Viewing file: btrfs_tree.h (24.69 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ #ifndef _BTRFS_CTREE_H_ #define _BTRFS_CTREE_H_
#include <linux/btrfs.h> #include <linux/types.h>
/* * This header contains the structure definitions and constants used * by file system objects that can be retrieved using * the BTRFS_IOC_SEARCH_TREE ioctl. That means basically anything that * is needed to describe a leaf node's key or item contents. */
/* holds pointers to all of the tree roots */ #define BTRFS_ROOT_TREE_OBJECTID 1ULL
/* stores information about which extents are in use, and reference counts */ #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
/* * chunk tree stores translations from logical -> physical block numbering * the super block points to the chunk tree */ #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
/* * stores information about which areas of a given device are in use. * one per device. The tree of tree roots points to the device tree */ #define BTRFS_DEV_TREE_OBJECTID 4ULL
/* one per subvolume, storing files and directories */ #define BTRFS_FS_TREE_OBJECTID 5ULL
/* directory objectid inside the root tree */ #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
/* holds checksums of all the data extents */ #define BTRFS_CSUM_TREE_OBJECTID 7ULL
/* holds quota configuration and tracking */ #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
/* for storing items that use the BTRFS_UUID_KEY* types */ #define BTRFS_UUID_TREE_OBJECTID 9ULL
/* tracks free space in block groups. */ #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
/* device stats in the device tree */ #define BTRFS_DEV_STATS_OBJECTID 0ULL
/* for storing balance parameters in the root tree */ #define BTRFS_BALANCE_OBJECTID -4ULL
/* orhpan objectid for tracking unlinked/truncated files */ #define BTRFS_ORPHAN_OBJECTID -5ULL
/* does write ahead logging to speed up fsyncs */ #define BTRFS_TREE_LOG_OBJECTID -6ULL #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
/* for space balancing */ #define BTRFS_TREE_RELOC_OBJECTID -8ULL #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
/* * extent checksums all have this objectid * this allows them to share the logging tree * for fsyncs */ #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
/* For storing free space cache */ #define BTRFS_FREE_SPACE_OBJECTID -11ULL
/* * The inode number assigned to the special inode for storing * free ino cache */ #define BTRFS_FREE_INO_OBJECTID -12ULL
/* dummy objectid represents multiple objectids */ #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
/* * All files have objectids in this range. */ #define BTRFS_FIRST_FREE_OBJECTID 256ULL #define BTRFS_LAST_FREE_OBJECTID -256ULL #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
/* * the device items go into the chunk tree. The key is in the form * [ 1 BTRFS_DEV_ITEM_KEY device_id ] */ #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
#define BTRFS_BTREE_INODE_OBJECTID 1
#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
#define BTRFS_DEV_REPLACE_DEVID 0ULL
/* * inode items have the data typically returned from stat and store other * info about object characteristics. There is one for every file and dir in * the FS */ #define BTRFS_INODE_ITEM_KEY 1 #define BTRFS_INODE_REF_KEY 12 #define BTRFS_INODE_EXTREF_KEY 13 #define BTRFS_XATTR_ITEM_KEY 24 #define BTRFS_ORPHAN_ITEM_KEY 48 /* reserve 2-15 close to the inode for later flexibility */
/* * dir items are the name -> inode pointers in a directory. There is one * for every name in a directory. */ #define BTRFS_DIR_LOG_ITEM_KEY 60 #define BTRFS_DIR_LOG_INDEX_KEY 72 #define BTRFS_DIR_ITEM_KEY 84 #define BTRFS_DIR_INDEX_KEY 96 /* * extent data is for file data */ #define BTRFS_EXTENT_DATA_KEY 108
/* * extent csums are stored in a separate tree and hold csums for * an entire extent on disk. */ #define BTRFS_EXTENT_CSUM_KEY 128
/* * root items point to tree roots. They are typically in the root * tree used by the super block to find all the other trees */ #define BTRFS_ROOT_ITEM_KEY 132
/* * root backrefs tie subvols and snapshots to the directory entries that * reference them */ #define BTRFS_ROOT_BACKREF_KEY 144
