Viewing file: FoldingSet.h (32.08 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- llvm/ADT/FoldingSet.h - Uniquing Hash Set ----------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file defines a hash set that can be used to remove duplication of nodes /// in a graph. This code was originally created by Chris Lattner for use with /// SelectionDAGCSEMap, but was isolated to provide use across the llvm code /// set. //===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_FOLDINGSET_H #define LLVM_ADT_FOLDINGSET_H
#include "llvm/ADT/Hashing.h" #include "llvm/ADT/STLForwardCompat.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/iterator.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/xxhash.h" #include <cassert> #include <cstddef> #include <cstdint> #include <type_traits> #include <utility>
namespace llvm {
/// This folding set used for two purposes: /// 1. Given information about a node we want to create, look up the unique /// instance of the node in the set. If the node already exists, return /// it, otherwise return the bucket it should be inserted into. /// 2. Given a node that has already been created, remove it from the set. /// /// This class is implemented as a single-link chained hash table, where the /// "buckets" are actually the nodes themselves (the next pointer is in the /// node). The last node points back to the bucket to simplify node removal. /// /// Any node that is to be included in the folding set must be a subclass of /// FoldingSetNode. The node class must also define a Profile method used to /// establish the unique bits of data for the node. The Profile method is /// passed a FoldingSetNodeID object which is used to gather the bits. Just /// call one of the Add* functions defined in the FoldingSetBase::NodeID class. /// NOTE: That the folding set does not own the nodes and it is the /// responsibility of the user to dispose of the nodes. /// /// Eg. /// class MyNode : public FoldingSetNode { /// private: /// std::string Name; /// unsigned Value; /// public: /// MyNode(const char *N, unsigned V) : Name(N), Value(V) {} /// ... /// void Profile(FoldingSetNodeID &ID) const { /// ID.AddString(Name); /// ID.AddInteger(Value); /// } /// ... /// }; /// /// To define the folding set itself use the FoldingSet template; /// /// Eg. /// FoldingSet<MyNode> MyFoldingSet; /// /// Four public methods are available to manipulate the folding set; /// /// 1) If you have an existing node that you want add to the set but unsure /// that the node might already exist then call; /// /// MyNode *M = MyFoldingSet.GetOrInsertNode(N); /// /// If The result is equal to the input then the node has been inserted. /// Otherwise, the result is the node existing in the folding set, and the /// input can be discarded (use the result instead.) /// /// 2) If you are ready to construct a node but want to check if it already /// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to /// check; /// /// FoldingSetNodeID ID; /// ID.AddString(Name); /// ID.AddInteger(Value); /// void *InsertPoint; /// /// MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint); /// /// If found then M will be non-NULL, else InsertPoint will point to where it /// should be inserted using InsertNode. /// /// 3) If you get a NULL result from FindNodeOrInsertPos then you can insert a /// new node with InsertNode; /// /// MyFoldingSet.InsertNode(M, InsertPoint); /// /// 4) Finally, if you want to remove a node from the folding set call; /// /// bool WasRemoved = MyFoldingSet.RemoveNode(M); /// /// The result indicates whether the node existed in the folding set.
