!C99Shell v. 2.0 [PHP 7 Update] [25.02.2019]!

Software: Apache. PHP/7.3.33 

uname -a: Linux web25.us.cloudlogin.co 5.10.237-xeon-hst #1 SMP Mon May 5 15:10:04 UTC 2025 x86_64 

uid=233359(alpastrology) gid=888(tty) groups=888(tty),33(tape) 

Safe-mode: OFF (not secure)

/usr/include/drm/   drwxr-xr-x
Free 6181.99 GB of 6263.2 GB (98.7%)
Home    Back    Forward    UPDIR    Refresh    Search    Buffer    Encoder    Tools    Proc.    FTP brute    Sec.    SQL    PHP-code    Update    Feedback    Self remove    Logout    


Viewing file:     i915_drm.h (122.14 KB)      -rw-r--r--
Select action/file-type:
(+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/*
 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sub license, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#ifndef _I915_DRM_H_
#define _I915_DRM_H_

#include "drm.h"

#if defined(__cplusplus)
extern "C" {
#endif

/* Please note that modifications to all structs defined here are
 * subject to backwards-compatibility constraints.
 */

/**
 * DOC: uevents generated by i915 on it's device node
 *
 * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
 *    event from the gpu l3 cache. Additional information supplied is ROW,
 *    BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
 *    track of these events and if a specific cache-line seems to have a
 *    persistent error remap it with the l3 remapping tool supplied in
 *    intel-gpu-tools.  The value supplied with the event is always 1.
 *
 * I915_ERROR_UEVENT - Generated upon error detection, currently only via
 *    hangcheck. The error detection event is a good indicator of when things
 *    began to go badly. The value supplied with the event is a 1 upon error
 *    detection, and a 0 upon reset completion, signifying no more error
 *    exists. NOTE: Disabling hangcheck or reset via module parameter will
 *    cause the related events to not be seen.
 *
 * I915_RESET_UEVENT - Event is generated just before an attempt to reset the
 *    GPU. The value supplied with the event is always 1. NOTE: Disable
 *    reset via module parameter will cause this event to not be seen.
 */
#define I915_L3_PARITY_UEVENT        "L3_PARITY_ERROR"
#define I915_ERROR_UEVENT        "ERROR"
#define I915_RESET_UEVENT        "RESET"

/**
 * struct i915_user_extension - Base class for defining a chain of extensions
 *
 * Many interfaces need to grow over time. In most cases we can simply
 * extend the struct and have userspace pass in more data. Another option,
 * as demonstrated by Vulkan's approach to providing extensions for forward
 * and backward compatibility, is to use a list of optional structs to
 * provide those extra details.
 *
 * The key advantage to using an extension chain is that it allows us to
 * redefine the interface more easily than an ever growing struct of
 * increasing complexity, and for large parts of that interface to be
 * entirely optional. The downside is more pointer chasing; chasing across
 * the boundary with pointers encapsulated inside u64.
 *
 * Example chaining:
 *
 * .. code-block:: C
 *
 *    struct i915_user_extension ext3 {
 *        .next_extension = 0, // end
 *        .name = ...,
 *    };
 *    struct i915_user_extension ext2 {
 *        .next_extension = (uintptr_t)&ext3,
 *        .name = ...,
 *    };
 *    struct i915_user_extension ext1 {
 *        .next_extension = (uintptr_t)&ext2,
 *        .name = ...,
 *    };
 *
 * Typically the struct i915_user_extension would be embedded in some uAPI
 * struct, and in this case we would feed it the head of the chain(i.e ext1),
 * which would then apply all of the above extensions.
 *
 */
struct i915_user_extension {
    /**
     * @next_extension:
     *
     * Pointer to the next struct i915_user_extension, or zero if the end.
     */
    __u64 next_extension;
    /**
     * @name: Name of the extension.
     *
     * Note that the name here is just some integer.
     *
     * Also note that the name space for this is not global for the whole
     * driver, but rather its scope/meaning is limited to the specific piece
     * of uAPI which has embedded the struct i915_user_extension.
     */
    __u32 name;
    /**
     * @flags: MBZ
     *
     * All undefined bits must be zero.
     */
    __u32 flags;
    /**
     * @rsvd: MBZ
     *
     * Reserved for future use; must be zero.
     */
    __u32 rsvd[4];
};

/*
 * MOCS indexes used for GPU surfaces, defining the cacheability of the
 * surface data and the coherency for this data wrt. CPU vs. GPU accesses.
 */
enum i915_mocs_table_index {
    /*
     * Not cached anywhere, coherency between CPU and GPU accesses is
     * guaranteed.
     */
    I915_MOCS_UNCACHED,
    /*
     * Cacheability and coherency controlled by the kernel automatically
     * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
     * usage of the surface (used for display scanout or not).
     */
    I915_MOCS_PTE,
    /*
     * Cached in all GPU caches available on the platform.
     * Coherency between CPU and GPU accesses to the surface is not
     * guaranteed without extra synchronization.
     */
    I915_MOCS_CACHED,
};

/**
 * enum drm_i915_gem_engine_class - uapi engine type enumeration
 *
 * Different engines serve different roles, and there may be more than one
 * engine serving each role.  This enum provides a classification of the role
 * of the engine, which may be used when requesting operations to be performed
 * on a certain subset of engines, or for providing information about that
 * group.
 */
enum drm_i915_gem_engine_class {
    /**
     * @I915_ENGINE_CLASS_RENDER:
     *
     * Render engines support instructions used for 3D, Compute (GPGPU),
     * and programmable media workloads.  These instructions fetch data and
     * dispatch individual work items to threads that operate in parallel.
     * The threads run small programs (called "kernels" or "shaders") on
     * the GPU's execution units (EUs).
     */
    I915_ENGINE_CLASS_RENDER    = 0,

    /**
     * @I915_ENGINE_CLASS_COPY:
     *
     * Copy engines (also referred to as "blitters") support instructions
     * that move blocks of data from one location in memory to another,
     * or that fill a specified location of memory with fixed data.
     * Copy engines can perform pre-defined logical or bitwise operations
     * on the source, destination, or pattern data.
     */
    I915_ENGINE_CLASS_COPY        = 1,

    /**
     * @I915_ENGINE_CLASS_VIDEO:
     *
     * Video engines (also referred to as "bit stream decode" (BSD) or
     * "vdbox") support instructions that perform fixed-function media
     * decode and encode.
     */
    I915_ENGINE_CLASS_VIDEO        = 2,

    /**
     * @I915_ENGINE_CLASS_VIDEO_ENHANCE:
     *
     * Video enhancement engines (also referred to as "vebox") support
     * instructions related to image enhancement.
     */
    I915_ENGINE_CLASS_VIDEO_ENHANCE    = 3,

    /**
     * @I915_ENGINE_CLASS_COMPUTE:
     *
     * Compute engines support a subset of the instructions available
     * on render engines:  compute engines support Compute (GPGPU) and
     * programmable media workloads, but do not support the 3D pipeline.
     */
    I915_ENGINE_CLASS_COMPUTE    = 4,

    /* Values in this enum should be kept compact. */

    /**
     * @I915_ENGINE_CLASS_INVALID:
     *
     * Placeholder value to represent an invalid engine class assignment.
     */
    I915_ENGINE_CLASS_INVALID    = -1
};

/**
 * struct i915_engine_class_instance - Engine class/instance identifier
 *
 * There may be more than one engine fulfilling any role within the system.
 * Each engine of a class is given a unique instance number and therefore
 * any engine can be specified by its class:instance tuplet. APIs that allow
 * access to any engine in the system will use struct i915_engine_class_instance
 * for this identification.
 */
struct i915_engine_class_instance {
    /**
     * @engine_class:
     *
     * Engine class from enum drm_i915_gem_engine_class
     */
    __u16 engine_class;
#define I915_ENGINE_CLASS_INVALID_NONE -1
#define I915_ENGINE_CLASS_INVALID_VIRTUAL -2

    /**
     * @engine_instance:
     *
     * Engine instance.
     */
    __u16 engine_instance;
};

/**
 * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
 *
 */

enum drm_i915_pmu_engine_sample {
    I915_SAMPLE_BUSY = 0,
    I915_SAMPLE_WAIT = 1,
    I915_SAMPLE_SEMA = 2
};

#define I915_PMU_SAMPLE_BITS (4)
#define I915_PMU_SAMPLE_MASK (0xf)
#define I915_PMU_SAMPLE_INSTANCE_BITS (8)
#define I915_PMU_CLASS_SHIFT \
    (I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)

#define __I915_PMU_ENGINE(class, instance, sample) \
    ((class) << I915_PMU_CLASS_SHIFT | \
    (instance) << I915_PMU_SAMPLE_BITS | \
    (sample))

#define I915_PMU_ENGINE_BUSY(class, instance) \
    __I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)

#define I915_PMU_ENGINE_WAIT(class, instance) \
    __I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)

#define I915_PMU_ENGINE_SEMA(class, instance) \
    __I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)

#define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x))

#define I915_PMU_ACTUAL_FREQUENCY    __I915_PMU_OTHER(0)
#define I915_PMU_REQUESTED_FREQUENCY    __I915_PMU_OTHER(1)
#define I915_PMU_INTERRUPTS        __I915_PMU_OTHER(2)
#define I915_PMU_RC6_RESIDENCY        __I915_PMU_OTHER(3)
#define I915_PMU_SOFTWARE_GT_AWAKE_TIME    __I915_PMU_OTHER(4)

#define I915_PMU_LAST /* Deprecated - do not use */ I915_PMU_RC6_RESIDENCY

/* Each region is a minimum of 16k, and there are at most 255 of them.
 */
#define I915_NR_TEX_REGIONS 255    /* table size 2k - maximum due to use
                 * of chars for next/prev indices */
#define I915_LOG_MIN_TEX_REGION_SIZE 14

typedef struct _drm_i915_init {
    enum {
        I915_INIT_DMA = 0x01,
        I915_CLEANUP_DMA = 0x02,
        I915_RESUME_DMA = 0x03
    } func;
    unsigned int mmio_offset;
    int sarea_priv_offset;
    unsigned int ring_start;
    unsigned int ring_end;
    unsigned int ring_size;
    unsigned int front_offset;
    unsigned int back_offset;
    unsigned int depth_offset;
    unsigned int w;
    unsigned int h;
    unsigned int pitch;
    unsigned int pitch_bits;
    unsigned int back_pitch;
    unsigned int depth_pitch;
    unsigned int cpp;
    unsigned int chipset;
} drm_i915_init_t;

typedef struct _drm_i915_sarea {
    struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
    int last_upload;    /* last time texture was uploaded */
    int last_enqueue;    /* last time a buffer was enqueued */
    int last_dispatch;    /* age of the most recently dispatched buffer */
    int ctxOwner;        /* last context to upload state */
    int texAge;
    int pf_enabled;        /* is pageflipping allowed? */
    int pf_active;
    int pf_current_page;    /* which buffer is being displayed? */
    int perf_boxes;        /* performance boxes to be displayed */
    int width, height;      /* screen size in pixels */

    drm_handle_t front_handle;
    int front_offset;
    int front_size;

    drm_handle_t back_handle;
    int back_offset;
    int back_size;

    drm_handle_t depth_handle;
    int depth_offset;
    int depth_size;

    drm_handle_t tex_handle;
    int tex_offset;
    int tex_size;
    int log_tex_granularity;
    int pitch;
    int rotation;           /* 0, 90, 180 or 270 */
    int rotated_offset;
    int rotated_size;
    int rotated_pitch;
    int virtualX, virtualY;

    unsigned int front_tiled;
    unsigned int back_tiled;
    unsigned int depth_tiled;
    unsigned int rotated_tiled;
    unsigned int rotated2_tiled;

    int pipeA_x;
    int pipeA_y;
    int pipeA_w;
    int pipeA_h;
    int pipeB_x;
    int pipeB_y;
    int pipeB_w;
    int pipeB_h;

    /* fill out some space for old userspace triple buffer */
    drm_handle_t unused_handle;
    __u32 unused1, unused2, unused3;

    /* buffer object handles for static buffers. May change
     * over the lifetime of the client.
     */
    __u32 front_bo_handle;
    __u32 back_bo_handle;
    __u32 unused_bo_handle;
    __u32 depth_bo_handle;

} drm_i915_sarea_t;

/* due to userspace building against these headers we need some compat here */
#define planeA_x pipeA_x
#define planeA_y pipeA_y
#define planeA_w pipeA_w
#define planeA_h pipeA_h
#define planeB_x pipeB_x
#define planeB_y pipeB_y
#define planeB_w pipeB_w
#define planeB_h pipeB_h

/* Flags for perf_boxes
 */
#define I915_BOX_RING_EMPTY    0x1
#define I915_BOX_FLIP          0x2
#define I915_BOX_WAIT          0x4
#define I915_BOX_TEXTURE_LOAD  0x8
#define I915_BOX_LOST_CONTEXT  0x10

/*
 * i915 specific ioctls.
 *
 * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
 * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
 * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
 */
#define DRM_I915_INIT        0x00
#define DRM_I915_FLUSH        0x01
#define DRM_I915_FLIP        0x02
#define DRM_I915_BATCHBUFFER    0x03
#define DRM_I915_IRQ_EMIT    0x04
#define DRM_I915_IRQ_WAIT    0x05
#define DRM_I915_GETPARAM    0x06
#define DRM_I915_SETPARAM    0x07
#define DRM_I915_ALLOC        0x08
#define DRM_I915_FREE        0x09
#define DRM_I915_INIT_HEAP    0x0a
#define DRM_I915_CMDBUFFER    0x0b
#define DRM_I915_DESTROY_HEAP    0x0c
#define DRM_I915_SET_VBLANK_PIPE    0x0d
#define DRM_I915_GET_VBLANK_PIPE    0x0e
#define DRM_I915_VBLANK_SWAP    0x0f
#define DRM_I915_HWS_ADDR    0x11
#define DRM_I915_GEM_INIT    0x13
#define DRM_I915_GEM_EXECBUFFER    0x14
#define DRM_I915_GEM_PIN    0x15
#define DRM_I915_GEM_UNPIN    0x16
#define DRM_I915_GEM_BUSY    0x17
#define DRM_I915_GEM_THROTTLE    0x18
#define DRM_I915_GEM_ENTERVT    0x19
#define DRM_I915_GEM_LEAVEVT    0x1a
#define DRM_I915_GEM_CREATE    0x1b
#define DRM_I915_GEM_PREAD    0x1c
#define DRM_I915_GEM_PWRITE    0x1d
#define DRM_I915_GEM_MMAP    0x1e
#define DRM_I915_GEM_SET_DOMAIN    0x1f
#define DRM_I915_GEM_SW_FINISH    0x20
#define DRM_I915_GEM_SET_TILING    0x21
#define DRM_I915_GEM_GET_TILING    0x22
#define DRM_I915_GEM_GET_APERTURE 0x23
#define DRM_I915_GEM_MMAP_GTT    0x24
#define DRM_I915_GET_PIPE_FROM_CRTC_ID    0x25
#define DRM_I915_GEM_MADVISE    0x26
#define DRM_I915_OVERLAY_PUT_IMAGE    0x27
#define DRM_I915_OVERLAY_ATTRS    0x28
#define DRM_I915_GEM_EXECBUFFER2    0x29
#define DRM_I915_GEM_EXECBUFFER2_WR    DRM_I915_GEM_EXECBUFFER2
#define DRM_I915_GET_SPRITE_COLORKEY    0x2a
#define DRM_I915_SET_SPRITE_COLORKEY    0x2b
#define DRM_I915_GEM_WAIT    0x2c
#define DRM_I915_GEM_CONTEXT_CREATE    0x2d
#define DRM_I915_GEM_CONTEXT_DESTROY    0x2e
#define DRM_I915_GEM_SET_CACHING    0x2f
#define DRM_I915_GEM_GET_CACHING    0x30
#define DRM_I915_REG_READ        0x31
#define DRM_I915_GET_RESET_STATS    0x32
#define DRM_I915_GEM_USERPTR        0x33
#define DRM_I915_GEM_CONTEXT_GETPARAM    0x34
#define DRM_I915_GEM_CONTEXT_SETPARAM    0x35
#define DRM_I915_PERF_OPEN        0x36
#define DRM_I915_PERF_ADD_CONFIG    0x37
#define DRM_I915_PERF_REMOVE_CONFIG    0x38
#define DRM_I915_QUERY            0x39
#define DRM_I915_GEM_VM_CREATE        0x3a
#define DRM_I915_GEM_VM_DESTROY        0x3b
#define DRM_I915_GEM_CREATE_EXT        0x3c
/* Must be kept compact -- no holes */