/* * root refs make a fast index for listing all of the snapshots and * subvolumes referenced by a given root. They point directly to the * directory item in the root that references the subvol */ #define BTRFS_ROOT_REF_KEY 156
/* * extent items are in the extent map tree. These record which blocks * are used, and how many references there are to each block */ #define BTRFS_EXTENT_ITEM_KEY 168
/* * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know * the length, so we save the level in key->offset instead of the length. */ #define BTRFS_METADATA_ITEM_KEY 169
#define BTRFS_TREE_BLOCK_REF_KEY 176
#define BTRFS_EXTENT_DATA_REF_KEY 178
#define BTRFS_EXTENT_REF_V0_KEY 180
#define BTRFS_SHARED_BLOCK_REF_KEY 182
#define BTRFS_SHARED_DATA_REF_KEY 184
/* * block groups give us hints into the extent allocation trees. Which * blocks are free etc etc */ #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
/* * Every block group is represented in the free space tree by a free space info * item, which stores some accounting information. It is keyed on * (block_group_start, FREE_SPACE_INFO, block_group_length). */ #define BTRFS_FREE_SPACE_INFO_KEY 198
/* * A free space extent tracks an extent of space that is free in a block group. * It is keyed on (start, FREE_SPACE_EXTENT, length). */ #define BTRFS_FREE_SPACE_EXTENT_KEY 199
/* * When a block group becomes very fragmented, we convert it to use bitmaps * instead of extents. A free space bitmap is keyed on * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with * (length / sectorsize) bits. */ #define BTRFS_FREE_SPACE_BITMAP_KEY 200
#define BTRFS_DEV_EXTENT_KEY 204 #define BTRFS_DEV_ITEM_KEY 216 #define BTRFS_CHUNK_ITEM_KEY 228
/* * Records the overall state of the qgroups. * There's only one instance of this key present, * (0, BTRFS_QGROUP_STATUS_KEY, 0) */ #define BTRFS_QGROUP_STATUS_KEY 240 /* * Records the currently used space of the qgroup. * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid). */ #define BTRFS_QGROUP_INFO_KEY 242 /* * Contains the user configured limits for the qgroup. * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid). */ #define BTRFS_QGROUP_LIMIT_KEY 244 /* * Records the child-parent relationship of qgroups. For * each relation, 2 keys are present: * (childid, BTRFS_QGROUP_RELATION_KEY, parentid) * (parentid, BTRFS_QGROUP_RELATION_KEY, childid) */ #define BTRFS_QGROUP_RELATION_KEY 246
/* * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY. */ #define BTRFS_BALANCE_ITEM_KEY 248
/* * The key type for tree items that are stored persistently, but do not need to * exist for extended period of time. The items can exist in any tree. * * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data] * * Existing items: * * - balance status item * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0) */ #define BTRFS_TEMPORARY_ITEM_KEY 248
/* * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY */ #define BTRFS_DEV_STATS_KEY 249
/* * The key type for tree items that are stored persistently and usually exist * for a long period, eg. filesystem lifetime. The item kinds can be status * information, stats or preference values. The item can exist in any tree. * * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data] * * Existing items: * * - device statistics, store IO stats in the device tree, one key for all * stats * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0) */ #define BTRFS_PERSISTENT_ITEM_KEY 249
/* * Persistantly stores the device replace state in the device tree. * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0). */ #define BTRFS_DEV_REPLACE_KEY 250
/* * Stores items that allow to quickly map UUIDs to something else. * These items are part of the filesystem UUID tree. * The key is built like this: * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits). */ #if BTRFS_UUID_SIZE != 16 #error "UUID items require BTRFS_UUID_SIZE == 16!" #endif #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */ #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to * received subvols */