class FoldingSetNodeID; class StringRef;
//===----------------------------------------------------------------------===// /// FoldingSetBase - Implements the folding set functionality. The main /// structure is an array of buckets. Each bucket is indexed by the hash of /// the nodes it contains. The bucket itself points to the nodes contained /// in the bucket via a singly linked list. The last node in the list points /// back to the bucket to facilitate node removal. /// class FoldingSetBase { protected: /// Buckets - Array of bucket chains. void **Buckets;
/// NumBuckets - Length of the Buckets array. Always a power of 2. unsigned NumBuckets;
/// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes /// is greater than twice the number of buckets. unsigned NumNodes;
explicit FoldingSetBase(unsigned Log2InitSize = 6); FoldingSetBase(FoldingSetBase &&Arg); FoldingSetBase &operator=(FoldingSetBase &&RHS); ~FoldingSetBase();
public: //===--------------------------------------------------------------------===// /// Node - This class is used to maintain the singly linked bucket list in /// a folding set. class Node { private: // NextInFoldingSetBucket - next link in the bucket list. void *NextInFoldingSetBucket = nullptr;
public: Node() = default;
// Accessors void *getNextInBucket() const { return NextInFoldingSetBucket; } void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; } };
/// clear - Remove all nodes from the folding set. void clear();
/// size - Returns the number of nodes in the folding set. unsigned size() const { return NumNodes; }
/// empty - Returns true if there are no nodes in the folding set. bool empty() const { return NumNodes == 0; }
/// capacity - Returns the number of nodes permitted in the folding set /// before a rebucket operation is performed. unsigned capacity() { // We allow a load factor of up to 2.0, // so that means our capacity is NumBuckets * 2 return NumBuckets * 2; }
protected: /// Functions provided by the derived class to compute folding properties. /// This is effectively a vtable for FoldingSetBase, except that we don't /// actually store a pointer to it in the object. struct FoldingSetInfo { /// GetNodeProfile - Instantiations of the FoldingSet template implement /// this function to gather data bits for the given node. void (*GetNodeProfile)(const FoldingSetBase *Self, Node *N, FoldingSetNodeID &ID);
/// NodeEquals - Instantiations of the FoldingSet template implement /// this function to compare the given node with the given ID. bool (*NodeEquals)(const FoldingSetBase *Self, Node *N, const FoldingSetNodeID &ID, unsigned IDHash, FoldingSetNodeID &TempID);
/// ComputeNodeHash - Instantiations of the FoldingSet template implement /// this function to compute a hash value for the given node. unsigned (*ComputeNodeHash)(const FoldingSetBase *Self, Node *N, FoldingSetNodeID &TempID); };
private: /// GrowHashTable - Double the size of the hash table and rehash everything. void GrowHashTable(const FoldingSetInfo &Info);
/// GrowBucketCount - resize the hash table and rehash everything. /// NewBucketCount must be a power of two, and must be greater than the old /// bucket count. void GrowBucketCount(unsigned NewBucketCount, const FoldingSetInfo &Info);
protected: // The below methods are protected to encourage subclasses to provide a more // type-safe API.
/// reserve - Increase the number of buckets such that adding the /// EltCount-th node won't cause a rebucket operation. reserve is permitted /// to allocate more space than requested by EltCount. void reserve(unsigned EltCount, const FoldingSetInfo &Info);
/// RemoveNode - Remove a node from the folding set, returning true if one /// was removed or false if the node was not in the folding set. bool RemoveNode(Node *N);
/// GetOrInsertNode - If there is an existing simple Node exactly /// equal to the specified node, return it. Otherwise, insert 'N' and return /// it instead. Node *GetOrInsertNode(Node *N, const FoldingSetInfo &Info);
/// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, /// return it. If not, return the insertion token that will make insertion /// faster. Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos, const FoldingSetInfo &Info);
/// InsertNode - Insert the specified node into the folding set, knowing that /// it is not already in the folding set. InsertPos must be obtained from /// FindNodeOrInsertPos. void InsertNode(Node *N, void *InsertPos, const FoldingSetInfo &Info); };
//===----------------------------------------------------------------------===//