#define DRM_IOCTL_I915_INIT        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
#define DRM_IOCTL_I915_FLUSH        DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
#define DRM_IOCTL_I915_FLIP        DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
#define DRM_IOCTL_I915_BATCHBUFFER    DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
#define DRM_IOCTL_I915_IRQ_EMIT         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
#define DRM_IOCTL_I915_IRQ_WAIT         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
#define DRM_IOCTL_I915_GETPARAM         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
#define DRM_IOCTL_I915_SETPARAM         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
#define DRM_IOCTL_I915_ALLOC            DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
#define DRM_IOCTL_I915_FREE             DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
#define DRM_IOCTL_I915_INIT_HEAP        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
#define DRM_IOCTL_I915_CMDBUFFER    DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
#define DRM_IOCTL_I915_DESTROY_HEAP    DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
#define DRM_IOCTL_I915_SET_VBLANK_PIPE    DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
#define DRM_IOCTL_I915_GET_VBLANK_PIPE    DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
#define DRM_IOCTL_I915_VBLANK_SWAP    DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
#define DRM_IOCTL_I915_HWS_ADDR        DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
#define DRM_IOCTL_I915_GEM_INIT        DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
#define DRM_IOCTL_I915_GEM_EXECBUFFER    DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
#define DRM_IOCTL_I915_GEM_EXECBUFFER2    DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
#define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR    DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
#define DRM_IOCTL_I915_GEM_PIN        DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
#define DRM_IOCTL_I915_GEM_UNPIN    DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
#define DRM_IOCTL_I915_GEM_BUSY        DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
#define DRM_IOCTL_I915_GEM_SET_CACHING        DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
#define DRM_IOCTL_I915_GEM_GET_CACHING        DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
#define DRM_IOCTL_I915_GEM_THROTTLE    DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
#define DRM_IOCTL_I915_GEM_ENTERVT    DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
#define DRM_IOCTL_I915_GEM_LEAVEVT    DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
#define DRM_IOCTL_I915_GEM_CREATE    DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
#define DRM_IOCTL_I915_GEM_CREATE_EXT    DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE_EXT, struct drm_i915_gem_create_ext)
#define DRM_IOCTL_I915_GEM_PREAD    DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
#define DRM_IOCTL_I915_GEM_PWRITE    DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
#define DRM_IOCTL_I915_GEM_MMAP        DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
#define DRM_IOCTL_I915_GEM_MMAP_GTT    DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
#define DRM_IOCTL_I915_GEM_MMAP_OFFSET    DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_offset)
#define DRM_IOCTL_I915_GEM_SET_DOMAIN    DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
#define DRM_IOCTL_I915_GEM_SW_FINISH    DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
#define DRM_IOCTL_I915_GEM_SET_TILING    DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
#define DRM_IOCTL_I915_GEM_GET_TILING    DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
#define DRM_IOCTL_I915_GEM_GET_APERTURE    DRM_IOR  (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
#define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
#define DRM_IOCTL_I915_GEM_MADVISE    DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
#define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE    DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
#define DRM_IOCTL_I915_OVERLAY_ATTRS    DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
#define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
#define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
#define DRM_IOCTL_I915_GEM_WAIT        DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
#define DRM_IOCTL_I915_GEM_CONTEXT_CREATE    DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
#define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT    DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext)
#define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY    DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
#define DRM_IOCTL_I915_REG_READ            DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
#define DRM_IOCTL_I915_GET_RESET_STATS        DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
#define DRM_IOCTL_I915_GEM_USERPTR            DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
#define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM    DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
#define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM    DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
#define DRM_IOCTL_I915_PERF_OPEN    DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
#define DRM_IOCTL_I915_PERF_ADD_CONFIG    DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
#define DRM_IOCTL_I915_PERF_REMOVE_CONFIG    DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
#define DRM_IOCTL_I915_QUERY            DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
#define DRM_IOCTL_I915_GEM_VM_CREATE    DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control)
#define DRM_IOCTL_I915_GEM_VM_DESTROY    DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control)

/* Allow drivers to submit batchbuffers directly to hardware, relying
 * on the security mechanisms provided by hardware.
 */
typedef struct drm_i915_batchbuffer {
    int start;        /* agp offset */
    int used;        /* nr bytes in use */
    int DR1;        /* hw flags for GFX_OP_DRAWRECT_INFO */
    int DR4;        /* window origin for GFX_OP_DRAWRECT_INFO */
    int num_cliprects;    /* mulitpass with multiple cliprects? */
    struct drm_clip_rect *cliprects;    /* pointer to userspace cliprects */
} drm_i915_batchbuffer_t;

/* As above, but pass a pointer to userspace buffer which can be
 * validated by the kernel prior to sending to hardware.
 */
typedef struct _drm_i915_cmdbuffer {
    char *buf;    /* pointer to userspace command buffer */
    int sz;            /* nr bytes in buf */
    int DR1;        /* hw flags for GFX_OP_DRAWRECT_INFO */
    int DR4;        /* window origin for GFX_OP_DRAWRECT_INFO */
    int num_cliprects;    /* mulitpass with multiple cliprects? */
    struct drm_clip_rect *cliprects;    /* pointer to userspace cliprects */
} drm_i915_cmdbuffer_t;

/* Userspace can request & wait on irq's:
 */
typedef struct drm_i915_irq_emit {
    int *irq_seq;
} drm_i915_irq_emit_t;

typedef struct drm_i915_irq_wait {
    int irq_seq;
} drm_i915_irq_wait_t;

/*
 * Different modes of per-process Graphics Translation Table,
 * see I915_PARAM_HAS_ALIASING_PPGTT
 */
#define I915_GEM_PPGTT_NONE    0
#define I915_GEM_PPGTT_ALIASING    1
#define I915_GEM_PPGTT_FULL    2

/* Ioctl to query kernel params:
 */
#define I915_PARAM_IRQ_ACTIVE            1
#define I915_PARAM_ALLOW_BATCHBUFFER     2
#define I915_PARAM_LAST_DISPATCH         3
#define I915_PARAM_CHIPSET_ID            4
#define I915_PARAM_HAS_GEM               5
#define I915_PARAM_NUM_FENCES_AVAIL      6
#define I915_PARAM_HAS_OVERLAY           7
#define I915_PARAM_HAS_PAGEFLIPPING     8
#define I915_PARAM_HAS_EXECBUF2          9
#define I915_PARAM_HAS_BSD         10
#define I915_PARAM_HAS_BLT         11
#define I915_PARAM_HAS_RELAXED_FENCING     12
#define I915_PARAM_HAS_COHERENT_RINGS     13
#define I915_PARAM_HAS_EXEC_CONSTANTS     14
#define I915_PARAM_HAS_RELAXED_DELTA     15
#define I915_PARAM_HAS_GEN7_SOL_RESET     16
#define I915_PARAM_HAS_LLC               17
#define I915_PARAM_HAS_ALIASING_PPGTT     18
#define I915_PARAM_HAS_WAIT_TIMEOUT     19
#define I915_PARAM_HAS_SEMAPHORES     20
#define I915_PARAM_HAS_PRIME_VMAP_FLUSH     21
#define I915_PARAM_HAS_VEBOX         22
#define I915_PARAM_HAS_SECURE_BATCHES     23
#define I915_PARAM_HAS_PINNED_BATCHES     24
#define I915_PARAM_HAS_EXEC_NO_RELOC     25
#define I915_PARAM_HAS_EXEC_HANDLE_LUT   26
#define I915_PARAM_HAS_WT               27
#define I915_PARAM_CMD_PARSER_VERSION     28
#define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
#define I915_PARAM_MMAP_VERSION          30
#define I915_PARAM_HAS_BSD2         31
#define I915_PARAM_REVISION              32
#define I915_PARAM_SUBSLICE_TOTAL     33
#define I915_PARAM_EU_TOTAL         34
#define I915_PARAM_HAS_GPU_RESET     35
#define I915_PARAM_HAS_RESOURCE_STREAMER 36
#define I915_PARAM_HAS_EXEC_SOFTPIN     37
#define I915_PARAM_HAS_POOLED_EU     38
#define I915_PARAM_MIN_EU_IN_POOL     39
#define I915_PARAM_MMAP_GTT_VERSION     40

/*
 * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
 * priorities and the driver will attempt to execute batches in priority order.
 * The param returns a capability bitmask, nonzero implies that the scheduler
 * is enabled, with different features present according to the mask.
 *
 * The initial priority for each batch is supplied by the context and is
 * controlled via I915_CONTEXT_PARAM_PRIORITY.
 */
#define I915_PARAM_HAS_SCHEDULER     41
#define   I915_SCHEDULER_CAP_ENABLED    (1ul << 0)
#define   I915_SCHEDULER_CAP_PRIORITY    (1ul << 1)
#define   I915_SCHEDULER_CAP_PREEMPTION    (1ul << 2)
#define   I915_SCHEDULER_CAP_SEMAPHORES    (1ul << 3)
#define   I915_SCHEDULER_CAP_ENGINE_BUSY_STATS    (1ul << 4)
/*
 * Indicates the 2k user priority levels are statically mapped into 3 buckets as
 * follows:
 *
 * -1k to -1    Low priority
 * 0        Normal priority
 * 1 to 1k    Highest priority
 */
#define   I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP    (1ul << 5)

/*
 * Query the status of HuC load.
 *
 * The query can fail in the following scenarios with the listed error codes:
 *  -ENODEV if HuC is not present on this platform,
 *  -EOPNOTSUPP if HuC firmware usage is disabled,
 *  -ENOPKG if HuC firmware fetch failed,
 *  -ENOEXEC if HuC firmware is invalid or mismatched,
 *  -ENOMEM if i915 failed to prepare the FW objects for transfer to the uC,
 *  -EIO if the FW transfer or the FW authentication failed.
 *
 * If the IOCTL is successful, the returned parameter will be set to one of the
 * following values:
 *  * 0 if HuC firmware load is not complete,
 *  * 1 if HuC firmware is authenticated and running.
 */
#define I915_PARAM_HUC_STATUS         42

/* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
 * synchronisation with implicit fencing on individual objects.
 * See EXEC_OBJECT_ASYNC.
 */
#define I915_PARAM_HAS_EXEC_ASYNC     43

/* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
 * both being able to pass in a sync_file fd to wait upon before executing,
 * and being able to return a new sync_file fd that is signaled when the
 * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
 */
#define I915_PARAM_HAS_EXEC_FENCE     44

/* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
 * user specified bufffers for post-mortem debugging of GPU hangs. See
 * EXEC_OBJECT_CAPTURE.
 */
#define I915_PARAM_HAS_EXEC_CAPTURE     45

#define I915_PARAM_SLICE_MASK         46

/* Assuming it's uniform for each slice, this queries the mask of subslices
 * per-slice for this system.
 */
#define I915_PARAM_SUBSLICE_MASK     47

/*
 * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
 * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
 */
#define I915_PARAM_HAS_EXEC_BATCH_FIRST     48

/* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
 * drm_i915_gem_exec_fence structures.  See I915_EXEC_FENCE_ARRAY.
 */
#define I915_PARAM_HAS_EXEC_FENCE_ARRAY  49

/*
 * Query whether every context (both per-file default and user created) is
 * isolated (insofar as HW supports). If this parameter is not true, then
 * freshly created contexts may inherit values from an existing context,
 * rather than default HW values. If true, it also ensures (insofar as HW
 * supports) that all state set by this context will not leak to any other
 * context.
 *
 * As not every engine across every gen support contexts, the returned
 * value reports the support of context isolation for individual engines by
 * returning a bitmask of each engine class set to true if that class supports
 * isolation.
 */
#define I915_PARAM_HAS_CONTEXT_ISOLATION 50

/* Frequency of the command streamer timestamps given by the *_TIMESTAMP
 * registers. This used to be fixed per platform but from CNL onwards, this
 * might vary depending on the parts.
 */
#define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51

/*
 * Once upon a time we supposed that writes through the GGTT would be
 * immediately in physical memory (once flushed out of the CPU path). However,
 * on a few different processors and chipsets, this is not necessarily the case
 * as the writes appear to be buffered internally. Thus a read of the backing
 * storage (physical memory) via a different path (with different physical tags
 * to the indirect write via the GGTT) will see stale values from before
 * the GGTT write. Inside the kernel, we can for the most part keep track of
 * the different read/write domains in use (e.g. set-domain), but the assumption
 * of coherency is baked into the ABI, hence reporting its true state in this
 * parameter.
 *
 * Reports true when writes via mmap_gtt are immediately visible following an
 * lfence to flush the WCB.
 *
 * Reports false when writes via mmap_gtt are indeterminately delayed in an in
 * internal buffer and are _not_ immediately visible to third parties accessing
 * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
 * communications channel when reporting false is strongly disadvised.
 */
#define I915_PARAM_MMAP_GTT_COHERENT    52

/*
 * Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel
 * execution through use of explicit fence support.
 * See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT.
 */
#define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53

/*
 * Revision of the i915-perf uAPI. The value returned helps determine what
 * i915-perf features are available. See drm_i915_perf_property_id.
 */
#define I915_PARAM_PERF_REVISION    54

/* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
 * timeline syncobj through drm_i915_gem_execbuffer_ext_timeline_fences. See
 * I915_EXEC_USE_EXTENSIONS.
 */
#define I915_PARAM_HAS_EXEC_TIMELINE_FENCES 55

/* Query if the kernel supports the I915_USERPTR_PROBE flag. */
#define I915_PARAM_HAS_USERPTR_PROBE 56

/*
 * Frequency of the timestamps in OA reports. This used to be the same as the CS
 * timestamp frequency, but differs on some platforms.
 */
#define I915_PARAM_OA_TIMESTAMP_FREQUENCY 57

/* Must be kept compact -- no holes and well documented */

/**
 * struct drm_i915_getparam - Driver parameter query structure.
 */
struct drm_i915_getparam {
    /** @param: Driver parameter to query. */
    __s32 param;

    /**
     * @value: Address of memory where queried value should be put.
     *
     * WARNING: Using pointers instead of fixed-size u64 means we need to write
     * compat32 code. Don't repeat this mistake.
     */
    int *value;
};

/**
 * typedef drm_i915_getparam_t - Driver parameter query structure.
 * See struct drm_i915_getparam.
 */
typedef struct drm_i915_getparam drm_i915_getparam_t;

/* Ioctl to set kernel params:
 */
#define I915_SETPARAM_USE_MI_BATCHBUFFER_START            1
#define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY             2
#define I915_SETPARAM_ALLOW_BATCHBUFFER                   3
#define I915_SETPARAM_NUM_USED_FENCES                     4
/* Must be kept compact -- no holes */

typedef struct drm_i915_setparam {
    int param;
    int value;
} drm_i915_setparam_t;

/* A memory manager for regions of shared memory:
 */
#define I915_MEM_REGION_AGP 1

typedef struct drm_i915_mem_alloc {
    int region;
    int alignment;
    int size;
    int *region_offset;    /* offset from start of fb or agp */
} drm_i915_mem_alloc_t;

typedef struct drm_i915_mem_free {
    int region;
    int region_offset;
} drm_i915_mem_free_t;

typedef struct drm_i915_mem_init_heap {
    int region;
    int size;
    int start;
} drm_i915_mem_init_heap_t;

/* Allow memory manager to be torn down and re-initialized (eg on
 * rotate):
 */
typedef struct drm_i915_mem_destroy_heap {
    int region;
} drm_i915_mem_destroy_heap_t;