/* * string items are for debugging. They just store a short string of * data in the FS */ #define BTRFS_STRING_ITEM_KEY 253
/* 32 bytes in various csum fields */ #define BTRFS_CSUM_SIZE 32
/* csum types */ #define BTRFS_CSUM_TYPE_CRC32 0
/* * flags definitions for directory entry item type * * Used by: * struct btrfs_dir_item.type */ #define BTRFS_FT_UNKNOWN 0 #define BTRFS_FT_REG_FILE 1 #define BTRFS_FT_DIR 2 #define BTRFS_FT_CHRDEV 3 #define BTRFS_FT_BLKDEV 4 #define BTRFS_FT_FIFO 5 #define BTRFS_FT_SOCK 6 #define BTRFS_FT_SYMLINK 7 #define BTRFS_FT_XATTR 8 #define BTRFS_FT_MAX 9
/* * The key defines the order in the tree, and so it also defines (optimal) * block layout. * * objectid corresponds to the inode number. * * type tells us things about the object, and is a kind of stream selector. * so for a given inode, keys with type of 1 might refer to the inode data, * type of 2 may point to file data in the btree and type == 3 may point to * extents. * * offset is the starting byte offset for this key in the stream. * * btrfs_disk_key is in disk byte order. struct btrfs_key is always * in cpu native order. Otherwise they are identical and their sizes * should be the same (ie both packed) */ struct btrfs_disk_key { __le64 objectid; __u8 type; __le64 offset; } __attribute__ ((__packed__));
struct btrfs_key { __u64 objectid; __u8 type; __u64 offset; } __attribute__ ((__packed__));
struct btrfs_dev_item { /* the internal btrfs device id */ __le64 devid;
/* size of the device */ __le64 total_bytes;
/* bytes used */ __le64 bytes_used;
/* optimal io alignment for this device */ __le32 io_align;
/* optimal io width for this device */ __le32 io_width;
/* minimal io size for this device */ __le32 sector_size;
/* type and info about this device */ __le64 type;
/* expected generation for this device */ __le64 generation;
/* * starting byte of this partition on the device, * to allow for stripe alignment in the future */ __le64 start_offset;
/* grouping information for allocation decisions */ __le32 dev_group;
/* seek speed 0-100 where 100 is fastest */ __u8 seek_speed;
/* bandwidth 0-100 where 100 is fastest */ __u8 bandwidth;
/* btrfs generated uuid for this device */ __u8 uuid[BTRFS_UUID_SIZE];
/* uuid of FS who owns this device */ __u8 fsid[BTRFS_UUID_SIZE]; } __attribute__ ((__packed__));
struct btrfs_stripe { __le64 devid; __le64 offset; __u8 dev_uuid[BTRFS_UUID_SIZE]; } __attribute__ ((__packed__));
struct btrfs_chunk { /* size of this chunk in bytes */ __le64 length;
/* objectid of the root referencing this chunk */ __le64 owner;
__le64 stripe_len; __le64 type;
/* optimal io alignment for this chunk */ __le32 io_align;
/* optimal io width for this chunk */ __le32 io_width;
/* minimal io size for this chunk */ __le32 sector_size;
/* 2^16 stripes is quite a lot, a second limit is the size of a single * item in the btree */ __le16 num_stripes;
/* sub stripes only matter for raid10 */ __le16 sub_stripes; struct btrfs_stripe stripe; /* additional stripes go here */ } __attribute__ ((__packed__));
#define BTRFS_FREE_SPACE_EXTENT 1 #define BTRFS_FREE_SPACE_BITMAP 2
struct btrfs_free_space_entry { __le64 offset; __le64 bytes; __u8 type; } __attribute__ ((__packed__));
struct btrfs_free_space_header { struct btrfs_disk_key location; __le64 generation; __le64 num_entries; __le64 num_bitmaps; } __attribute__ ((__packed__));
#define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0) #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
/* Super block flags */ /* Errors detected */ #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
#define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32) #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33) #define BTRFS_SUPER_FLAG_METADUMP_V2 (1ULL << 34) #define BTRFS_SUPER_FLAG_CHANGING_FSID (1ULL << 35)
/* * items in the extent btree are used to record the objectid of the * owner of the block and the number of references */
struct btrfs_extent_item { __le64 refs; __le64 generation; __le64 flags; } __attribute__ ((__packed__));
struct btrfs_extent_item_v0 { __le32 refs; } __attribute__ ((__packed__));
#define BTRFS_EXTENT_FLAG_DATA (1ULL << 0) #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