/// DefaultFoldingSetTrait - This class provides default implementations /// for FoldingSetTrait implementations. template<typename T> struct DefaultFoldingSetTrait { static void Profile(const T &X, FoldingSetNodeID &ID) { X.Profile(ID); } static void Profile(T &X, FoldingSetNodeID &ID) { X.Profile(ID); }
// Equals - Test if the profile for X would match ID, using TempID // to compute a temporary ID if necessary. The default implementation // just calls Profile and does a regular comparison. Implementations // can override this to provide more efficient implementations. static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash, FoldingSetNodeID &TempID);
// ComputeHash - Compute a hash value for X, using TempID to // compute a temporary ID if necessary. The default implementation // just calls Profile and does a regular hash computation. // Implementations can override this to provide more efficient // implementations. static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID); };
/// FoldingSetTrait - This trait class is used to define behavior of how /// to "profile" (in the FoldingSet parlance) an object of a given type. /// The default behavior is to invoke a 'Profile' method on an object, but /// through template specialization the behavior can be tailored for specific /// types. Combined with the FoldingSetNodeWrapper class, one can add objects /// to FoldingSets that were not originally designed to have that behavior. template <typename T, typename Enable = void> struct FoldingSetTrait : public DefaultFoldingSetTrait<T> {};
/// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but /// for ContextualFoldingSets. template<typename T, typename Ctx> struct DefaultContextualFoldingSetTrait { static void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) { X.Profile(ID, Context); }
static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash, FoldingSetNodeID &TempID, Ctx Context); static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID, Ctx Context); };
/// ContextualFoldingSetTrait - Like FoldingSetTrait, but for /// ContextualFoldingSets. template<typename T, typename Ctx> struct ContextualFoldingSetTrait : public DefaultContextualFoldingSetTrait<T, Ctx> {};
//===--------------------------------------------------------------------===// /// FoldingSetNodeIDRef - This class describes a reference to an interned /// FoldingSetNodeID, which can be a useful to store node id data rather /// than using plain FoldingSetNodeIDs, since the 32-element SmallVector /// is often much larger than necessary, and the possibility of heap /// allocation means it requires a non-trivial destructor call. class FoldingSetNodeIDRef { const unsigned *Data = nullptr; size_t Size = 0;
public: FoldingSetNodeIDRef() = default; FoldingSetNodeIDRef(const unsigned *D, size_t S) : Data(D), Size(S) {}
// Compute a strong hash value used to lookup the node in the FoldingSetBase. // The hash value is not guaranteed to be deterministic across processes. unsigned ComputeHash() const { return static_cast<unsigned>(hash_combine_range(Data, Data + Size)); }
// Compute a deterministic hash value across processes that is suitable for // on-disk serialization. unsigned computeStableHash() const { return static_cast<unsigned>(xxh3_64bits(ArrayRef( reinterpret_cast<const uint8_t *>(Data), sizeof(unsigned) * Size))); }
bool operator==(FoldingSetNodeIDRef) const;
bool operator!=(FoldingSetNodeIDRef RHS) const { return !(*this == RHS); }
/// Used to compare the "ordering" of two nodes as defined by the /// profiled bits and their ordering defined by memcmp(). bool operator<(FoldingSetNodeIDRef) const;
const unsigned *getData() const { return Data; } size_t getSize() const { return Size; } };
//===--------------------------------------------------------------------===// /// FoldingSetNodeID - This class is used to gather all the unique data bits of /// a node. When all the bits are gathered this class is used to produce a /// hash value for the node. class FoldingSetNodeID { /// Bits - Vector of all the data bits that make the node unique. /// Use a SmallVector to avoid a heap allocation in the common case. SmallVector<unsigned, 32> Bits;
public: FoldingSetNodeID() = default;
FoldingSetNodeID(FoldingSetNodeIDRef Ref) : Bits(Ref.getData(), Ref.getData() + Ref.getSize()) {}