/* Allow X server to configure which pipes to monitor for vblank signals
 */
#define    DRM_I915_VBLANK_PIPE_A    1
#define    DRM_I915_VBLANK_PIPE_B    2

typedef struct drm_i915_vblank_pipe {
    int pipe;
} drm_i915_vblank_pipe_t;

/* Schedule buffer swap at given vertical blank:
 */
typedef struct drm_i915_vblank_swap {
    drm_drawable_t drawable;
    enum drm_vblank_seq_type seqtype;
    unsigned int sequence;
} drm_i915_vblank_swap_t;

typedef struct drm_i915_hws_addr {
    __u64 addr;
} drm_i915_hws_addr_t;

struct drm_i915_gem_init {
    /**
     * Beginning offset in the GTT to be managed by the DRM memory
     * manager.
     */
    __u64 gtt_start;
    /**
     * Ending offset in the GTT to be managed by the DRM memory
     * manager.
     */
    __u64 gtt_end;
};

struct drm_i915_gem_create {
    /**
     * Requested size for the object.
     *
     * The (page-aligned) allocated size for the object will be returned.
     */
    __u64 size;
    /**
     * Returned handle for the object.
     *
     * Object handles are nonzero.
     */
    __u32 handle;
    __u32 pad;
};

struct drm_i915_gem_pread {
    /** Handle for the object being read. */
    __u32 handle;
    __u32 pad;
    /** Offset into the object to read from */
    __u64 offset;
    /** Length of data to read */
    __u64 size;
    /**
     * Pointer to write the data into.
     *
     * This is a fixed-size type for 32/64 compatibility.
     */
    __u64 data_ptr;
};

struct drm_i915_gem_pwrite {
    /** Handle for the object being written to. */
    __u32 handle;
    __u32 pad;
    /** Offset into the object to write to */
    __u64 offset;
    /** Length of data to write */
    __u64 size;
    /**
     * Pointer to read the data from.
     *
     * This is a fixed-size type for 32/64 compatibility.
     */
    __u64 data_ptr;
};

struct drm_i915_gem_mmap {
    /** Handle for the object being mapped. */
    __u32 handle;
    __u32 pad;
    /** Offset in the object to map. */
    __u64 offset;
    /**
     * Length of data to map.
     *
     * The value will be page-aligned.
     */
    __u64 size;
    /**
     * Returned pointer the data was mapped at.
     *
     * This is a fixed-size type for 32/64 compatibility.
     */
    __u64 addr_ptr;

    /**
     * Flags for extended behaviour.
     *
     * Added in version 2.
     */
    __u64 flags;
#define I915_MMAP_WC 0x1
};

struct drm_i915_gem_mmap_gtt {
    /** Handle for the object being mapped. */
    __u32 handle;
    __u32 pad;
    /**
     * Fake offset to use for subsequent mmap call
     *
     * This is a fixed-size type for 32/64 compatibility.
     */
    __u64 offset;
};

/**
 * struct drm_i915_gem_mmap_offset - Retrieve an offset so we can mmap this buffer object.
 *
 * This struct is passed as argument to the `DRM_IOCTL_I915_GEM_MMAP_OFFSET` ioctl,
 * and is used to retrieve the fake offset to mmap an object specified by &handle.
 *
 * The legacy way of using `DRM_IOCTL_I915_GEM_MMAP` is removed on gen12+.
 * `DRM_IOCTL_I915_GEM_MMAP_GTT` is an older supported alias to this struct, but will behave
 * as setting the &extensions to 0, and &flags to `I915_MMAP_OFFSET_GTT`.
 */
struct drm_i915_gem_mmap_offset {
    /** @handle: Handle for the object being mapped. */
    __u32 handle;
    /** @pad: Must be zero */
    __u32 pad;
    /**
     * @offset: The fake offset to use for subsequent mmap call
     *
     * This is a fixed-size type for 32/64 compatibility.
     */
    __u64 offset;

    /**
     * @flags: Flags for extended behaviour.
     *
     * It is mandatory that one of the `MMAP_OFFSET` types
     * should be included:
     *
     * - `I915_MMAP_OFFSET_GTT`: Use mmap with the object bound to GTT. (Write-Combined)
     * - `I915_MMAP_OFFSET_WC`: Use Write-Combined caching.
     * - `I915_MMAP_OFFSET_WB`: Use Write-Back caching.
     * - `I915_MMAP_OFFSET_FIXED`: Use object placement to determine caching.
     *
     * On devices with local memory `I915_MMAP_OFFSET_FIXED` is the only valid
     * type. On devices without local memory, this caching mode is invalid.
     *
     * As caching mode when specifying `I915_MMAP_OFFSET_FIXED`, WC or WB will
     * be used, depending on the object placement on creation. WB will be used
     * when the object can only exist in system memory, WC otherwise.
     */
    __u64 flags;

#define I915_MMAP_OFFSET_GTT    0
#define I915_MMAP_OFFSET_WC    1
#define I915_MMAP_OFFSET_WB    2
#define I915_MMAP_OFFSET_UC    3
#define I915_MMAP_OFFSET_FIXED    4

    /**
     * @extensions: Zero-terminated chain of extensions.
     *
     * No current extensions defined; mbz.
     */
    __u64 extensions;
};

/**
 * struct drm_i915_gem_set_domain - Adjust the objects write or read domain, in
 * preparation for accessing the pages via some CPU domain.
 *
 * Specifying a new write or read domain will flush the object out of the
 * previous domain(if required), before then updating the objects domain
 * tracking with the new domain.
 *
 * Note this might involve waiting for the object first if it is still active on
 * the GPU.
 *
 * Supported values for @read_domains and @write_domain:
 *
 *    - I915_GEM_DOMAIN_WC: Uncached write-combined domain
 *    - I915_GEM_DOMAIN_CPU: CPU cache domain
 *    - I915_GEM_DOMAIN_GTT: Mappable aperture domain
 *
 * All other domains are rejected.
 *
 * Note that for discrete, starting from DG1, this is no longer supported, and
 * is instead rejected. On such platforms the CPU domain is effectively static,
 * where we also only support a single &drm_i915_gem_mmap_offset cache mode,
 * which can't be set explicitly and instead depends on the object placements,
 * as per the below.
 *
 * Implicit caching rules, starting from DG1:
 *
 *    - If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
 *      contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
 *      mapped as write-combined only.
 *
 *    - Everything else is always allocated and mapped as write-back, with the
 *      guarantee that everything is also coherent with the GPU.
 *
 * Note that this is likely to change in the future again, where we might need
 * more flexibility on future devices, so making this all explicit as part of a
 * new &drm_i915_gem_create_ext extension is probable.
 */
struct drm_i915_gem_set_domain {
    /** @handle: Handle for the object. */
    __u32 handle;

    /** @read_domains: New read domains. */
    __u32 read_domains;

    /**
     * @write_domain: New write domain.
     *
     * Note that having something in the write domain implies it's in the
     * read domain, and only that read domain.
     */
    __u32 write_domain;
};

struct drm_i915_gem_sw_finish {
    /** Handle for the object */
    __u32 handle;
};

struct drm_i915_gem_relocation_entry {
    /**
     * Handle of the buffer being pointed to by this relocation entry.
     *
     * It's appealing to make this be an index into the mm_validate_entry
     * list to refer to the buffer, but this allows the driver to create
     * a relocation list for state buffers and not re-write it per
     * exec using the buffer.
     */
    __u32 target_handle;

    /**
     * Value to be added to the offset of the target buffer to make up
     * the relocation entry.
     */
    __u32 delta;

    /** Offset in the buffer the relocation entry will be written into */
    __u64 offset;

    /**
     * Offset value of the target buffer that the relocation entry was last
     * written as.
     *
     * If the buffer has the same offset as last time, we can skip syncing
     * and writing the relocation.  This value is written back out by
     * the execbuffer ioctl when the relocation is written.
     */
    __u64 presumed_offset;

    /**
     * Target memory domains read by this operation.
     */
    __u32 read_domains;

    /**
     * Target memory domains written by this operation.
     *
     * Note that only one domain may be written by the whole
     * execbuffer operation, so that where there are conflicts,
     * the application will get -EINVAL back.
     */
    __u32 write_domain;
};

/** @{
 * Intel memory domains
 *
 * Most of these just align with the various caches in
 * the system and are used to flush and invalidate as
 * objects end up cached in different domains.
 */
/** CPU cache */
#define I915_GEM_DOMAIN_CPU        0x00000001
/** Render cache, used by 2D and 3D drawing */
#define I915_GEM_DOMAIN_RENDER        0x00000002
/** Sampler cache, used by texture engine */
#define I915_GEM_DOMAIN_SAMPLER        0x00000004
/** Command queue, used to load batch buffers */
#define I915_GEM_DOMAIN_COMMAND        0x00000008
/** Instruction cache, used by shader programs */
#define I915_GEM_DOMAIN_INSTRUCTION    0x00000010
/** Vertex address cache */
#define I915_GEM_DOMAIN_VERTEX        0x00000020
/** GTT domain - aperture and scanout */
#define I915_GEM_DOMAIN_GTT        0x00000040
/** WC domain - uncached access */
#define I915_GEM_DOMAIN_WC        0x00000080
/** @} */

struct drm_i915_gem_exec_object {
    /**
     * User's handle for a buffer to be bound into the GTT for this
     * operation.
     */
    __u32 handle;

    /** Number of relocations to be performed on this buffer */
    __u32 relocation_count;
    /**
     * Pointer to array of struct drm_i915_gem_relocation_entry containing
     * the relocations to be performed in this buffer.
     */
    __u64 relocs_ptr;

    /** Required alignment in graphics aperture */
    __u64 alignment;

    /**
     * Returned value of the updated offset of the object, for future
     * presumed_offset writes.
     */
    __u64 offset;
};

/* DRM_IOCTL_I915_GEM_EXECBUFFER was removed in Linux 5.13 */
struct drm_i915_gem_execbuffer {
    /**
     * List of buffers to be validated with their relocations to be
     * performend on them.
     *
     * This is a pointer to an array of struct drm_i915_gem_validate_entry.
     *
     * These buffers must be listed in an order such that all relocations
     * a buffer is performing refer to buffers that have already appeared
     * in the validate list.
     */
    __u64 buffers_ptr;
    __u32 buffer_count;

    /** Offset in the batchbuffer to start execution from. */
    __u32 batch_start_offset;
    /** Bytes used in batchbuffer from batch_start_offset */
    __u32 batch_len;
    __u32 DR1;
    __u32 DR4;
    __u32 num_cliprects;
    /** This is a struct drm_clip_rect *cliprects */
    __u64 cliprects_ptr;
};

struct drm_i915_gem_exec_object2 {
    /**
     * User's handle for a buffer to be bound into the GTT for this
     * operation.
     */
    __u32 handle;

    /** Number of relocations to be performed on this buffer */
    __u32 relocation_count;
    /**
     * Pointer to array of struct drm_i915_gem_relocation_entry containing
     * the relocations to be performed in this buffer.
     */
    __u64 relocs_ptr;

    /** Required alignment in graphics aperture */
    __u64 alignment;

    /**
     * When the EXEC_OBJECT_PINNED flag is specified this is populated by
     * the user with the GTT offset at which this object will be pinned.
     *
     * When the I915_EXEC_NO_RELOC flag is specified this must contain the
     * presumed_offset of the object.
     *
     * During execbuffer2 the kernel populates it with the value of the
     * current GTT offset of the object, for future presumed_offset writes.
     *
     * See struct drm_i915_gem_create_ext for the rules when dealing with
     * alignment restrictions with I915_MEMORY_CLASS_DEVICE, on devices with
     * minimum page sizes, like DG2.
     */
    __u64 offset;

#define EXEC_OBJECT_NEEDS_FENCE         (1<<0)
#define EXEC_OBJECT_NEEDS_GTT         (1<<1)
#define EXEC_OBJECT_WRITE         (1<<2)
#define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
#define EXEC_OBJECT_PINNED         (1<<4)
#define EXEC_OBJECT_PAD_TO_SIZE         (1<<5)
/* The kernel implicitly tracks GPU activity on all GEM objects, and
 * synchronises operations with outstanding rendering. This includes
 * rendering on other devices if exported via dma-buf. However, sometimes
 * this tracking is too coarse and the user knows better. For example,
 * if the object is split into non-overlapping ranges shared between different
 * clients or engines (i.e. suballocating objects), the implicit tracking
 * by kernel assumes that each operation affects the whole object rather
 * than an individual range, causing needless synchronisation between clients.
 * The kernel will also forgo any CPU cache flushes prior to rendering from
 * the object as the client is expected to be also handling such domain
 * tracking.
 *
 * The kernel maintains the implicit tracking in order to manage resources
 * used by the GPU - this flag only disables the synchronisation prior to
 * rendering with this object in this execbuf.
 *
 * Opting out of implicit synhronisation requires the user to do its own
 * explicit tracking to avoid rendering corruption. See, for example,
 * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
 */
#define EXEC_OBJECT_ASYNC        (1<<6)
/* Request that the contents of this execobject be copied into the error
 * state upon a GPU hang involving this batch for post-mortem debugging.
 * These buffers are recorded in no particular order as "user" in
 * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
 * if the kernel supports this flag.
 */
#define EXEC_OBJECT_CAPTURE        (1<<7)
/* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
#define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
    __u64 flags;

    union {
        __u64 rsvd1;
        __u64 pad_to_size;
    };
    __u64 rsvd2;
};

/**
 * struct drm_i915_gem_exec_fence - An input or output fence for the execbuf
 * ioctl.
 *
 * The request will wait for input fence to signal before submission.
 *
 * The returned output fence will be signaled after the completion of the
 * request.
 */
struct drm_i915_gem_exec_fence {
    /** @handle: User's handle for a drm_syncobj to wait on or signal. */
    __u32 handle;

    /**
     * @flags: Supported flags are:
     *
     * I915_EXEC_FENCE_WAIT:
     * Wait for the input fence before request submission.
     *
     * I915_EXEC_FENCE_SIGNAL:
     * Return request completion fence as output
     */
    __u32 flags;
#define I915_EXEC_FENCE_WAIT            (1<<0)
#define I915_EXEC_FENCE_SIGNAL          (1<<1)
#define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
};

/**
 * struct drm_i915_gem_execbuffer_ext_timeline_fences - Timeline fences
 * for execbuf ioctl.
 *
 * This structure describes an array of drm_syncobj and associated points for
 * timeline variants of drm_syncobj. It is invalid to append this structure to
 * the execbuf if I915_EXEC_FENCE_ARRAY is set.
 */
struct drm_i915_gem_execbuffer_ext_timeline_fences {
#define DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES 0
    /** @base: Extension link. See struct i915_user_extension. */
    struct i915_user_extension base;

    /**
     * @fence_count: Number of elements in the @handles_ptr & @value_ptr
     * arrays.
     */
    __u64 fence_count;

    /**
     * @handles_ptr: Pointer to an array of struct drm_i915_gem_exec_fence
     * of length @fence_count.
     */
    __u64 handles_ptr;

    /**
     * @values_ptr: Pointer to an array of u64 values of length
     * @fence_count.
     * Values must be 0 for a binary drm_syncobj. A Value of 0 for a
     * timeline drm_syncobj is invalid as it turns a drm_syncobj into a
     * binary one.
     */
    __u64 values_ptr;
};

/**
 * struct drm_i915_gem_execbuffer2 - Structure for DRM_I915_GEM_EXECBUFFER2
 * ioctl.
 */
struct drm_i915_gem_execbuffer2 {
    /** @buffers_ptr: Pointer to a list of gem_exec_object2 structs */
    __u64 buffers_ptr;

    /** @buffer_count: Number of elements in @buffers_ptr array */
    __u32 buffer_count;

    /**
     * @batch_start_offset: Offset in the batchbuffer to start execution
     * from.
     */
    __u32 batch_start_offset;