/* following flags only apply to tree blocks */
/* use full backrefs for extent pointers in the block */ #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
/* * this flag is only used internally by scrub and may be changed at any time * it is only declared here to avoid collisions */ #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
struct btrfs_tree_block_info { struct btrfs_disk_key key; __u8 level; } __attribute__ ((__packed__));
struct btrfs_extent_data_ref { __le64 root; __le64 objectid; __le64 offset; __le32 count; } __attribute__ ((__packed__));
struct btrfs_shared_data_ref { __le32 count; } __attribute__ ((__packed__));
struct btrfs_extent_inline_ref { __u8 type; __le64 offset; } __attribute__ ((__packed__));
/* old style backrefs item */ struct btrfs_extent_ref_v0 { __le64 root; __le64 generation; __le64 objectid; __le32 count; } __attribute__ ((__packed__));
/* dev extents record free space on individual devices. The owner * field points back to the chunk allocation mapping tree that allocated * the extent. The chunk tree uuid field is a way to double check the owner */ struct btrfs_dev_extent { __le64 chunk_tree; __le64 chunk_objectid; __le64 chunk_offset; __le64 length; __u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; } __attribute__ ((__packed__));
struct btrfs_inode_ref { __le64 index; __le16 name_len; /* name goes here */ } __attribute__ ((__packed__));
struct btrfs_inode_extref { __le64 parent_objectid; __le64 index; __le16 name_len; __u8 name[0]; /* name goes here */ } __attribute__ ((__packed__));
struct btrfs_timespec { __le64 sec; __le32 nsec; } __attribute__ ((__packed__));
struct btrfs_inode_item { /* nfs style generation number */ __le64 generation; /* transid that last touched this inode */ __le64 transid; __le64 size; __le64 nbytes; __le64 block_group; __le32 nlink; __le32 uid; __le32 gid; __le32 mode; __le64 rdev; __le64 flags;
/* modification sequence number for NFS */ __le64 sequence;
/* * a little future expansion, for more than this we can * just grow the inode item and version it */ __le64 reserved[4]; struct btrfs_timespec atime; struct btrfs_timespec ctime; struct btrfs_timespec mtime; struct btrfs_timespec otime; } __attribute__ ((__packed__));
struct btrfs_dir_log_item { __le64 end; } __attribute__ ((__packed__));
struct btrfs_dir_item { struct btrfs_disk_key location; __le64 transid; __le16 data_len; __le16 name_len; __u8 type; } __attribute__ ((__packed__));
#define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
/* * Internal in-memory flag that a subvolume has been marked for deletion but * still visible as a directory */ #define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48)
struct btrfs_root_item { struct btrfs_inode_item inode; __le64 generation; __le64 root_dirid; __le64 bytenr; __le64 byte_limit; __le64 bytes_used; __le64 last_snapshot; __le64 flags; __le32 refs; struct btrfs_disk_key drop_progress; __u8 drop_level; __u8 level;
/* * The following fields appear after subvol_uuids+subvol_times * were introduced. */
/* * This generation number is used to test if the new fields are valid * and up to date while reading the root item. Every time the root item * is written out, the "generation" field is copied into this field. If * anyone ever mounted the fs with an older kernel, we will have * mismatching generation values here and thus must invalidate the * new fields. See btrfs_update_root and btrfs_find_last_root for * details. * the offset of generation_v2 is also used as the start for the memset * when invalidating the fields. */ __le64 generation_v2; __u8 uuid[BTRFS_UUID_SIZE]; __u8 parent_uuid[BTRFS_UUID_SIZE]; __u8 received_uuid[BTRFS_UUID_SIZE]; __le64 ctransid; /* updated when an inode changes */ __le64 otransid; /* trans when created */ __le64 stransid; /* trans when sent. non-zero for received subvol */ __le64 rtransid; /* trans when received. non-zero for received subvol */ struct btrfs_timespec ctime; struct btrfs_timespec otime; struct btrfs_timespec stime; struct btrfs_timespec rtime; __le64 reserved[8]; /* for future */ } __attribute__ ((__packed__));