/// Add* - Add various data types to Bit data. void AddPointer(const void *Ptr) { // Note: this adds pointers to the hash using sizes and endianness that // depend on the host. It doesn't matter, however, because hashing on // pointer values is inherently unstable. Nothing should depend on the // ordering of nodes in the folding set. static_assert(sizeof(uintptr_t) <= sizeof(unsigned long long), "unexpected pointer size"); AddInteger(reinterpret_cast<uintptr_t>(Ptr)); } void AddInteger(signed I) { Bits.push_back(I); } void AddInteger(unsigned I) { Bits.push_back(I); } void AddInteger(long I) { AddInteger((unsigned long)I); } void AddInteger(unsigned long I) { if (sizeof(long) == sizeof(int)) AddInteger(unsigned(I)); else if (sizeof(long) == sizeof(long long)) { AddInteger((unsigned long long)I); } else { llvm_unreachable("unexpected sizeof(long)"); } } void AddInteger(long long I) { AddInteger((unsigned long long)I); } void AddInteger(unsigned long long I) { AddInteger(unsigned(I)); AddInteger(unsigned(I >> 32)); }
void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); } void AddString(StringRef String); void AddNodeID(const FoldingSetNodeID &ID);
template <typename T> inline void Add(const T &x) { FoldingSetTrait<T>::Profile(x, *this); }
/// clear - Clear the accumulated profile, allowing this FoldingSetNodeID /// object to be used to compute a new profile. inline void clear() { Bits.clear(); }
// Compute a strong hash value for this FoldingSetNodeID, used to lookup the // node in the FoldingSetBase. The hash value is not guaranteed to be // deterministic across processes. unsigned ComputeHash() const { return FoldingSetNodeIDRef(Bits.data(), Bits.size()).ComputeHash(); }
// Compute a deterministic hash value across processes that is suitable for // on-disk serialization. unsigned computeStableHash() const { return FoldingSetNodeIDRef(Bits.data(), Bits.size()).computeStableHash(); }
/// operator== - Used to compare two nodes to each other. bool operator==(const FoldingSetNodeID &RHS) const; bool operator==(const FoldingSetNodeIDRef RHS) const;
bool operator!=(const FoldingSetNodeID &RHS) const { return !(*this == RHS); } bool operator!=(const FoldingSetNodeIDRef RHS) const { return !(*this ==RHS);}
/// Used to compare the "ordering" of two nodes as defined by the /// profiled bits and their ordering defined by memcmp(). bool operator<(const FoldingSetNodeID &RHS) const; bool operator<(const FoldingSetNodeIDRef RHS) const;
/// Intern - Copy this node's data to a memory region allocated from the /// given allocator and return a FoldingSetNodeIDRef describing the /// interned data. FoldingSetNodeIDRef Intern(BumpPtrAllocator &Allocator) const; };
// Convenience type to hide the implementation of the folding set. using FoldingSetNode = FoldingSetBase::Node; template<class T> class FoldingSetIterator; template<class T> class FoldingSetBucketIterator;
// Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which // require the definition of FoldingSetNodeID. template<typename T> inline bool DefaultFoldingSetTrait<T>::Equals(T &X, const FoldingSetNodeID &ID, unsigned /*IDHash*/, FoldingSetNodeID &TempID) { FoldingSetTrait<T>::Profile(X, TempID); return TempID == ID; } template<typename T> inline unsigned DefaultFoldingSetTrait<T>::ComputeHash(T &X, FoldingSetNodeID &TempID) { FoldingSetTrait<T>::Profile(X, TempID); return TempID.ComputeHash(); } template<typename T, typename Ctx> inline bool DefaultContextualFoldingSetTrait<T, Ctx>::Equals(T &X, const FoldingSetNodeID &ID, unsigned /*IDHash*/, FoldingSetNodeID &TempID, Ctx Context) { ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context); return TempID == ID; } template<typename T, typename Ctx> inline unsigned DefaultContextualFoldingSetTrait<T, Ctx>::ComputeHash(T &X, FoldingSetNodeID &TempID, Ctx Context) { ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context); return TempID.ComputeHash(); }
//===----------------------------------------------------------------------===// /// FoldingSetImpl - An implementation detail that lets us share code between /// FoldingSet and ContextualFoldingSet. template <class Derived, class T> class FoldingSetImpl : public FoldingSetBase { protected: explicit FoldingSetImpl(unsigned Log2InitSize) : FoldingSetBase(Log2InitSize) {}
FoldingSetImpl(FoldingSetImpl &&Arg) = default; FoldingSetImpl &operator=(FoldingSetImpl &&RHS) = default; ~FoldingSetImpl() = default;
public: using iterator = FoldingSetIterator<T>;
iterator begin() { return iterator(Buckets); } iterator end() { return iterator(Buckets+NumBuckets); }
using const_iterator = FoldingSetIterator<const T>;
const_iterator begin() const { return const_iterator(Buckets); } const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
using bucket_iterator = FoldingSetBucketIterator<T>;