    /**
     * @batch_len: Length in bytes of the batch buffer, starting from the
     * @batch_start_offset. If 0, length is assumed to be the batch buffer
     * object size.
     */
    __u32 batch_len;

    /** @DR1: deprecated */
    __u32 DR1;

    /** @DR4: deprecated */
    __u32 DR4;

    /** @num_cliprects: See @cliprects_ptr */
    __u32 num_cliprects;

    /**
     * @cliprects_ptr: Kernel clipping was a DRI1 misfeature.
     *
     * It is invalid to use this field if I915_EXEC_FENCE_ARRAY or
     * I915_EXEC_USE_EXTENSIONS flags are not set.
     *
     * If I915_EXEC_FENCE_ARRAY is set, then this is a pointer to an array
     * of &drm_i915_gem_exec_fence and @num_cliprects is the length of the
     * array.
     *
     * If I915_EXEC_USE_EXTENSIONS is set, then this is a pointer to a
     * single &i915_user_extension and num_cliprects is 0.
     */
    __u64 cliprects_ptr;

    /** @flags: Execbuf flags */
    __u64 flags;
#define I915_EXEC_RING_MASK              (0x3f)
#define I915_EXEC_DEFAULT                (0<<0)
#define I915_EXEC_RENDER                 (1<<0)
#define I915_EXEC_BSD                    (2<<0)
#define I915_EXEC_BLT                    (3<<0)
#define I915_EXEC_VEBOX                  (4<<0)

/* Used for switching the constants addressing mode on gen4+ RENDER ring.
 * Gen6+ only supports relative addressing to dynamic state (default) and
 * absolute addressing.
 *
 * These flags are ignored for the BSD and BLT rings.
 */
#define I915_EXEC_CONSTANTS_MASK     (3<<6)
#define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
#define I915_EXEC_CONSTANTS_ABSOLUTE     (1<<6)
#define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */

/** Resets the SO write offset registers for transform feedback on gen7. */
#define I915_EXEC_GEN7_SOL_RESET    (1<<8)

/** Request a privileged ("secure") batch buffer. Note only available for
 * DRM_ROOT_ONLY | DRM_MASTER processes.
 */
#define I915_EXEC_SECURE        (1<<9)

/** Inform the kernel that the batch is and will always be pinned. This
 * negates the requirement for a workaround to be performed to avoid
 * an incoherent CS (such as can be found on 830/845). If this flag is
 * not passed, the kernel will endeavour to make sure the batch is
 * coherent with the CS before execution. If this flag is passed,
 * userspace assumes the responsibility for ensuring the same.
 */
#define I915_EXEC_IS_PINNED        (1<<10)

/** Provide a hint to the kernel that the command stream and auxiliary
 * state buffers already holds the correct presumed addresses and so the
 * relocation process may be skipped if no buffers need to be moved in
 * preparation for the execbuffer.
 */
#define I915_EXEC_NO_RELOC        (1<<11)

/** Use the reloc.handle as an index into the exec object array rather
 * than as the per-file handle.
 */
#define I915_EXEC_HANDLE_LUT        (1<<12)

/** Used for switching BSD rings on the platforms with two BSD rings */
#define I915_EXEC_BSD_SHIFT     (13)
#define I915_EXEC_BSD_MASK     (3 << I915_EXEC_BSD_SHIFT)
/* default ping-pong mode */
#define I915_EXEC_BSD_DEFAULT     (0 << I915_EXEC_BSD_SHIFT)
#define I915_EXEC_BSD_RING1     (1 << I915_EXEC_BSD_SHIFT)
#define I915_EXEC_BSD_RING2     (2 << I915_EXEC_BSD_SHIFT)

/** Tell the kernel that the batchbuffer is processed by
 *  the resource streamer.
 */
#define I915_EXEC_RESOURCE_STREAMER     (1<<15)

/* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
 * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
 * the batch.
 *
 * Returns -EINVAL if the sync_file fd cannot be found.
 */
#define I915_EXEC_FENCE_IN        (1<<16)

/* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
 * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
 * to the caller, and it should be close() after use. (The fd is a regular
 * file descriptor and will be cleaned up on process termination. It holds
 * a reference to the request, but nothing else.)
 *
 * The sync_file fd can be combined with other sync_file and passed either
 * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
 * will only occur after this request completes), or to other devices.
 *
 * Using I915_EXEC_FENCE_OUT requires use of
 * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
 * back to userspace. Failure to do so will cause the out-fence to always
 * be reported as zero, and the real fence fd to be leaked.
 */
#define I915_EXEC_FENCE_OUT        (1<<17)

/*
 * Traditionally the execbuf ioctl has only considered the final element in
 * the execobject[] to be the executable batch. Often though, the client
 * will known the batch object prior to construction and being able to place
 * it into the execobject[] array first can simplify the relocation tracking.
 * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
 * execobject[] as the * batch instead (the default is to use the last
 * element).
 */
#define I915_EXEC_BATCH_FIRST        (1<<18)

/* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
 * define an array of i915_gem_exec_fence structures which specify a set of
 * dma fences to wait upon or signal.
 */
#define I915_EXEC_FENCE_ARRAY   (1<<19)

/*
 * Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent
 * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
 * the batch.
 *
 * Returns -EINVAL if the sync_file fd cannot be found.
 */
#define I915_EXEC_FENCE_SUBMIT        (1 << 20)

/*
 * Setting I915_EXEC_USE_EXTENSIONS implies that
 * drm_i915_gem_execbuffer2.cliprects_ptr is treated as a pointer to an linked
 * list of i915_user_extension. Each i915_user_extension node is the base of a
 * larger structure. The list of supported structures are listed in the
 * drm_i915_gem_execbuffer_ext enum.
 */
#define I915_EXEC_USE_EXTENSIONS    (1 << 21)
#define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_USE_EXTENSIONS << 1))

    /** @rsvd1: Context id */
    __u64 rsvd1;

    /**
     * @rsvd2: in and out sync_file file descriptors.
     *
     * When I915_EXEC_FENCE_IN or I915_EXEC_FENCE_SUBMIT flag is set, the
     * lower 32 bits of this field will have the in sync_file fd (input).
     *
     * When I915_EXEC_FENCE_OUT flag is set, the upper 32 bits of this
     * field will have the out sync_file fd (output).
     */
    __u64 rsvd2;
};

#define I915_EXEC_CONTEXT_ID_MASK    (0xffffffff)
#define i915_execbuffer2_set_context_id(eb2, context) \
    (eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
#define i915_execbuffer2_get_context_id(eb2) \
    ((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)

struct drm_i915_gem_pin {
    /** Handle of the buffer to be pinned. */
    __u32 handle;
    __u32 pad;

    /** alignment required within the aperture */
    __u64 alignment;

    /** Returned GTT offset of the buffer. */
    __u64 offset;
};

struct drm_i915_gem_unpin {
    /** Handle of the buffer to be unpinned. */
    __u32 handle;
    __u32 pad;
};

struct drm_i915_gem_busy {
    /** Handle of the buffer to check for busy */
    __u32 handle;

    /** Return busy status
     *
     * A return of 0 implies that the object is idle (after
     * having flushed any pending activity), and a non-zero return that
     * the object is still in-flight on the GPU. (The GPU has not yet
     * signaled completion for all pending requests that reference the
     * object.) An object is guaranteed to become idle eventually (so
     * long as no new GPU commands are executed upon it). Due to the
     * asynchronous nature of the hardware, an object reported
     * as busy may become idle before the ioctl is completed.
     *
     * Furthermore, if the object is busy, which engine is busy is only
     * provided as a guide and only indirectly by reporting its class
     * (there may be more than one engine in each class). There are race
     * conditions which prevent the report of which engines are busy from
     * being always accurate.  However, the converse is not true. If the
     * object is idle, the result of the ioctl, that all engines are idle,
     * is accurate.
     *
     * The returned dword is split into two fields to indicate both
     * the engine classess on which the object is being read, and the
     * engine class on which it is currently being written (if any).
     *
     * The low word (bits 0:15) indicate if the object is being written
     * to by any engine (there can only be one, as the GEM implicit
     * synchronisation rules force writes to be serialised). Only the
     * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as
     * 1 not 0 etc) for the last write is reported.
     *
     * The high word (bits 16:31) are a bitmask of which engines classes
     * are currently reading from the object. Multiple engines may be
     * reading from the object simultaneously.
     *
     * The value of each engine class is the same as specified in the
     * I915_CONTEXT_PARAM_ENGINES context parameter and via perf, i.e.
     * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc.
     * Some hardware may have parallel execution engines, e.g. multiple
     * media engines, which are mapped to the same class identifier and so
     * are not separately reported for busyness.
     *
     * Caveat emptor:
     * Only the boolean result of this query is reliable; that is whether
     * the object is idle or busy. The report of which engines are busy
     * should be only used as a heuristic.
     */
    __u32 busy;
};

/**
 * struct drm_i915_gem_caching - Set or get the caching for given object
 * handle.
 *
 * Allow userspace to control the GTT caching bits for a given object when the
 * object is later mapped through the ppGTT(or GGTT on older platforms lacking
 * ppGTT support, or if the object is used for scanout). Note that this might
 * require unbinding the object from the GTT first, if its current caching value
 * doesn't match.
 *
 * Note that this all changes on discrete platforms, starting from DG1, the
 * set/get caching is no longer supported, and is now rejected.  Instead the CPU
 * caching attributes(WB vs WC) will become an immutable creation time property
 * for the object, along with the GTT caching level. For now we don't expose any
 * new uAPI for this, instead on DG1 this is all implicit, although this largely
 * shouldn't matter since DG1 is coherent by default(without any way of
 * controlling it).
 *
 * Implicit caching rules, starting from DG1:
 *
 *     - If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
 *       contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
 *       mapped as write-combined only.
 *
 *     - Everything else is always allocated and mapped as write-back, with the
 *       guarantee that everything is also coherent with the GPU.
 *
 * Note that this is likely to change in the future again, where we might need
 * more flexibility on future devices, so making this all explicit as part of a
 * new &drm_i915_gem_create_ext extension is probable.
 *
 * Side note: Part of the reason for this is that changing the at-allocation-time CPU
 * caching attributes for the pages might be required(and is expensive) if we
 * need to then CPU map the pages later with different caching attributes. This
 * inconsistent caching behaviour, while supported on x86, is not universally
 * supported on other architectures. So for simplicity we opt for setting
 * everything at creation time, whilst also making it immutable, on discrete
 * platforms.
 */
struct drm_i915_gem_caching {
    /**
     * @handle: Handle of the buffer to set/get the caching level.
     */
    __u32 handle;

    /**
     * @caching: The GTT caching level to apply or possible return value.
     *
     * The supported @caching values:
     *
     * I915_CACHING_NONE:
     *
     * GPU access is not coherent with CPU caches.  Default for machines
     * without an LLC. This means manual flushing might be needed, if we
     * want GPU access to be coherent.
     *
     * I915_CACHING_CACHED:
     *
     * GPU access is coherent with CPU caches and furthermore the data is
     * cached in last-level caches shared between CPU cores and the GPU GT.
     *
     * I915_CACHING_DISPLAY:
     *
     * Special GPU caching mode which is coherent with the scanout engines.
     * Transparently falls back to I915_CACHING_NONE on platforms where no
     * special cache mode (like write-through or gfdt flushing) is
     * available. The kernel automatically sets this mode when using a
     * buffer as a scanout target.  Userspace can manually set this mode to
     * avoid a costly stall and clflush in the hotpath of drawing the first
     * frame.
     */
#define I915_CACHING_NONE        0
#define I915_CACHING_CACHED        1
#define I915_CACHING_DISPLAY        2
    __u32 caching;
};

#define I915_TILING_NONE    0
#define I915_TILING_X        1
#define I915_TILING_Y        2
/*
 * Do not add new tiling types here.  The I915_TILING_* values are for
 * de-tiling fence registers that no longer exist on modern platforms.  Although
 * the hardware may support new types of tiling in general (e.g., Tile4), we
 * do not need to add them to the uapi that is specific to now-defunct ioctls.
 */
#define I915_TILING_LAST    I915_TILING_Y

#define I915_BIT_6_SWIZZLE_NONE        0
#define I915_BIT_6_SWIZZLE_9        1
#define I915_BIT_6_SWIZZLE_9_10        2
#define I915_BIT_6_SWIZZLE_9_11        3
#define I915_BIT_6_SWIZZLE_9_10_11    4
/* Not seen by userland */
#define I915_BIT_6_SWIZZLE_UNKNOWN    5
/* Seen by userland. */
#define I915_BIT_6_SWIZZLE_9_17        6
#define I915_BIT_6_SWIZZLE_9_10_17    7

struct drm_i915_gem_set_tiling {
    /** Handle of the buffer to have its tiling state updated */
    __u32 handle;

    /**
     * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
     * I915_TILING_Y).
     *
     * This value is to be set on request, and will be updated by the
     * kernel on successful return with the actual chosen tiling layout.
     *
     * The tiling mode may be demoted to I915_TILING_NONE when the system
     * has bit 6 swizzling that can't be managed correctly by GEM.
     *
     * Buffer contents become undefined when changing tiling_mode.
     */
    __u32 tiling_mode;

    /**
     * Stride in bytes for the object when in I915_TILING_X or
     * I915_TILING_Y.
     */
    __u32 stride;

    /**
     * Returned address bit 6 swizzling required for CPU access through
     * mmap mapping.
     */
    __u32 swizzle_mode;
};

struct drm_i915_gem_get_tiling {
    /** Handle of the buffer to get tiling state for. */
    __u32 handle;

    /**
     * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
     * I915_TILING_Y).
     */
    __u32 tiling_mode;

    /**
     * Returned address bit 6 swizzling required for CPU access through
     * mmap mapping.
     */
    __u32 swizzle_mode;

    /**
     * Returned address bit 6 swizzling required for CPU access through
     * mmap mapping whilst bound.
     */
    __u32 phys_swizzle_mode;
};

struct drm_i915_gem_get_aperture {
    /** Total size of the aperture used by i915_gem_execbuffer, in bytes */
    __u64 aper_size;

    /**
     * Available space in the aperture used by i915_gem_execbuffer, in
     * bytes
     */
    __u64 aper_available_size;
};

struct drm_i915_get_pipe_from_crtc_id {
    /** ID of CRTC being requested **/
    __u32 crtc_id;

    /** pipe of requested CRTC **/
    __u32 pipe;
};

#define I915_MADV_WILLNEED 0
#define I915_MADV_DONTNEED 1
#define __I915_MADV_PURGED 2 /* internal state */

struct drm_i915_gem_madvise {
    /** Handle of the buffer to change the backing store advice */
    __u32 handle;

    /* Advice: either the buffer will be needed again in the near future,
     *         or wont be and could be discarded under memory pressure.
     */
    __u32 madv;

    /** Whether the backing store still exists. */
    __u32 retained;
};

/* flags */
#define I915_OVERLAY_TYPE_MASK         0xff
#define I915_OVERLAY_YUV_PLANAR     0x01
#define I915_OVERLAY_YUV_PACKED     0x02
#define I915_OVERLAY_RGB        0x03

#define I915_OVERLAY_DEPTH_MASK        0xff00
#define I915_OVERLAY_RGB24        0x1000
#define I915_OVERLAY_RGB16        0x2000
#define I915_OVERLAY_RGB15        0x3000
#define I915_OVERLAY_YUV422        0x0100
#define I915_OVERLAY_YUV411        0x0200
#define I915_OVERLAY_YUV420        0x0300
#define I915_OVERLAY_YUV410        0x0400

#define I915_OVERLAY_SWAP_MASK        0xff0000
#define I915_OVERLAY_NO_SWAP        0x000000
#define I915_OVERLAY_UV_SWAP        0x010000
#define I915_OVERLAY_Y_SWAP        0x020000
#define I915_OVERLAY_Y_AND_UV_SWAP    0x030000