/* * this is used for both forward and backward root refs */ struct btrfs_root_ref { __le64 dirid; __le64 sequence; __le16 name_len; } __attribute__ ((__packed__));
struct btrfs_disk_balance_args { /* * profiles to operate on, single is denoted by * BTRFS_AVAIL_ALLOC_BIT_SINGLE */ __le64 profiles;
/* * usage filter * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N' * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max */ union { __le64 usage; struct { __le32 usage_min; __le32 usage_max; }; };
/* devid filter */ __le64 devid;
/* devid subset filter [pstart..pend) */ __le64 pstart; __le64 pend;
/* btrfs virtual address space subset filter [vstart..vend) */ __le64 vstart; __le64 vend;
/* * profile to convert to, single is denoted by * BTRFS_AVAIL_ALLOC_BIT_SINGLE */ __le64 target;
/* BTRFS_BALANCE_ARGS_* */ __le64 flags;
/* * BTRFS_BALANCE_ARGS_LIMIT with value 'limit' * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum * and maximum */ union { __le64 limit; struct { __le32 limit_min; __le32 limit_max; }; };
/* * Process chunks that cross stripes_min..stripes_max devices, * BTRFS_BALANCE_ARGS_STRIPES_RANGE */ __le32 stripes_min; __le32 stripes_max;
__le64 unused[6]; } __attribute__ ((__packed__));
/* * store balance parameters to disk so that balance can be properly * resumed after crash or unmount */ struct btrfs_balance_item { /* BTRFS_BALANCE_* */ __le64 flags;
struct btrfs_disk_balance_args data; struct btrfs_disk_balance_args meta; struct btrfs_disk_balance_args sys;
__le64 unused[4]; } __attribute__ ((__packed__));
#define BTRFS_FILE_EXTENT_INLINE 0 #define BTRFS_FILE_EXTENT_REG 1 #define BTRFS_FILE_EXTENT_PREALLOC 2 #define BTRFS_FILE_EXTENT_TYPES 2
struct btrfs_file_extent_item { /* * transaction id that created this extent */ __le64 generation; /* * max number of bytes to hold this extent in ram * when we split a compressed extent we can't know how big * each of the resulting pieces will be. So, this is * an upper limit on the size of the extent in ram instead of * an exact limit. */ __le64 ram_bytes;
/* * 32 bits for the various ways we might encode the data, * including compression and encryption. If any of these * are set to something a given disk format doesn't understand * it is treated like an incompat flag for reading and writing, * but not for stat. */ __u8 compression; __u8 encryption; __le16 other_encoding; /* spare for later use */
/* are we __inline__ data or a real extent? */ __u8 type;
/* * disk space consumed by the extent, checksum blocks are included * in these numbers * * At this offset in the structure, the __inline__ extent data start. */ __le64 disk_bytenr; __le64 disk_num_bytes; /* * the logical offset in file blocks (no csums) * this extent record is for. This allows a file extent to point * into the middle of an existing extent on disk, sharing it * between two snapshots (useful if some bytes in the middle of the * extent have changed */ __le64 offset; /* * the logical number of file blocks (no csums included). This * always reflects the size uncompressed and without encoding. */ __le64 num_bytes;
} __attribute__ ((__packed__));
struct btrfs_csum_item { __u8 csum; } __attribute__ ((__packed__));
struct btrfs_dev_stats_item { /* * grow this item struct at the end for future enhancements and keep * the existing values unchanged */ __le64 values[BTRFS_DEV_STAT_VALUES_MAX]; } __attribute__ ((__packed__));
#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1 #define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED 0 #define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED 1 #define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED 2 #define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED 3 #define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED 4
struct btrfs_dev_replace_item { /* * grow this item struct at the end for future enhancements and keep * the existing values unchanged */ __le64 src_devid; __le64 cursor_left; __le64 cursor_right; __le64 cont_reading_from_srcdev_mode;