bucket_iterator bucket_begin(unsigned hash) { return bucket_iterator(Buckets + (hash & (NumBuckets-1))); }
bucket_iterator bucket_end(unsigned hash) { return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true); }
/// reserve - Increase the number of buckets such that adding the /// EltCount-th node won't cause a rebucket operation. reserve is permitted /// to allocate more space than requested by EltCount. void reserve(unsigned EltCount) { return FoldingSetBase::reserve(EltCount, Derived::getFoldingSetInfo()); }
/// RemoveNode - Remove a node from the folding set, returning true if one /// was removed or false if the node was not in the folding set. bool RemoveNode(T *N) { return FoldingSetBase::RemoveNode(N); }
/// GetOrInsertNode - If there is an existing simple Node exactly /// equal to the specified node, return it. Otherwise, insert 'N' and /// return it instead. T *GetOrInsertNode(T *N) { return static_cast<T *>( FoldingSetBase::GetOrInsertNode(N, Derived::getFoldingSetInfo())); }
/// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, /// return it. If not, return the insertion token that will make insertion /// faster. T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) { return static_cast<T *>(FoldingSetBase::FindNodeOrInsertPos( ID, InsertPos, Derived::getFoldingSetInfo())); }
/// InsertNode - Insert the specified node into the folding set, knowing that /// it is not already in the folding set. InsertPos must be obtained from /// FindNodeOrInsertPos. void InsertNode(T *N, void *InsertPos) { FoldingSetBase::InsertNode(N, InsertPos, Derived::getFoldingSetInfo()); }
/// InsertNode - Insert the specified node into the folding set, knowing that /// it is not already in the folding set. void InsertNode(T *N) { T *Inserted = GetOrInsertNode(N); (void)Inserted; assert(Inserted == N && "Node already inserted!"); } };
//===----------------------------------------------------------------------===// /// FoldingSet - This template class is used to instantiate a specialized /// implementation of the folding set to the node class T. T must be a /// subclass of FoldingSetNode and implement a Profile function. /// /// Note that this set type is movable and move-assignable. However, its /// moved-from state is not a valid state for anything other than /// move-assigning and destroying. This is primarily to enable movable APIs /// that incorporate these objects. template <class T> class FoldingSet : public FoldingSetImpl<FoldingSet<T>, T> { using Super = FoldingSetImpl<FoldingSet, T>; using Node = typename Super::Node;
/// GetNodeProfile - Each instantiation of the FoldingSet needs to provide a /// way to convert nodes into a unique specifier. static void GetNodeProfile(const FoldingSetBase *, Node *N, FoldingSetNodeID &ID) { T *TN = static_cast<T *>(N); FoldingSetTrait<T>::Profile(*TN, ID); }
/// NodeEquals - Instantiations may optionally provide a way to compare a /// node with a specified ID. static bool NodeEquals(const FoldingSetBase *, Node *N, const FoldingSetNodeID &ID, unsigned IDHash, FoldingSetNodeID &TempID) { T *TN = static_cast<T *>(N); return FoldingSetTrait<T>::Equals(*TN, ID, IDHash, TempID); }
/// ComputeNodeHash - Instantiations may optionally provide a way to compute a /// hash value directly from a node. static unsigned ComputeNodeHash(const FoldingSetBase *, Node *N, FoldingSetNodeID &TempID) { T *TN = static_cast<T *>(N); return FoldingSetTrait<T>::ComputeHash(*TN, TempID); }
static const FoldingSetBase::FoldingSetInfo &getFoldingSetInfo() { static constexpr FoldingSetBase::FoldingSetInfo Info = { GetNodeProfile, NodeEquals, ComputeNodeHash}; return Info; } friend Super;
public: explicit FoldingSet(unsigned Log2InitSize = 6) : Super(Log2InitSize) {} FoldingSet(FoldingSet &&Arg) = default; FoldingSet &operator=(FoldingSet &&RHS) = default; };
//===----------------------------------------------------------------------===// /// ContextualFoldingSet - This template class is a further refinement /// of FoldingSet which provides a context argument when calling /// Profile on its nodes. Currently, that argument is fixed at /// initialization time. /// /// T must be a subclass of FoldingSetNode and implement a Profile /// function with signature /// void Profile(FoldingSetNodeID &, Ctx); template <class T, class Ctx> class ContextualFoldingSet : public FoldingSetImpl<ContextualFoldingSet<T, Ctx>, T> { // Unfortunately, this can't derive from FoldingSet<T> because the // construction of the vtable for FoldingSet<T> requires // FoldingSet<T>::GetNodeProfile to be instantiated, which in turn // requires a single-argument T::Profile().