#define I915_OVERLAY_FLAGS_MASK        0xff000000
#define I915_OVERLAY_ENABLE        0x01000000

struct drm_intel_overlay_put_image {
    /* various flags and src format description */
    __u32 flags;
    /* source picture description */
    __u32 bo_handle;
    /* stride values and offsets are in bytes, buffer relative */
    __u16 stride_Y; /* stride for packed formats */
    __u16 stride_UV;
    __u32 offset_Y; /* offset for packet formats */
    __u32 offset_U;
    __u32 offset_V;
    /* in pixels */
    __u16 src_width;
    __u16 src_height;
    /* to compensate the scaling factors for partially covered surfaces */
    __u16 src_scan_width;
    __u16 src_scan_height;
    /* output crtc description */
    __u32 crtc_id;
    __u16 dst_x;
    __u16 dst_y;
    __u16 dst_width;
    __u16 dst_height;
};

/* flags */
#define I915_OVERLAY_UPDATE_ATTRS    (1<<0)
#define I915_OVERLAY_UPDATE_GAMMA    (1<<1)
#define I915_OVERLAY_DISABLE_DEST_COLORKEY    (1<<2)
struct drm_intel_overlay_attrs {
    __u32 flags;
    __u32 color_key;
    __s32 brightness;
    __u32 contrast;
    __u32 saturation;
    __u32 gamma0;
    __u32 gamma1;
    __u32 gamma2;
    __u32 gamma3;
    __u32 gamma4;
    __u32 gamma5;
};

/*
 * Intel sprite handling
 *
 * Color keying works with a min/mask/max tuple.  Both source and destination
 * color keying is allowed.
 *
 * Source keying:
 * Sprite pixels within the min & max values, masked against the color channels
 * specified in the mask field, will be transparent.  All other pixels will
 * be displayed on top of the primary plane.  For RGB surfaces, only the min
 * and mask fields will be used; ranged compares are not allowed.
 *
 * Destination keying:
 * Primary plane pixels that match the min value, masked against the color
 * channels specified in the mask field, will be replaced by corresponding
 * pixels from the sprite plane.
 *
 * Note that source & destination keying are exclusive; only one can be
 * active on a given plane.
 */

#define I915_SET_COLORKEY_NONE        (1<<0) /* Deprecated. Instead set
                        * flags==0 to disable colorkeying.
                        */
#define I915_SET_COLORKEY_DESTINATION    (1<<1)
#define I915_SET_COLORKEY_SOURCE    (1<<2)
struct drm_intel_sprite_colorkey {
    __u32 plane_id;
    __u32 min_value;
    __u32 channel_mask;
    __u32 max_value;
    __u32 flags;
};

struct drm_i915_gem_wait {
    /** Handle of BO we shall wait on */
    __u32 bo_handle;
    __u32 flags;
    /** Number of nanoseconds to wait, Returns time remaining. */
    __s64 timeout_ns;
};

struct drm_i915_gem_context_create {
    __u32 ctx_id; /* output: id of new context*/
    __u32 pad;
};

/**
 * struct drm_i915_gem_context_create_ext - Structure for creating contexts.
 */
struct drm_i915_gem_context_create_ext {
    /** @ctx_id: Id of the created context (output) */
    __u32 ctx_id;

    /**
     * @flags: Supported flags are:
     *
     * I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS:
     *
     * Extensions may be appended to this structure and driver must check
     * for those. See @extensions.
     *
     * I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE
     *
     * Created context will have single timeline.
     */
    __u32 flags;
#define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS    (1u << 0)
#define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE    (1u << 1)
#define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \
    (-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1))

    /**
     * @extensions: Zero-terminated chain of extensions.
     *
     * I915_CONTEXT_CREATE_EXT_SETPARAM:
     * Context parameter to set or query during context creation.
     * See struct drm_i915_gem_context_create_ext_setparam.
     *
     * I915_CONTEXT_CREATE_EXT_CLONE:
     * This extension has been removed. On the off chance someone somewhere
     * has attempted to use it, never re-use this extension number.
     */
    __u64 extensions;
#define I915_CONTEXT_CREATE_EXT_SETPARAM 0
#define I915_CONTEXT_CREATE_EXT_CLONE 1
};

/**
 * struct drm_i915_gem_context_param - Context parameter to set or query.
 */
struct drm_i915_gem_context_param {
    /** @ctx_id: Context id */
    __u32 ctx_id;

    /** @size: Size of the parameter @value */
    __u32 size;

    /** @param: Parameter to set or query */
    __u64 param;
#define I915_CONTEXT_PARAM_BAN_PERIOD    0x1
/* I915_CONTEXT_PARAM_NO_ZEROMAP has been removed.  On the off chance
 * someone somewhere has attempted to use it, never re-use this context
 * param number.
 */
#define I915_CONTEXT_PARAM_NO_ZEROMAP    0x2
#define I915_CONTEXT_PARAM_GTT_SIZE    0x3
#define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE    0x4
#define I915_CONTEXT_PARAM_BANNABLE    0x5
#define I915_CONTEXT_PARAM_PRIORITY    0x6
#define   I915_CONTEXT_MAX_USER_PRIORITY    1023 /* inclusive */
#define   I915_CONTEXT_DEFAULT_PRIORITY        0
#define   I915_CONTEXT_MIN_USER_PRIORITY    -1023 /* inclusive */
    /*
     * When using the following param, value should be a pointer to
     * drm_i915_gem_context_param_sseu.
     */
#define I915_CONTEXT_PARAM_SSEU        0x7

/*
 * Not all clients may want to attempt automatic recover of a context after
 * a hang (for example, some clients may only submit very small incremental
 * batches relying on known logical state of previous batches which will never
 * recover correctly and each attempt will hang), and so would prefer that
 * the context is forever banned instead.
 *
 * If set to false (0), after a reset, subsequent (and in flight) rendering
 * from this context is discarded, and the client will need to create a new
 * context to use instead.
 *
 * If set to true (1), the kernel will automatically attempt to recover the
 * context by skipping the hanging batch and executing the next batch starting
 * from the default context state (discarding the incomplete logical context
 * state lost due to the reset).
 *
 * On creation, all new contexts are marked as recoverable.
 */
#define I915_CONTEXT_PARAM_RECOVERABLE    0x8

    /*
     * The id of the associated virtual memory address space (ppGTT) of
     * this context. Can be retrieved and passed to another context
     * (on the same fd) for both to use the same ppGTT and so share
     * address layouts, and avoid reloading the page tables on context
     * switches between themselves.
     *
     * See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY.
     */
#define I915_CONTEXT_PARAM_VM        0x9

/*
 * I915_CONTEXT_PARAM_ENGINES:
 *
 * Bind this context to operate on this subset of available engines. Henceforth,
 * the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as
 * an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0]
 * and upwards. Slots 0...N are filled in using the specified (class, instance).
 * Use
 *    engine_class: I915_ENGINE_CLASS_INVALID,
 *    engine_instance: I915_ENGINE_CLASS_INVALID_NONE
 * to specify a gap in the array that can be filled in later, e.g. by a
 * virtual engine used for load balancing.
 *
 * Setting the number of engines bound to the context to 0, by passing a zero
 * sized argument, will revert back to default settings.
 *
 * See struct i915_context_param_engines.
 *
 * Extensions:
 *   i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE)
 *   i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND)
 *   i915_context_engines_parallel_submit (I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT)
 */
#define I915_CONTEXT_PARAM_ENGINES    0xa

/*
 * I915_CONTEXT_PARAM_PERSISTENCE:
 *
 * Allow the context and active rendering to survive the process until
 * completion. Persistence allows fire-and-forget clients to queue up a
 * bunch of work, hand the output over to a display server and then quit.
 * If the context is marked as not persistent, upon closing (either via
 * an explicit DRM_I915_GEM_CONTEXT_DESTROY or implicitly from file closure
 * or process termination), the context and any outstanding requests will be
 * cancelled (and exported fences for cancelled requests marked as -EIO).
 *
 * By default, new contexts allow persistence.
 */
#define I915_CONTEXT_PARAM_PERSISTENCE    0xb

/* This API has been removed.  On the off chance someone somewhere has
 * attempted to use it, never re-use this context param number.
 */
#define I915_CONTEXT_PARAM_RINGSIZE    0xc

/*
 * I915_CONTEXT_PARAM_PROTECTED_CONTENT:
 *
 * Mark that the context makes use of protected content, which will result
 * in the context being invalidated when the protected content session is.
 * Given that the protected content session is killed on suspend, the device
 * is kept awake for the lifetime of a protected context, so the user should
 * make sure to dispose of them once done.
 * This flag can only be set at context creation time and, when set to true,
 * must be preceded by an explicit setting of I915_CONTEXT_PARAM_RECOVERABLE
 * to false. This flag can't be set to true in conjunction with setting the
 * I915_CONTEXT_PARAM_BANNABLE flag to false. Creation example:
 *
 * .. code-block:: C
 *
 *    struct drm_i915_gem_context_create_ext_setparam p_protected = {
 *        .base = {
 *            .name = I915_CONTEXT_CREATE_EXT_SETPARAM,
 *        },
 *        .param = {
 *            .param = I915_CONTEXT_PARAM_PROTECTED_CONTENT,
 *            .value = 1,
 *        }
 *    };
 *    struct drm_i915_gem_context_create_ext_setparam p_norecover = {
 *        .base = {
 *            .name = I915_CONTEXT_CREATE_EXT_SETPARAM,
 *            .next_extension = to_user_pointer(&p_protected),
 *        },
 *        .param = {
 *            .param = I915_CONTEXT_PARAM_RECOVERABLE,
 *            .value = 0,
 *        }
 *    };
 *    struct drm_i915_gem_context_create_ext create = {
 *        .flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
 *        .extensions = to_user_pointer(&p_norecover);
 *    };
 *
 *    ctx_id = gem_context_create_ext(drm_fd, &create);
 *
 * In addition to the normal failure cases, setting this flag during context
 * creation can result in the following errors:
 *
 * -ENODEV: feature not available
 * -EPERM: trying to mark a recoverable or not bannable context as protected
 */
#define I915_CONTEXT_PARAM_PROTECTED_CONTENT    0xd
/* Must be kept compact -- no holes and well documented */

    /** @value: Context parameter value to be set or queried */
    __u64 value;
};

/*
 * Context SSEU programming
 *
 * It may be necessary for either functional or performance reason to configure
 * a context to run with a reduced number of SSEU (where SSEU stands for Slice/
 * Sub-slice/EU).
 *
 * This is done by configuring SSEU configuration using the below
 * @struct drm_i915_gem_context_param_sseu for every supported engine which
 * userspace intends to use.
 *
 * Not all GPUs or engines support this functionality in which case an error
 * code -ENODEV will be returned.
 *
 * Also, flexibility of possible SSEU configuration permutations varies between
 * GPU generations and software imposed limitations. Requesting such a
 * combination will return an error code of -EINVAL.
 *
 * NOTE: When perf/OA is active the context's SSEU configuration is ignored in
 * favour of a single global setting.
 */
struct drm_i915_gem_context_param_sseu {
    /*
     * Engine class & instance to be configured or queried.
     */
    struct i915_engine_class_instance engine;

    /*
     * Unknown flags must be cleared to zero.
     */
    __u32 flags;
#define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0)

    /*
     * Mask of slices to enable for the context. Valid values are a subset
     * of the bitmask value returned for I915_PARAM_SLICE_MASK.
     */
    __u64 slice_mask;

    /*
     * Mask of subslices to enable for the context. Valid values are a
     * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK.
     */
    __u64 subslice_mask;

    /*
     * Minimum/Maximum number of EUs to enable per subslice for the
     * context. min_eus_per_subslice must be inferior or equal to
     * max_eus_per_subslice.
     */
    __u16 min_eus_per_subslice;
    __u16 max_eus_per_subslice;

    /*
     * Unused for now. Must be cleared to zero.
     */
    __u32 rsvd;
};

/**
 * DOC: Virtual Engine uAPI
 *
 * Virtual engine is a concept where userspace is able to configure a set of
 * physical engines, submit a batch buffer, and let the driver execute it on any
 * engine from the set as it sees fit.
 *
 * This is primarily useful on parts which have multiple instances of a same
 * class engine, like for example GT3+ Skylake parts with their two VCS engines.
 *
 * For instance userspace can enumerate all engines of a certain class using the
 * previously described `Engine Discovery uAPI`_. After that userspace can
 * create a GEM context with a placeholder slot for the virtual engine (using
 * `I915_ENGINE_CLASS_INVALID` and `I915_ENGINE_CLASS_INVALID_NONE` for class
 * and instance respectively) and finally using the
 * `I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE` extension place a virtual engine in
 * the same reserved slot.
 *
 * Example of creating a virtual engine and submitting a batch buffer to it:
 *
 * .. code-block:: C
 *
 *     I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(virtual, 2) = {
 *         .base.name = I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE,
 *         .engine_index = 0, // Place this virtual engine into engine map slot 0
 *         .num_siblings = 2,
 *         .engines = { { I915_ENGINE_CLASS_VIDEO, 0 },
 *                  { I915_ENGINE_CLASS_VIDEO, 1 }, },
 *     };
 *     I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 1) = {
 *         .engines = { { I915_ENGINE_CLASS_INVALID,
 *                    I915_ENGINE_CLASS_INVALID_NONE } },
 *         .extensions = to_user_pointer(&virtual), // Chains after load_balance extension
 *     };
 *     struct drm_i915_gem_context_create_ext_setparam p_engines = {
 *         .base = {
 *             .name = I915_CONTEXT_CREATE_EXT_SETPARAM,
 *         },
 *         .param = {
 *             .param = I915_CONTEXT_PARAM_ENGINES,
 *             .value = to_user_pointer(&engines),
 *             .size = sizeof(engines),
 *         },
 *     };
 *     struct drm_i915_gem_context_create_ext create = {
 *         .flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
 *         .extensions = to_user_pointer(&p_engines);
 *     };
 *
 *     ctx_id = gem_context_create_ext(drm_fd, &create);
 *
 *     // Now we have created a GEM context with its engine map containing a
 *     // single virtual engine. Submissions to this slot can go either to
 *     // vcs0 or vcs1, depending on the load balancing algorithm used inside
 *     // the driver. The load balancing is dynamic from one batch buffer to
 *     // another and transparent to userspace.
 *
 *     ...
 *     execbuf.rsvd1 = ctx_id;
 *     execbuf.flags = 0; // Submits to index 0 which is the virtual engine
 *     gem_execbuf(drm_fd, &execbuf);
 */

/*
 * i915_context_engines_load_balance:
 *
 * Enable load balancing across this set of engines.
 *
 * Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when
 * used will proxy the execbuffer request onto one of the set of engines
 * in such a way as to distribute the load evenly across the set.
 *
 * The set of engines must be compatible (e.g. the same HW class) as they
 * will share the same logical GPU context and ring.
 *
 * To intermix rendering with the virtual engine and direct rendering onto
 * the backing engines (bypassing the load balancing proxy), the context must
 * be defined to use a single timeline for all engines.
 */
struct i915_context_engines_load_balance {
    struct i915_user_extension base;

    __u16 engine_index;
    __u16 num_siblings;
    __u32 flags; /* all undefined flags must be zero */

    __u64 mbz64; /* reserved for future use; must be zero */

    struct i915_engine_class_instance engines[];
} __attribute__((packed));

#define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \
    struct i915_user_extension base; \
    __u16 engine_index; \
    __u16 num_siblings; \
    __u32 flags; \
    __u64 mbz64; \
    struct i915_engine_class_instance engines[N__]; \
} __attribute__((packed)) name__

/*
 * i915_context_engines_bond:
 *
 * Constructed bonded pairs for execution within a virtual engine.
 *
 * All engines are equal, but some are more equal than others. Given
 * the distribution of resources in the HW, it may be preferable to run
 * a request on a given subset of engines in parallel to a request on a
 * specific engine. We enable this selection of engines within a virtual
 * engine by specifying bonding pairs, for any given master engine we will
 * only execute on one of the corresponding siblings within the virtual engine.
 *
 * To execute a request in parallel on the master engine and a sibling requires
 * coordination with a I915_EXEC_FENCE_SUBMIT.
 */
struct i915_context_engines_bond {
    struct i915_user_extension base;

    struct i915_engine_class_instance master;