__le64 replace_state; __le64 time_started; __le64 time_stopped; __le64 num_write_errors; __le64 num_uncorrectable_read_errors; } __attribute__ ((__packed__));
/* different types of block groups (and chunks) */ #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0) #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1) #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2) #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3) #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4) #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5) #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6) #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7) #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8) #define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \ BTRFS_SPACE_INFO_GLOBAL_RSV)
enum btrfs_raid_types { BTRFS_RAID_RAID10, BTRFS_RAID_RAID1, BTRFS_RAID_DUP, BTRFS_RAID_RAID0, BTRFS_RAID_SINGLE, BTRFS_RAID_RAID5, BTRFS_RAID_RAID6, BTRFS_NR_RAID_TYPES };
#define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \ BTRFS_BLOCK_GROUP_SYSTEM | \ BTRFS_BLOCK_GROUP_METADATA)
#define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ BTRFS_BLOCK_GROUP_RAID1 | \ BTRFS_BLOCK_GROUP_RAID5 | \ BTRFS_BLOCK_GROUP_RAID6 | \ BTRFS_BLOCK_GROUP_DUP | \ BTRFS_BLOCK_GROUP_RAID10) #define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \ BTRFS_BLOCK_GROUP_RAID6)
/* * We need a bit for restriper to be able to tell when chunks of type * SINGLE are available. This "extended" profile format is used in * fs_info->avail_*_alloc_bits (in-memory) and balance item fields * (on-disk). The corresponding on-disk bit in chunk.type is reserved * to avoid remappings between two formats in future. */ #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
/* * A fake block group type that is used to communicate global block reserve * size to userspace via the SPACE_INFO ioctl. */ #define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
#define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \ BTRFS_AVAIL_ALLOC_BIT_SINGLE)
static __inline__ __u64 chunk_to_extended(__u64 flags) { if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0) flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
return flags; } static __inline__ __u64 extended_to_chunk(__u64 flags) { return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE; }
struct btrfs_block_group_item { __le64 used; __le64 chunk_objectid; __le64 flags; } __attribute__ ((__packed__));
struct btrfs_free_space_info { __le32 extent_count; __le32 flags; } __attribute__ ((__packed__));
#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
#define BTRFS_QGROUP_LEVEL_SHIFT 48 static __inline__ __u64 btrfs_qgroup_level(__u64 qgroupid) { return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT; }
/* * is subvolume quota turned on? */ #define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0) /* * RESCAN is set during the initialization phase */ #define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1) /* * Some qgroup entries are known to be out of date, * either because the configuration has changed in a way that * makes a rescan necessary, or because the fs has been mounted * with a non-qgroup-aware version. * Turning qouta off and on again makes it inconsistent, too. */ #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
#define BTRFS_QGROUP_STATUS_VERSION 1
struct btrfs_qgroup_status_item { __le64 version; /* * the generation is updated during every commit. As older * versions of btrfs are not aware of qgroups, it will be * possible to detect inconsistencies by checking the * generation on mount time */ __le64 generation;
/* flag definitions see above */ __le64 flags;
/* * only used during scanning to record the progress * of the scan. It contains a logical address */ __le64 rescan; } __attribute__ ((__packed__));
struct btrfs_qgroup_info_item { __le64 generation; __le64 rfer; __le64 rfer_cmpr; __le64 excl; __le64 excl_cmpr; } __attribute__ ((__packed__));
struct btrfs_qgroup_limit_item { /* * only updated when any of the other values change */ __le64 flags; __le64 max_rfer; __le64 max_excl; __le64 rsv_rfer; __le64 rsv_excl; } __attribute__ ((__packed__));
#endif /* _BTRFS_CTREE_H_ */
|