using Super = FoldingSetImpl<ContextualFoldingSet, T>; using Node = typename Super::Node;
Ctx Context;
static const Ctx &getContext(const FoldingSetBase *Base) { return static_cast<const ContextualFoldingSet*>(Base)->Context; }
/// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a /// way to convert nodes into a unique specifier. static void GetNodeProfile(const FoldingSetBase *Base, Node *N, FoldingSetNodeID &ID) { T *TN = static_cast<T *>(N); ContextualFoldingSetTrait<T, Ctx>::Profile(*TN, ID, getContext(Base)); }
static bool NodeEquals(const FoldingSetBase *Base, Node *N, const FoldingSetNodeID &ID, unsigned IDHash, FoldingSetNodeID &TempID) { T *TN = static_cast<T *>(N); return ContextualFoldingSetTrait<T, Ctx>::Equals(*TN, ID, IDHash, TempID, getContext(Base)); }
static unsigned ComputeNodeHash(const FoldingSetBase *Base, Node *N, FoldingSetNodeID &TempID) { T *TN = static_cast<T *>(N); return ContextualFoldingSetTrait<T, Ctx>::ComputeHash(*TN, TempID, getContext(Base)); }
static const FoldingSetBase::FoldingSetInfo &getFoldingSetInfo() { static constexpr FoldingSetBase::FoldingSetInfo Info = { GetNodeProfile, NodeEquals, ComputeNodeHash}; return Info; } friend Super;
public: explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6) : Super(Log2InitSize), Context(Context) {}
Ctx getContext() const { return Context; } };
//===----------------------------------------------------------------------===// /// FoldingSetVector - This template class combines a FoldingSet and a vector /// to provide the interface of FoldingSet but with deterministic iteration /// order based on the insertion order. T must be a subclass of FoldingSetNode /// and implement a Profile function. template <class T, class VectorT = SmallVector<T*, 8>> class FoldingSetVector { FoldingSet<T> Set; VectorT Vector;
public: explicit FoldingSetVector(unsigned Log2InitSize = 6) : Set(Log2InitSize) {}
using iterator = pointee_iterator<typename VectorT::iterator>;
iterator begin() { return Vector.begin(); } iterator end() { return Vector.end(); }
using const_iterator = pointee_iterator<typename VectorT::const_iterator>;
const_iterator begin() const { return Vector.begin(); } const_iterator end() const { return Vector.end(); }
/// clear - Remove all nodes from the folding set. void clear() { Set.clear(); Vector.clear(); }
/// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, /// return it. If not, return the insertion token that will make insertion /// faster. T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) { return Set.FindNodeOrInsertPos(ID, InsertPos); }
/// GetOrInsertNode - If there is an existing simple Node exactly /// equal to the specified node, return it. Otherwise, insert 'N' and /// return it instead. T *GetOrInsertNode(T *N) { T *Result = Set.GetOrInsertNode(N); if (Result == N) Vector.push_back(N); return Result; }
/// InsertNode - Insert the specified node into the folding set, knowing that /// it is not already in the folding set. InsertPos must be obtained from /// FindNodeOrInsertPos. void InsertNode(T *N, void *InsertPos) { Set.InsertNode(N, InsertPos); Vector.push_back(N); }
/// InsertNode - Insert the specified node into the folding set, knowing that /// it is not already in the folding set. void InsertNode(T *N) { Set.InsertNode(N); Vector.push_back(N); }
/// size - Returns the number of nodes in the folding set. unsigned size() const { return Set.size(); }
/// empty - Returns true if there are no nodes in the folding set. bool empty() const { return Set.empty(); } };
//===----------------------------------------------------------------------===// /// FoldingSetIteratorImpl - This is the common iterator support shared by all /// folding sets, which knows how to walk the folding set hash table. class FoldingSetIteratorImpl { protected: FoldingSetNode *NodePtr;
FoldingSetIteratorImpl(void **Bucket);
void advance();
public: bool operator==(const FoldingSetIteratorImpl &RHS) const { return NodePtr == RHS.NodePtr; } bool operator!=(const FoldingSetIteratorImpl &RHS) const { return NodePtr != RHS.NodePtr; } };