    __u16 virtual_index; /* index of virtual engine in ctx->engines[] */
    __u16 num_bonds;

    __u64 flags; /* all undefined flags must be zero */
    __u64 mbz64[4]; /* reserved for future use; must be zero */

    struct i915_engine_class_instance engines[];
} __attribute__((packed));

#define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \
    struct i915_user_extension base; \
    struct i915_engine_class_instance master; \
    __u16 virtual_index; \
    __u16 num_bonds; \
    __u64 flags; \
    __u64 mbz64[4]; \
    struct i915_engine_class_instance engines[N__]; \
} __attribute__((packed)) name__

/**
 * struct i915_context_engines_parallel_submit - Configure engine for
 * parallel submission.
 *
 * Setup a slot in the context engine map to allow multiple BBs to be submitted
 * in a single execbuf IOCTL. Those BBs will then be scheduled to run on the GPU
 * in parallel. Multiple hardware contexts are created internally in the i915 to
 * run these BBs. Once a slot is configured for N BBs only N BBs can be
 * submitted in each execbuf IOCTL and this is implicit behavior e.g. The user
 * doesn't tell the execbuf IOCTL there are N BBs, the execbuf IOCTL knows how
 * many BBs there are based on the slot's configuration. The N BBs are the last
 * N buffer objects or first N if I915_EXEC_BATCH_FIRST is set.
 *
 * The default placement behavior is to create implicit bonds between each
 * context if each context maps to more than 1 physical engine (e.g. context is
 * a virtual engine). Also we only allow contexts of same engine class and these
 * contexts must be in logically contiguous order. Examples of the placement
 * behavior are described below. Lastly, the default is to not allow BBs to be
 * preempted mid-batch. Rather insert coordinated preemption points on all
 * hardware contexts between each set of BBs. Flags could be added in the future
 * to change both of these default behaviors.
 *
 * Returns -EINVAL if hardware context placement configuration is invalid or if
 * the placement configuration isn't supported on the platform / submission
 * interface.
 * Returns -ENODEV if extension isn't supported on the platform / submission
 * interface.
 *
 * .. code-block:: none
 *
 *    Examples syntax:
 *    CS[X] = generic engine of same class, logical instance X
 *    INVALID = I915_ENGINE_CLASS_INVALID, I915_ENGINE_CLASS_INVALID_NONE
 *
 *    Example 1 pseudo code:
 *    set_engines(INVALID)
 *    set_parallel(engine_index=0, width=2, num_siblings=1,
 *             engines=CS[0],CS[1])
 *
 *    Results in the following valid placement:
 *    CS[0], CS[1]
 *
 *    Example 2 pseudo code:
 *    set_engines(INVALID)
 *    set_parallel(engine_index=0, width=2, num_siblings=2,
 *             engines=CS[0],CS[2],CS[1],CS[3])
 *
 *    Results in the following valid placements:
 *    CS[0], CS[1]
 *    CS[2], CS[3]
 *
 *    This can be thought of as two virtual engines, each containing two
 *    engines thereby making a 2D array. However, there are bonds tying the
 *    entries together and placing restrictions on how they can be scheduled.
 *    Specifically, the scheduler can choose only vertical columns from the 2D
 *    array. That is, CS[0] is bonded to CS[1] and CS[2] to CS[3]. So if the
 *    scheduler wants to submit to CS[0], it must also choose CS[1] and vice
 *    versa. Same for CS[2] requires also using CS[3].
 *    VE[0] = CS[0], CS[2]
 *    VE[1] = CS[1], CS[3]
 *
 *    Example 3 pseudo code:
 *    set_engines(INVALID)
 *    set_parallel(engine_index=0, width=2, num_siblings=2,
 *             engines=CS[0],CS[1],CS[1],CS[3])
 *
 *    Results in the following valid and invalid placements:
 *    CS[0], CS[1]
 *    CS[1], CS[3] - Not logically contiguous, return -EINVAL
 */
struct i915_context_engines_parallel_submit {
    /**
     * @base: base user extension.
     */
    struct i915_user_extension base;

    /**
     * @engine_index: slot for parallel engine
     */
    __u16 engine_index;

    /**
     * @width: number of contexts per parallel engine or in other words the
     * number of batches in each submission
     */
    __u16 width;

    /**
     * @num_siblings: number of siblings per context or in other words the
     * number of possible placements for each submission
     */
    __u16 num_siblings;

    /**
     * @mbz16: reserved for future use; must be zero
     */
    __u16 mbz16;

    /**
     * @flags: all undefined flags must be zero, currently not defined flags
     */
    __u64 flags;

    /**
     * @mbz64: reserved for future use; must be zero
     */
    __u64 mbz64[3];

    /**
     * @engines: 2-d array of engine instances to configure parallel engine
     *
     * length = width (i) * num_siblings (j)
     * index = j + i * num_siblings
     */
    struct i915_engine_class_instance engines[];

} __attribute__((packed));

#define I915_DEFINE_CONTEXT_ENGINES_PARALLEL_SUBMIT(name__, N__) struct { \
    struct i915_user_extension base; \
    __u16 engine_index; \
    __u16 width; \
    __u16 num_siblings; \
    __u16 mbz16; \
    __u64 flags; \
    __u64 mbz64[3]; \
    struct i915_engine_class_instance engines[N__]; \
} __attribute__((packed)) name__

/**
 * DOC: Context Engine Map uAPI
 *
 * Context engine map is a new way of addressing engines when submitting batch-
 * buffers, replacing the existing way of using identifiers like `I915_EXEC_BLT`
 * inside the flags field of `struct drm_i915_gem_execbuffer2`.
 *
 * To use it created GEM contexts need to be configured with a list of engines
 * the user is intending to submit to. This is accomplished using the
 * `I915_CONTEXT_PARAM_ENGINES` parameter and `struct
 * i915_context_param_engines`.
 *
 * For such contexts the `I915_EXEC_RING_MASK` field becomes an index into the
 * configured map.
 *
 * Example of creating such context and submitting against it:
 *
 * .. code-block:: C
 *
 *     I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 2) = {
 *         .engines = { { I915_ENGINE_CLASS_RENDER, 0 },
 *                  { I915_ENGINE_CLASS_COPY, 0 } }
 *     };
 *     struct drm_i915_gem_context_create_ext_setparam p_engines = {
 *         .base = {
 *             .name = I915_CONTEXT_CREATE_EXT_SETPARAM,
 *         },
 *         .param = {
 *             .param = I915_CONTEXT_PARAM_ENGINES,
 *             .value = to_user_pointer(&engines),
 *             .size = sizeof(engines),
 *         },
 *     };
 *     struct drm_i915_gem_context_create_ext create = {
 *         .flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
 *         .extensions = to_user_pointer(&p_engines);
 *     };
 *
 *     ctx_id = gem_context_create_ext(drm_fd, &create);
 *
 *     // We have now created a GEM context with two engines in the map:
 *     // Index 0 points to rcs0 while index 1 points to bcs0. Other engines
 *     // will not be accessible from this context.
 *
 *     ...
 *     execbuf.rsvd1 = ctx_id;
 *     execbuf.flags = 0; // Submits to index 0, which is rcs0 for this context
 *     gem_execbuf(drm_fd, &execbuf);
 *
 *     ...
 *     execbuf.rsvd1 = ctx_id;
 *     execbuf.flags = 1; // Submits to index 0, which is bcs0 for this context
 *     gem_execbuf(drm_fd, &execbuf);
 */

struct i915_context_param_engines {
    __u64 extensions; /* linked chain of extension blocks, 0 terminates */
#define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */
#define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */
#define I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT 2 /* see i915_context_engines_parallel_submit */
    struct i915_engine_class_instance engines[0];
} __attribute__((packed));

#define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \
    __u64 extensions; \
    struct i915_engine_class_instance engines[N__]; \
} __attribute__((packed)) name__

/**
 * struct drm_i915_gem_context_create_ext_setparam - Context parameter
 * to set or query during context creation.
 */
struct drm_i915_gem_context_create_ext_setparam {
    /** @base: Extension link. See struct i915_user_extension. */
    struct i915_user_extension base;

    /**
     * @param: Context parameter to set or query.
     * See struct drm_i915_gem_context_param.
     */
    struct drm_i915_gem_context_param param;
};

struct drm_i915_gem_context_destroy {
    __u32 ctx_id;
    __u32 pad;
};

/**
 * struct drm_i915_gem_vm_control - Structure to create or destroy VM.
 *
 * DRM_I915_GEM_VM_CREATE -
 *
 * Create a new virtual memory address space (ppGTT) for use within a context
 * on the same file. Extensions can be provided to configure exactly how the
 * address space is setup upon creation.
 *
 * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is
 * returned in the outparam @id.
 *
 * An extension chain maybe provided, starting with @extensions, and terminated
 * by the @next_extension being 0. Currently, no extensions are defined.
 *
 * DRM_I915_GEM_VM_DESTROY -
 *
 * Destroys a previously created VM id, specified in @vm_id.
 *
 * No extensions or flags are allowed currently, and so must be zero.
 */
struct drm_i915_gem_vm_control {
    /** @extensions: Zero-terminated chain of extensions. */
    __u64 extensions;

    /** @flags: reserved for future usage, currently MBZ */
    __u32 flags;

    /** @vm_id: Id of the VM created or to be destroyed */
    __u32 vm_id;
};

struct drm_i915_reg_read {
    /*
     * Register offset.
     * For 64bit wide registers where the upper 32bits don't immediately
     * follow the lower 32bits, the offset of the lower 32bits must
     * be specified
     */
    __u64 offset;
#define I915_REG_READ_8B_WA (1ul << 0)

    __u64 val; /* Return value */
};

/* Known registers:
 *
 * Render engine timestamp - 0x2358 + 64bit - gen7+
 * - Note this register returns an invalid value if using the default
 *   single instruction 8byte read, in order to workaround that pass
 *   flag I915_REG_READ_8B_WA in offset field.
 *
 */

struct drm_i915_reset_stats {
    __u32 ctx_id;
    __u32 flags;

    /* All resets since boot/module reload, for all contexts */
    __u32 reset_count;

    /* Number of batches lost when active in GPU, for this context */
    __u32 batch_active;

    /* Number of batches lost pending for execution, for this context */
    __u32 batch_pending;

    __u32 pad;
};

/**
 * struct drm_i915_gem_userptr - Create GEM object from user allocated memory.
 *
 * Userptr objects have several restrictions on what ioctls can be used with the
 * object handle.
 */
struct drm_i915_gem_userptr {
    /**
     * @user_ptr: The pointer to the allocated memory.
     *
     * Needs to be aligned to PAGE_SIZE.
     */
    __u64 user_ptr;

    /**
     * @user_size:
     *
     * The size in bytes for the allocated memory. This will also become the
     * object size.
     *
     * Needs to be aligned to PAGE_SIZE, and should be at least PAGE_SIZE,
     * or larger.
     */
    __u64 user_size;

    /**
     * @flags:
     *
     * Supported flags:
     *
     * I915_USERPTR_READ_ONLY:
     *
     * Mark the object as readonly, this also means GPU access can only be
     * readonly. This is only supported on HW which supports readonly access
     * through the GTT. If the HW can't support readonly access, an error is
     * returned.
     *
     * I915_USERPTR_PROBE:
     *
     * Probe the provided @user_ptr range and validate that the @user_ptr is
     * indeed pointing to normal memory and that the range is also valid.
     * For example if some garbage address is given to the kernel, then this
     * should complain.
     *
     * Returns -EFAULT if the probe failed.
     *
     * Note that this doesn't populate the backing pages, and also doesn't
     * guarantee that the object will remain valid when the object is
     * eventually used.
     *
     * The kernel supports this feature if I915_PARAM_HAS_USERPTR_PROBE
     * returns a non-zero value.
     *
     * I915_USERPTR_UNSYNCHRONIZED:
     *
     * NOT USED. Setting this flag will result in an error.
     */
    __u32 flags;
#define I915_USERPTR_READ_ONLY 0x1
#define I915_USERPTR_PROBE 0x2
#define I915_USERPTR_UNSYNCHRONIZED 0x80000000
    /**
     * @handle: Returned handle for the object.
     *
     * Object handles are nonzero.
     */
    __u32 handle;
};

enum drm_i915_oa_format {
    I915_OA_FORMAT_A13 = 1,        /* HSW only */
    I915_OA_FORMAT_A29,        /* HSW only */
    I915_OA_FORMAT_A13_B8_C8,   /* HSW only */
    I915_OA_FORMAT_B4_C8,        /* HSW only */
    I915_OA_FORMAT_A45_B8_C8,   /* HSW only */
    I915_OA_FORMAT_B4_C8_A16,   /* HSW only */
    I915_OA_FORMAT_C4_B8,        /* HSW+ */

    /* Gen8+ */
    I915_OA_FORMAT_A12,
    I915_OA_FORMAT_A12_B8_C8,
    I915_OA_FORMAT_A32u40_A4u32_B8_C8,

    /* DG2 */
    I915_OAR_FORMAT_A32u40_A4u32_B8_C8,
    I915_OA_FORMAT_A24u40_A14u32_B8_C8,

    I915_OA_FORMAT_MAX        /* non-ABI */
};

enum drm_i915_perf_property_id {
    /**
     * Open the stream for a specific context handle (as used with
     * execbuffer2). A stream opened for a specific context this way
     * won't typically require root privileges.
     *
     * This property is available in perf revision 1.
     */
    DRM_I915_PERF_PROP_CTX_HANDLE = 1,

    /**
     * A value of 1 requests the inclusion of raw OA unit reports as
     * part of stream samples.
     *
     * This property is available in perf revision 1.
     */
    DRM_I915_PERF_PROP_SAMPLE_OA,

    /**
     * The value specifies which set of OA unit metrics should be
     * configured, defining the contents of any OA unit reports.
     *
     * This property is available in perf revision 1.
     */
    DRM_I915_PERF_PROP_OA_METRICS_SET,

    /**
     * The value specifies the size and layout of OA unit reports.
     *
     * This property is available in perf revision 1.
     */
    DRM_I915_PERF_PROP_OA_FORMAT,

    /**
     * Specifying this property implicitly requests periodic OA unit
     * sampling and (at least on Haswell) the sampling frequency is derived
     * from this exponent as follows:
     *
     *   80ns * 2^(period_exponent + 1)
     *
     * This property is available in perf revision 1.
     */
    DRM_I915_PERF_PROP_OA_EXPONENT,

    /**
     * Specifying this property is only valid when specify a context to
     * filter with DRM_I915_PERF_PROP_CTX_HANDLE. Specifying this property
     * will hold preemption of the particular context we want to gather
     * performance data about. The execbuf2 submissions must include a
     * drm_i915_gem_execbuffer_ext_perf parameter for this to apply.
     *
     * This property is available in perf revision 3.
     */
    DRM_I915_PERF_PROP_HOLD_PREEMPTION,

    /**
     * Specifying this pins all contexts to the specified SSEU power
     * configuration for the duration of the recording.
     *
     * This parameter's value is a pointer to a struct
     * drm_i915_gem_context_param_sseu.
     *
     * This property is available in perf revision 4.
     */
    DRM_I915_PERF_PROP_GLOBAL_SSEU,

    /**
     * This optional parameter specifies the timer interval in nanoseconds
     * at which the i915 driver will check the OA buffer for available data.
     * Minimum allowed value is 100 microseconds. A default value is used by
     * the driver if this parameter is not specified. Note that larger timer
     * values will reduce cpu consumption during OA perf captures. However,
     * excessively large values would potentially result in OA buffer
     * overwrites as captures reach end of the OA buffer.
     *
     * This property is available in perf revision 5.
     */
    DRM_I915_PERF_PROP_POLL_OA_PERIOD,

