return Root ? Root->contains(V) : false; }
ImmutableSet<ValT> asImmutableSet(bool canonicalize = true) const { return ImmutableSet<ValT>( canonicalize ? Factory->getCanonicalTree(Root.get()) : Root.get()); }
TreeTy *getRootWithoutRetain() const { return Root.get(); }
bool operator==(const ImmutableSetRef &RHS) const { return Root && RHS.Root ? Root->isEqual(*RHS.Root.get()) : Root == RHS.Root; }
bool operator!=(const ImmutableSetRef &RHS) const { return Root && RHS.Root ? Root->isNotEqual(*RHS.Root.get()) : Root != RHS.Root; }
/// isEmpty - Return true if the set contains no elements. bool isEmpty() const { return !Root; }
/// isSingleton - Return true if the set contains exactly one element. /// This method runs in constant time. bool isSingleton() const { return getHeight() == 1; }
//===--------------------------------------------------===// // Iterators. //===--------------------------------------------------===//
using iterator = ImutAVLValueIterator<ImmutableSetRef>;
iterator begin() const { return iterator(Root.get()); } iterator end() const { return iterator(); }
//===--------------------------------------------------===// // Utility methods. //===--------------------------------------------------===//
unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
static void Profile(FoldingSetNodeID &ID, const ImmutableSetRef &S) { ID.AddPointer(S.Root.get()); }
void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); }
//===--------------------------------------------------===// // For testing. //===--------------------------------------------------===//
void validateTree() const { if (Root) Root->validateTree(); } };
} // end namespace llvm
#endif // LLVM_ADT_IMMUTABLESET_H
|