template <class T> class FoldingSetIterator : public FoldingSetIteratorImpl { public: explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {}
T &operator*() const { return *static_cast<T*>(NodePtr); }
T *operator->() const { return static_cast<T*>(NodePtr); }
inline FoldingSetIterator &operator++() { // Preincrement advance(); return *this; } FoldingSetIterator operator++(int) { // Postincrement FoldingSetIterator tmp = *this; ++*this; return tmp; } };
//===----------------------------------------------------------------------===// /// FoldingSetBucketIteratorImpl - This is the common bucket iterator support /// shared by all folding sets, which knows how to walk a particular bucket /// of a folding set hash table. class FoldingSetBucketIteratorImpl { protected: void *Ptr;
explicit FoldingSetBucketIteratorImpl(void **Bucket);
FoldingSetBucketIteratorImpl(void **Bucket, bool) : Ptr(Bucket) {}
void advance() { void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket(); uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1; Ptr = reinterpret_cast<void*>(x); }
public: bool operator==(const FoldingSetBucketIteratorImpl &RHS) const { return Ptr == RHS.Ptr; } bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const { return Ptr != RHS.Ptr; } };
template <class T> class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl { public: explicit FoldingSetBucketIterator(void **Bucket) : FoldingSetBucketIteratorImpl(Bucket) {}
FoldingSetBucketIterator(void **Bucket, bool) : FoldingSetBucketIteratorImpl(Bucket, true) {}
T &operator*() const { return *static_cast<T*>(Ptr); } T *operator->() const { return static_cast<T*>(Ptr); }
inline FoldingSetBucketIterator &operator++() { // Preincrement advance(); return *this; } FoldingSetBucketIterator operator++(int) { // Postincrement FoldingSetBucketIterator tmp = *this; ++*this; return tmp; } };
//===----------------------------------------------------------------------===// /// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary /// types in an enclosing object so that they can be inserted into FoldingSets. template <typename T> class FoldingSetNodeWrapper : public FoldingSetNode { T data;
public: template <typename... Ts> explicit FoldingSetNodeWrapper(Ts &&... Args) : data(std::forward<Ts>(Args)...) {}
void Profile(FoldingSetNodeID &ID) { FoldingSetTrait<T>::Profile(data, ID); }
T &getValue() { return data; } const T &getValue() const { return data; }
operator T&() { return data; } operator const T&() const { return data; } };
//===----------------------------------------------------------------------===// /// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores /// a FoldingSetNodeID value rather than requiring the node to recompute it /// each time it is needed. This trades space for speed (which can be /// significant if the ID is long), and it also permits nodes to drop /// information that would otherwise only be required for recomputing an ID. class FastFoldingSetNode : public FoldingSetNode { FoldingSetNodeID FastID;
protected: explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {}
public: void Profile(FoldingSetNodeID &ID) const { ID.AddNodeID(FastID); } };
//===----------------------------------------------------------------------===// // Partial specializations of FoldingSetTrait.
template<typename T> struct FoldingSetTrait<T*> { static inline void Profile(T *X, FoldingSetNodeID &ID) { ID.AddPointer(X); } }; template <typename T1, typename T2> struct FoldingSetTrait<std::pair<T1, T2>> { static inline void Profile(const std::pair<T1, T2> &P, FoldingSetNodeID &ID) { ID.Add(P.first); ID.Add(P.second); } };
template <typename T> struct FoldingSetTrait<T, std::enable_if_t<std::is_enum<T>::value>> { static void Profile(const T &X, FoldingSetNodeID &ID) { ID.AddInteger(llvm::to_underlying(X)); } };
} // end namespace llvm
#endif // LLVM_ADT_FOLDINGSET_H
|