    DRM_I915_PERF_PROP_MAX /* non-ABI */
};

struct drm_i915_perf_open_param {
    __u32 flags;
#define I915_PERF_FLAG_FD_CLOEXEC    (1<<0)
#define I915_PERF_FLAG_FD_NONBLOCK    (1<<1)
#define I915_PERF_FLAG_DISABLED        (1<<2)

    /** The number of u64 (id, value) pairs */
    __u32 num_properties;

    /**
     * Pointer to array of u64 (id, value) pairs configuring the stream
     * to open.
     */
    __u64 properties_ptr;
};

/*
 * Enable data capture for a stream that was either opened in a disabled state
 * via I915_PERF_FLAG_DISABLED or was later disabled via
 * I915_PERF_IOCTL_DISABLE.
 *
 * It is intended to be cheaper to disable and enable a stream than it may be
 * to close and re-open a stream with the same configuration.
 *
 * It's undefined whether any pending data for the stream will be lost.
 *
 * This ioctl is available in perf revision 1.
 */
#define I915_PERF_IOCTL_ENABLE    _IO('i', 0x0)

/*
 * Disable data capture for a stream.
 *
 * It is an error to try and read a stream that is disabled.
 *
 * This ioctl is available in perf revision 1.
 */
#define I915_PERF_IOCTL_DISABLE    _IO('i', 0x1)

/*
 * Change metrics_set captured by a stream.
 *
 * If the stream is bound to a specific context, the configuration change
 * will performed __inline__ with that context such that it takes effect before
 * the next execbuf submission.
 *
 * Returns the previously bound metrics set id, or a negative error code.
 *
 * This ioctl is available in perf revision 2.
 */
#define I915_PERF_IOCTL_CONFIG    _IO('i', 0x2)

/*
 * Common to all i915 perf records
 */
struct drm_i915_perf_record_header {
    __u32 type;
    __u16 pad;
    __u16 size;
};

enum drm_i915_perf_record_type {

    /**
     * Samples are the work horse record type whose contents are extensible
     * and defined when opening an i915 perf stream based on the given
     * properties.
     *
     * Boolean properties following the naming convention
     * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
     * every sample.
     *
     * The order of these sample properties given by userspace has no
     * affect on the ordering of data within a sample. The order is
     * documented here.
     *
     * struct {
     *     struct drm_i915_perf_record_header header;
     *
     *     { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
     * };
     */
    DRM_I915_PERF_RECORD_SAMPLE = 1,

    /*
     * Indicates that one or more OA reports were not written by the
     * hardware. This can happen for example if an MI_REPORT_PERF_COUNT
     * command collides with periodic sampling - which would be more likely
     * at higher sampling frequencies.
     */
    DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,

    /**
     * An error occurred that resulted in all pending OA reports being lost.
     */
    DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,

    DRM_I915_PERF_RECORD_MAX /* non-ABI */
};

/**
 * struct drm_i915_perf_oa_config
 *
 * Structure to upload perf dynamic configuration into the kernel.
 */
struct drm_i915_perf_oa_config {
    /**
     * @uuid:
     *
     * String formatted like "%\08x-%\04x-%\04x-%\04x-%\012x"
     */
    char uuid[36];

    /**
     * @n_mux_regs:
     *
     * Number of mux regs in &mux_regs_ptr.
     */
    __u32 n_mux_regs;

    /**
     * @n_boolean_regs:
     *
     * Number of boolean regs in &boolean_regs_ptr.
     */
    __u32 n_boolean_regs;

    /**
     * @n_flex_regs:
     *
     * Number of flex regs in &flex_regs_ptr.
     */
    __u32 n_flex_regs;

    /**
     * @mux_regs_ptr:
     *
     * Pointer to tuples of u32 values (register address, value) for mux
     * registers.  Expected length of buffer is (2 * sizeof(u32) *
     * &n_mux_regs).
     */
    __u64 mux_regs_ptr;

    /**
     * @boolean_regs_ptr:
     *
     * Pointer to tuples of u32 values (register address, value) for mux
     * registers.  Expected length of buffer is (2 * sizeof(u32) *
     * &n_boolean_regs).
     */
    __u64 boolean_regs_ptr;

    /**
     * @flex_regs_ptr:
     *
     * Pointer to tuples of u32 values (register address, value) for mux
     * registers.  Expected length of buffer is (2 * sizeof(u32) *
     * &n_flex_regs).
     */
    __u64 flex_regs_ptr;
};

/**
 * struct drm_i915_query_item - An individual query for the kernel to process.
 *
 * The behaviour is determined by the @query_id. Note that exactly what
 * @data_ptr is also depends on the specific @query_id.
 */
struct drm_i915_query_item {
    /**
     * @query_id:
     *
     * The id for this query.  Currently accepted query IDs are:
     *  - %DRM_I915_QUERY_TOPOLOGY_INFO (see struct drm_i915_query_topology_info)
     *  - %DRM_I915_QUERY_ENGINE_INFO (see struct drm_i915_engine_info)
     *  - %DRM_I915_QUERY_PERF_CONFIG (see struct drm_i915_query_perf_config)
     *  - %DRM_I915_QUERY_MEMORY_REGIONS (see struct drm_i915_query_memory_regions)
     *  - %DRM_I915_QUERY_HWCONFIG_BLOB (see `GuC HWCONFIG blob uAPI`)
     *  - %DRM_I915_QUERY_GEOMETRY_SUBSLICES (see struct drm_i915_query_topology_info)
     */
    __u64 query_id;
#define DRM_I915_QUERY_TOPOLOGY_INFO        1
#define DRM_I915_QUERY_ENGINE_INFO        2
#define DRM_I915_QUERY_PERF_CONFIG        3
#define DRM_I915_QUERY_MEMORY_REGIONS        4
#define DRM_I915_QUERY_HWCONFIG_BLOB        5
#define DRM_I915_QUERY_GEOMETRY_SUBSLICES    6
/* Must be kept compact -- no holes and well documented */

    /**
     * @length:
     *
     * When set to zero by userspace, this is filled with the size of the
     * data to be written at the @data_ptr pointer. The kernel sets this
     * value to a negative value to signal an error on a particular query
     * item.
     */
    __s32 length;

    /**
     * @flags:
     *
     * When &query_id == %DRM_I915_QUERY_TOPOLOGY_INFO, must be 0.
     *
     * When &query_id == %DRM_I915_QUERY_PERF_CONFIG, must be one of the
     * following:
     *
     *    - %DRM_I915_QUERY_PERF_CONFIG_LIST
     *      - %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID
     *      - %DRM_I915_QUERY_PERF_CONFIG_FOR_UUID
     *
     * When &query_id == %DRM_I915_QUERY_GEOMETRY_SUBSLICES must contain
     * a struct i915_engine_class_instance that references a render engine.
     */
    __u32 flags;
#define DRM_I915_QUERY_PERF_CONFIG_LIST          1
#define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2
#define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID   3

    /**
     * @data_ptr:
     *
     * Data will be written at the location pointed by @data_ptr when the
     * value of @length matches the length of the data to be written by the
     * kernel.
     */
    __u64 data_ptr;
};

/**
 * struct drm_i915_query - Supply an array of struct drm_i915_query_item for the
 * kernel to fill out.
 *
 * Note that this is generally a two step process for each struct
 * drm_i915_query_item in the array:
 *
 * 1. Call the DRM_IOCTL_I915_QUERY, giving it our array of struct
 *    drm_i915_query_item, with &drm_i915_query_item.length set to zero. The
 *    kernel will then fill in the size, in bytes, which tells userspace how
 *    memory it needs to allocate for the blob(say for an array of properties).
 *
 * 2. Next we call DRM_IOCTL_I915_QUERY again, this time with the
 *    &drm_i915_query_item.data_ptr equal to our newly allocated blob. Note that
 *    the &drm_i915_query_item.length should still be the same as what the
 *    kernel previously set. At this point the kernel can fill in the blob.
 *
 * Note that for some query items it can make sense for userspace to just pass
 * in a buffer/blob equal to or larger than the required size. In this case only
 * a single ioctl call is needed. For some smaller query items this can work
 * quite well.
 *
 */
struct drm_i915_query {
    /** @num_items: The number of elements in the @items_ptr array */
    __u32 num_items;

    /**
     * @flags: Unused for now. Must be cleared to zero.
     */
    __u32 flags;

    /**
     * @items_ptr:
     *
     * Pointer to an array of struct drm_i915_query_item. The number of
     * array elements is @num_items.
     */
    __u64 items_ptr;
};

/**
 * struct drm_i915_query_topology_info
 *
 * Describes slice/subslice/EU information queried by
 * %DRM_I915_QUERY_TOPOLOGY_INFO
 */
struct drm_i915_query_topology_info {
    /**
     * @flags:
     *
     * Unused for now. Must be cleared to zero.
     */
    __u16 flags;

    /**
     * @max_slices:
     *
     * The number of bits used to express the slice mask.
     */
    __u16 max_slices;

    /**
     * @max_subslices:
     *
     * The number of bits used to express the subslice mask.
     */
    __u16 max_subslices;

    /**
     * @max_eus_per_subslice:
     *
     * The number of bits in the EU mask that correspond to a single
     * subslice's EUs.
     */
    __u16 max_eus_per_subslice;

    /**
     * @subslice_offset:
     *
     * Offset in data[] at which the subslice masks are stored.
     */
    __u16 subslice_offset;

    /**
     * @subslice_stride:
     *
     * Stride at which each of the subslice masks for each slice are
     * stored.
     */
    __u16 subslice_stride;

    /**
     * @eu_offset:
     *
     * Offset in data[] at which the EU masks are stored.
     */
    __u16 eu_offset;

    /**
     * @eu_stride:
     *
     * Stride at which each of the EU masks for each subslice are stored.
     */
    __u16 eu_stride;

    /**
     * @data:
     *
     * Contains 3 pieces of information :
     *
     * - The slice mask with one bit per slice telling whether a slice is
     *   available. The availability of slice X can be queried with the
     *   following formula :
     *
     *   .. code:: c
     *
     *      (data[X / 8] >> (X % 8)) & 1
     *
     *   Starting with Xe_HP platforms, Intel hardware no longer has
     *   traditional slices so i915 will always report a single slice
     *   (hardcoded slicemask = 0x1) which contains all of the platform's
     *   subslices.  I.e., the mask here does not reflect any of the newer
     *   hardware concepts such as "gslices" or "cslices" since userspace
     *   is capable of inferring those from the subslice mask.
     *
     * - The subslice mask for each slice with one bit per subslice telling
     *   whether a subslice is available.  Starting with Gen12 we use the
     *   term "subslice" to refer to what the hardware documentation
     *   describes as a "dual-subslices."  The availability of subslice Y
     *   in slice X can be queried with the following formula :
     *
     *   .. code:: c
     *
     *      (data[subslice_offset + X * subslice_stride + Y / 8] >> (Y % 8)) & 1
     *
     * - The EU mask for each subslice in each slice, with one bit per EU
     *   telling whether an EU is available. The availability of EU Z in
     *   subslice Y in slice X can be queried with the following formula :
     *
     *   .. code:: c
     *
     *      (data[eu_offset +
     *            (X * max_subslices + Y) * eu_stride +
     *            Z / 8
     *       ] >> (Z % 8)) & 1
     */
    __u8 data[];
};

/**
 * DOC: Engine Discovery uAPI
 *
 * Engine discovery uAPI is a way of enumerating physical engines present in a
 * GPU associated with an open i915 DRM file descriptor. This supersedes the old
 * way of using `DRM_IOCTL_I915_GETPARAM` and engine identifiers like
 * `I915_PARAM_HAS_BLT`.
 *
 * The need for this interface came starting with Icelake and newer GPUs, which
 * started to establish a pattern of having multiple engines of a same class,
 * where not all instances were always completely functionally equivalent.
 *
 * Entry point for this uapi is `DRM_IOCTL_I915_QUERY` with the
 * `DRM_I915_QUERY_ENGINE_INFO` as the queried item id.
 *
 * Example for getting the list of engines:
 *
 * .. code-block:: C
 *
 *     struct drm_i915_query_engine_info *info;
 *     struct drm_i915_query_item item = {
 *         .query_id = DRM_I915_QUERY_ENGINE_INFO;
 *     };
 *     struct drm_i915_query query = {
 *         .num_items = 1,
 *         .items_ptr = (uintptr_t)&item,
 *     };
 *     int err, i;
 *
 *     // First query the size of the blob we need, this needs to be large
 *     // enough to hold our array of engines. The kernel will fill out the
 *     // item.length for us, which is the number of bytes we need.
 *     //
 *     // Alternatively a large buffer can be allocated straight away enabling
 *     // querying in one pass, in which case item.length should contain the
 *     // length of the provided buffer.
 *     err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
 *     if (err) ...
 *
 *     info = calloc(1, item.length);
 *     // Now that we allocated the required number of bytes, we call the ioctl
 *     // again, this time with the data_ptr pointing to our newly allocated
 *     // blob, which the kernel can then populate with info on all engines.
 *     item.data_ptr = (uintptr_t)&info,
 *
 *     err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
 *     if (err) ...
 *
 *     // We can now access each engine in the array
 *     for (i = 0; i < info->num_engines; i++) {
 *         struct drm_i915_engine_info einfo = info->engines[i];
 *         u16 class = einfo.engine.class;
 *         u16 instance = einfo.engine.instance;
 *         ....
 *     }
 *
 *     free(info);
 *
 * Each of the enumerated engines, apart from being defined by its class and
 * instance (see `struct i915_engine_class_instance`), also can have flags and
 * capabilities defined as documented in i915_drm.h.
 *
 * For instance video engines which support HEVC encoding will have the
 * `I915_VIDEO_CLASS_CAPABILITY_HEVC` capability bit set.
 *
 * Engine discovery only fully comes to its own when combined with the new way
 * of addressing engines when submitting batch buffers using contexts with
 * engine maps configured.
 */

/**
 * struct drm_i915_engine_info
 *
 * Describes one engine and it's capabilities as known to the driver.
 */
struct drm_i915_engine_info {
    /** @engine: Engine class and instance. */
    struct i915_engine_class_instance engine;

    /** @rsvd0: Reserved field. */
    __u32 rsvd0;

    /** @flags: Engine flags. */
    __u64 flags;
#define I915_ENGINE_INFO_HAS_LOGICAL_INSTANCE        (1 << 0)

    /** @capabilities: Capabilities of this engine. */
    __u64 capabilities;
#define I915_VIDEO_CLASS_CAPABILITY_HEVC        (1 << 0)
#define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC    (1 << 1)

    /** @logical_instance: Logical instance of engine */
    __u16 logical_instance;

    /** @rsvd1: Reserved fields. */
    __u16 rsvd1[3];
    /** @rsvd2: Reserved fields. */
    __u64 rsvd2[3];
};

/**
 * struct drm_i915_query_engine_info
 *
 * Engine info query enumerates all engines known to the driver by filling in
 * an array of struct drm_i915_engine_info structures.
 */
struct drm_i915_query_engine_info {
    /** @num_engines: Number of struct drm_i915_engine_info structs following. */
    __u32 num_engines;

    /** @rsvd: MBZ */
    __u32 rsvd[3];

    /** @engines: Marker for drm_i915_engine_info structures. */
    struct drm_i915_engine_info engines[];
};

/**
 * struct drm_i915_query_perf_config
 *
 * Data written by the kernel with query %DRM_I915_QUERY_PERF_CONFIG and
 * %DRM_I915_QUERY_GEOMETRY_SUBSLICES.
 */
struct drm_i915_query_perf_config {
    union {
        /**
         * @n_configs:
         *
         * When &drm_i915_query_item.flags ==
         * %DRM_I915_QUERY_PERF_CONFIG_LIST, i915 sets this fields to
         * the number of configurations available.
         */
        __u64 n_configs;

        /**
         * @config:
         *
         * When &drm_i915_query_item.flags ==
         * %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID, i915 will use the
         * value in this field as configuration identifier to decide
         * what data to write into config_ptr.
         */
        __u64 config;

        /**
         * @uuid:
         *
         * When &drm_i915_query_item.flags ==
         * %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID, i915 will use the
         * value in this field as configuration identifier to decide
         * what data to write into config_ptr.
         *
         * String formatted like "%08x-%04x-%04x-%04x-%012x"
         */
        char uuid[36];
    };

    /**
     * @flags:
     *
     * Unused for now. Must be cleared to zero.
     */
    __u32 flags;

    /**
     * @data:
     *
     * When &drm_i915_query_item.flags == %DRM_I915_QUERY_PERF_CONFIG_LIST,
     * i915 will write an array of __u64 of configuration identifiers.
     *
     * When &drm_i915_query_item.flags == %DRM_I915_QUERY_PERF_CONFIG_DATA,
     * i915 will write a struct drm_i915_perf_oa_config. If the following
     * fields of struct drm_i915_perf_oa_config are not set to 0, i915 will
     * write into the associated pointers the values of submitted when the
     * configuration was created :
     *
     *  - &drm_i915_perf_oa_config.n_mux_regs
     *  - &drm_i915_perf_oa_config.n_boolean_regs
     *  - &drm_i915_perf_oa_config.n_flex_regs
     */
    __u8 data[];
};

/**
 * enum drm_i915_gem_memory_class - Supported memory classes
 */
enum drm_i915_gem_memory_class {
    /** @I915_MEMORY_CLASS_SYSTEM: System memory */
    I915_MEMORY_CLASS_SYSTEM = 0,
    /** @I915_MEMORY_CLASS_DEVICE: Device local-memory */
    I915_MEMORY_CLASS_DEVICE,
};

/**
 * struct drm_i915_gem_memory_class_instance - Identify particular memory region
 */
struct drm_i915_gem_memory_class_instance {
    /** @memory_class: See enum drm_i915_gem_memory_class */
    __u16 memory_class;

    /** @memory_instance: Which instance */
    __u16 memory_instance;
};

/**
 * struct drm_i915_memory_region_info - Describes one region as known to the
 * driver.
 *
 * Note this is using both struct drm_i915_query_item and struct drm_i915_query.
 * For this new query we are adding the new query id DRM_I915_QUERY_MEMORY_REGIONS
 * at &drm_i915_query_item.query_id.
 */
struct drm_i915_memory_region_info {
    /** @region: The class:instance pair encoding */
    struct drm_i915_gem_memory_class_instance region;

    /** @rsvd0: MBZ */
    __u32 rsvd0;

    /**
     * @probed_size: Memory probed by the driver
     *
     * Note that it should not be possible to ever encounter a zero value
     * here, also note that no current region type will ever return -1 here.
     * Although for future region types, this might be a possibility. The
     * same applies to the other size fields.
     */
    __u64 probed_size;

    /**
     * @unallocated_size: Estimate of memory remaining
     *
     * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable accounting.
     * Without this (or if this is an older kernel) the value here will
     * always equal the @probed_size. Note this is only currently tracked
     * for I915_MEMORY_CLASS_DEVICE regions (for other types the value here
     * will always equal the @probed_size).
     */
    __u64 unallocated_size;

    union {
        /** @rsvd1: MBZ */
        __u64 rsvd1[8];
        struct {
            /**
             * @probed_cpu_visible_size: Memory probed by the driver
             * that is CPU accessible.
             *
             * This will be always be <= @probed_size, and the
             * remainder (if there is any) will not be CPU
             * accessible.
             *
             * On systems without small BAR, the @probed_size will
             * always equal the @probed_cpu_visible_size, since all
             * of it will be CPU accessible.
             *
             * Note this is only tracked for
             * I915_MEMORY_CLASS_DEVICE regions (for other types the
             * value here will always equal the @probed_size).
             *
             * Note that if the value returned here is zero, then
             * this must be an old kernel which lacks the relevant
             * small-bar uAPI support (including
             * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS), but on
             * such systems we should never actually end up with a
             * small BAR configuration, assuming we are able to load
             * the kernel module. Hence it should be safe to treat
             * this the same as when @probed_cpu_visible_size ==
             * @probed_size.
             */
            __u64 probed_cpu_visible_size;

            /**
             * @unallocated_cpu_visible_size: Estimate of CPU
             * visible memory remaining.
             *
             * Note this is only tracked for
             * I915_MEMORY_CLASS_DEVICE regions (for other types the
             * value here will always equal the
             * @probed_cpu_visible_size).
             *
             * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
             * accounting.  Without this the value here will always
             * equal the @probed_cpu_visible_size. Note this is only
             * currently tracked for I915_MEMORY_CLASS_DEVICE
             * regions (for other types the value here will also
             * always equal the @probed_cpu_visible_size).
             *
             * If this is an older kernel the value here will be
             * zero, see also @probed_cpu_visible_size.
             */
            __u64 unallocated_cpu_visible_size;
        };
    };
};

/**
 * struct drm_i915_query_memory_regions
 *
 * The region info query enumerates all regions known to the driver by filling
 * in an array of struct drm_i915_memory_region_info structures.
 *
 * Example for getting the list of supported regions:
 *
 * .. code-block:: C
 *
 *    struct drm_i915_query_memory_regions *info;
 *    struct drm_i915_query_item item = {
 *        .query_id = DRM_I915_QUERY_MEMORY_REGIONS;
 *    };
 *    struct drm_i915_query query = {
 *        .num_items = 1,
 *        .items_ptr = (uintptr_t)&item,
 *    };
 *    int err, i;
 *
 *    // First query the size of the blob we need, this needs to be large
 *    // enough to hold our array of regions. The kernel will fill out the
 *    // item.length for us, which is the number of bytes we need.
 *    err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
 *    if (err) ...
 *
 *    info = calloc(1, item.length);
 *    // Now that we allocated the required number of bytes, we call the ioctl
 *    // again, this time with the data_ptr pointing to our newly allocated
 *    // blob, which the kernel can then populate with the all the region info.
 *    item.data_ptr = (uintptr_t)&info,
 *
 *    err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
 *    if (err) ...
 *
 *    // We can now access each region in the array
 *    for (i = 0; i < info->num_regions; i++) {
 *        struct drm_i915_memory_region_info mr = info->regions[i];
 *        u16 class = mr.region.class;
 *        u16 instance = mr.region.instance;
 *
 *        ....
 *    }
 *
 *    free(info);
 */
struct drm_i915_query_memory_regions {
    /** @num_regions: Number of supported regions */
    __u32 num_regions;

    /** @rsvd: MBZ */
    __u32 rsvd[3];

    /** @regions: Info about each supported region */
    struct drm_i915_memory_region_info regions[];
};

/**
 * DOC: GuC HWCONFIG blob uAPI
 *
 * The GuC produces a blob with information about the current device.
 * i915 reads this blob from GuC and makes it available via this uAPI.
 *
 * The format and meaning of the blob content are documented in the
 * Programmer's Reference Manual.
 */

/**
 * struct drm_i915_gem_create_ext - Existing gem_create behaviour, with added
 * extension support using struct i915_user_extension.
 *
 * Note that new buffer flags should be added here, at least for the stuff that
 * is immutable. Previously we would have two ioctls, one to create the object
 * with gem_create, and another to apply various parameters, however this
 * creates some ambiguity for the params which are considered immutable. Also in
 * general we're phasing out the various SET/GET ioctls.
 */
struct drm_i915_gem_create_ext {
    /**
     * @size: Requested size for the object.
     *
     * The (page-aligned) allocated size for the object will be returned.
     *
     * On platforms like DG2/ATS the kernel will always use 64K or larger
     * pages for I915_MEMORY_CLASS_DEVICE. The kernel also requires a
     * minimum of 64K GTT alignment for such objects.
     *
     * NOTE: Previously the ABI here required a minimum GTT alignment of 2M
     * on DG2/ATS, due to how the hardware implemented 64K GTT page support,
     * where we had the following complications:
     *
     *   1) The entire PDE (which covers a 2MB virtual address range), must
     *   contain only 64K PTEs, i.e mixing 4K and 64K PTEs in the same
     *   PDE is forbidden by the hardware.
     *
     *   2) We still need to support 4K PTEs for I915_MEMORY_CLASS_SYSTEM
     *   objects.
     *
     * However on actual production HW this was completely changed to now
     * allow setting a TLB hint at the PTE level (see PS64), which is a lot
     * more flexible than the above. With this the 2M restriction was
     * dropped where we now only require 64K.
     */
    __u64 size;

    /**
     * @handle: Returned handle for the object.
     *
     * Object handles are nonzero.
     */
    __u32 handle;

    /**
     * @flags: Optional flags.
     *
     * Supported values:
     *
     * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS - Signal to the kernel that
     * the object will need to be accessed via the CPU.
     *
     * Only valid when placing objects in I915_MEMORY_CLASS_DEVICE, and only
     * strictly required on configurations where some subset of the device
     * memory is directly visible/mappable through the CPU (which we also
     * call small BAR), like on some DG2+ systems. Note that this is quite
     * undesirable, but due to various factors like the client CPU, BIOS etc
     * it's something we can expect to see in the wild. See
     * &drm_i915_memory_region_info.probed_cpu_visible_size for how to
     * determine if this system applies.
     *
     * Note that one of the placements MUST be I915_MEMORY_CLASS_SYSTEM, to
     * ensure the kernel can always spill the allocation to system memory,
     * if the object can't be allocated in the mappable part of
     * I915_MEMORY_CLASS_DEVICE.
     *
     * Also note that since the kernel only supports flat-CCS on objects
     * that can *only* be placed in I915_MEMORY_CLASS_DEVICE, we therefore
     * don't support I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS together with
     * flat-CCS.
     *
     * Without this hint, the kernel will assume that non-mappable
     * I915_MEMORY_CLASS_DEVICE is preferred for this object. Note that the
     * kernel can still migrate the object to the mappable part, as a last
     * resort, if userspace ever CPU faults this object, but this might be
     * expensive, and so ideally should be avoided.
     *
     * On older kernels which lack the relevant small-bar uAPI support (see
     * also &drm_i915_memory_region_info.probed_cpu_visible_size),
     * usage of the flag will result in an error, but it should NEVER be
     * possible to end up with a small BAR configuration, assuming we can
     * also successfully load the i915 kernel module. In such cases the
     * entire I915_MEMORY_CLASS_DEVICE region will be CPU accessible, and as
     * such there are zero restrictions on where the object can be placed.
     */
#define I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS (1 << 0)
    __u32 flags;

    /**
     * @extensions: The chain of extensions to apply to this object.
     *
     * This will be useful in the future when we need to support several
     * different extensions, and we need to apply more than one when
     * creating the object. See struct i915_user_extension.
     *
     * If we don't supply any extensions then we get the same old gem_create
     * behaviour.
     *
     * For I915_GEM_CREATE_EXT_MEMORY_REGIONS usage see
     * struct drm_i915_gem_create_ext_memory_regions.
     *
     * For I915_GEM_CREATE_EXT_PROTECTED_CONTENT usage see
     * struct drm_i915_gem_create_ext_protected_content.
     */
#define I915_GEM_CREATE_EXT_MEMORY_REGIONS 0
#define I915_GEM_CREATE_EXT_PROTECTED_CONTENT 1
    __u64 extensions;
};

/**
 * struct drm_i915_gem_create_ext_memory_regions - The
 * I915_GEM_CREATE_EXT_MEMORY_REGIONS extension.
 *
 * Set the object with the desired set of placements/regions in priority
 * order. Each entry must be unique and supported by the device.
 *
 * This is provided as an array of struct drm_i915_gem_memory_class_instance, or
 * an equivalent layout of class:instance pair encodings. See struct
 * drm_i915_query_memory_regions and DRM_I915_QUERY_MEMORY_REGIONS for how to
 * query the supported regions for a device.
 *
 * As an example, on discrete devices, if we wish to set the placement as
 * device local-memory we can do something like:
 *
 * .. code-block:: C
 *
 *    struct drm_i915_gem_memory_class_instance region_lmem = {
 *              .memory_class = I915_MEMORY_CLASS_DEVICE,
 *              .memory_instance = 0,
 *      };
 *      struct drm_i915_gem_create_ext_memory_regions regions = {
 *              .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS },
 *              .regions = (uintptr_t)&region_lmem,
 *              .num_regions = 1,
 *      };
 *      struct drm_i915_gem_create_ext create_ext = {
 *              .size = 16 * PAGE_SIZE,
 *              .extensions = (uintptr_t)&regions,
 *      };
 *
 *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
 *      if (err) ...
 *
 * At which point we get the object handle in &drm_i915_gem_create_ext.handle,
 * along with the final object size in &drm_i915_gem_create_ext.size, which
 * should account for any rounding up, if required.
 *
 * Note that userspace has no means of knowing the current backing region
 * for objects where @num_regions is larger than one. The kernel will only
 * ensure that the priority order of the @regions array is honoured, either
 * when initially placing the object, or when moving memory around due to
 * memory pressure
 *
 * On Flat-CCS capable HW, compression is supported for the objects residing
 * in I915_MEMORY_CLASS_DEVICE. When such objects (compressed) have other
 * memory class in @regions and migrated (by i915, due to memory
 * constraints) to the non I915_MEMORY_CLASS_DEVICE region, then i915 needs to
 * decompress the content. But i915 doesn't have the required information to
 * decompress the userspace compressed objects.
 *
 * So i915 supports Flat-CCS, on the objects which can reside only on
 * I915_MEMORY_CLASS_DEVICE regions.
 */
struct drm_i915_gem_create_ext_memory_regions {
    /** @base: Extension link. See struct i915_user_extension. */
    struct i915_user_extension base;

    /** @pad: MBZ */
    __u32 pad;
    /** @num_regions: Number of elements in the @regions array. */
    __u32 num_regions;
    /**
     * @regions: The regions/placements array.
     *
     * An array of struct drm_i915_gem_memory_class_instance.
     */
    __u64 regions;
};

/**
 * struct drm_i915_gem_create_ext_protected_content - The
 * I915_OBJECT_PARAM_PROTECTED_CONTENT extension.
 *
 * If this extension is provided, buffer contents are expected to be protected
 * by PXP encryption and require decryption for scan out and processing. This
 * is only possible on platforms that have PXP enabled, on all other scenarios
 * using this extension will cause the ioctl to fail and return -ENODEV. The
 * flags parameter is reserved for future expansion and must currently be set
 * to zero.
 *
 * The buffer contents are considered invalid after a PXP session teardown.
 *
 * The encryption is guaranteed to be processed correctly only if the object
 * is submitted with a context created using the
 * I915_CONTEXT_PARAM_PROTECTED_CONTENT flag. This will also enable extra checks
 * at submission time on the validity of the objects involved.
 *
 * Below is an example on how to create a protected object:
 *
 * .. code-block:: C
 *
 *      struct drm_i915_gem_create_ext_protected_content protected_ext = {
 *              .base = { .name = I915_GEM_CREATE_EXT_PROTECTED_CONTENT },
 *              .flags = 0,
 *      };
 *      struct drm_i915_gem_create_ext create_ext = {
 *              .size = PAGE_SIZE,
 *              .extensions = (uintptr_t)&protected_ext,
 *      };
 *
 *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
 *      if (err) ...
 */
struct drm_i915_gem_create_ext_protected_content {
    /** @base: Extension link. See struct i915_user_extension. */
    struct i915_user_extension base;
    /** @flags: reserved for future usage, currently MBZ */
    __u32 flags;
};

/* ID of the protected content session managed by i915 when PXP is active */
#define I915_PROTECTED_CONTENT_DEFAULT_SESSION 0xf

#if defined(__cplusplus)
}
#endif

#endif /* _I915_DRM_H_ */

:: Command execute ::

Enter:
 
Select:
 

:: Search ::
  - regexp 

:: Upload ::
 
[ Read-Only ]

:: Make Dir ::
 
[ Read-Only ]
:: Make File ::
 
[ Read-Only ]

:: Go Dir ::
 
:: Go File ::
 

--[ c99shell v. 2.0 [PHP 7 Update] [25.02.2019] maintained by KaizenLouie | C99Shell Github | Generation time: 0.0145 ]--