Viewing file: ScopeInfo.h (38.7 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- ScopeInfo.h - Information about a semantic context -------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines FunctionScopeInfo and its subclasses, which contain // information about a single function, block, lambda, or method body. // //===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_SEMA_SCOPEINFO_H #define LLVM_CLANG_SEMA_SCOPEINFO_H
#include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/Type.h" #include "clang/Basic/CapturedStmt.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/PartialDiagnostic.h" #include "clang/Basic/SourceLocation.h" #include "clang/Sema/CleanupInfo.h" #include "clang/Sema/DeclSpec.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/TinyPtrVector.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include <algorithm> #include <cassert> #include <utility>
namespace clang {
class BlockDecl; class CapturedDecl; class CXXMethodDecl; class CXXRecordDecl; class ImplicitParamDecl; class NamedDecl; class ObjCIvarRefExpr; class ObjCMessageExpr; class ObjCPropertyDecl; class ObjCPropertyRefExpr; class ParmVarDecl; class RecordDecl; class ReturnStmt; class Scope; class Stmt; class SwitchStmt; class TemplateParameterList; class VarDecl;
namespace sema {
/// Contains information about the compound statement currently being /// parsed. class CompoundScopeInfo { public: /// Whether this compound statement contains `for' or `while' loops /// with empty bodies. bool HasEmptyLoopBodies = false;
/// Whether this compound statement corresponds to a GNU statement /// expression. bool IsStmtExpr;
/// FP options at the beginning of the compound statement, prior to /// any pragma. FPOptions InitialFPFeatures;
CompoundScopeInfo(bool IsStmtExpr, FPOptions FPO) : IsStmtExpr(IsStmtExpr), InitialFPFeatures(FPO) {}
void setHasEmptyLoopBodies() { HasEmptyLoopBodies = true; } };
class PossiblyUnreachableDiag { public: PartialDiagnostic PD; SourceLocation Loc; llvm::TinyPtrVector<const Stmt*> Stmts;
PossiblyUnreachableDiag(const PartialDiagnostic &PD, SourceLocation Loc, ArrayRef<const Stmt *> Stmts) : PD(PD), Loc(Loc), Stmts(Stmts) {} };
enum class FirstCoroutineStmtKind { CoReturn, CoAwait, CoYield };
/// Retains information about a function, method, or block that is /// currently being parsed. class FunctionScopeInfo { protected: enum ScopeKind { SK_Function, SK_Block, SK_Lambda, SK_CapturedRegion };
public: /// What kind of scope we are describing. ScopeKind Kind : 3;
/// Whether this function contains a VLA, \@try, try, C++ /// initializer, or anything else that can't be jumped past. bool HasBranchProtectedScope : 1;
/// Whether this function contains any switches or direct gotos. bool HasBranchIntoScope : 1;
/// Whether this function contains any indirect gotos. bool HasIndirectGoto : 1;
/// Whether this function contains any statement marked with /// \c [[clang::musttail]]. bool HasMustTail : 1;
/// Whether a statement was dropped because it was invalid. bool HasDroppedStmt : 1;
/// True if current scope is for OpenMP declare reduction combiner. bool HasOMPDeclareReductionCombiner : 1;
/// Whether there is a fallthrough statement in this function. bool HasFallthroughStmt : 1;
/// Whether this function uses constrained floating point intrinsics bool UsesFPIntrin : 1;
/// Whether we make reference to a declaration that could be /// unavailable. bool HasPotentialAvailabilityViolations : 1;
/// A flag that is set when parsing a method that must call super's /// implementation, such as \c -dealloc, \c -finalize, or any method marked /// with \c __attribute__((objc_requires_super)). bool ObjCShouldCallSuper : 1;
/// True when this is a method marked as a designated initializer. bool ObjCIsDesignatedInit : 1;
/// This starts true for a method marked as designated initializer and will /// be set to false if there is an invocation to a designated initializer of /// the super class. bool ObjCWarnForNoDesignatedInitChain : 1;
/// True when this is an initializer method not marked as a designated /// initializer within a class that has at least one initializer marked as a /// designated initializer. bool ObjCIsSecondaryInit : 1;
/// This starts true for a secondary initializer method and will be set to /// false if there is an invocation of an initializer on 'self'. bool ObjCWarnForNoInitDelegation : 1;
/// True only when this function has not already built, or attempted /// to build, the initial and final coroutine suspend points bool NeedsCoroutineSuspends : 1;
/// An enumeration representing the kind of the first coroutine statement /// in the function. One of co_return, co_await, or co_yield. LLVM_PREFERRED_TYPE(FirstCoroutineStmtKind) unsigned char FirstCoroutineStmtKind : 2;
/// Whether we found an immediate-escalating expression. bool FoundImmediateEscalatingExpression : 1;
/// First coroutine statement in the current function. /// (ex co_return, co_await, co_yield) SourceLocation FirstCoroutineStmtLoc;
/// First 'return' statement in the current function. SourceLocation FirstReturnLoc;
/// First C++ 'try' or ObjC @try statement in the current function. SourceLocation FirstCXXOrObjCTryLoc; enum { TryLocIsCXX, TryLocIsObjC, Unknown } FirstTryType = Unknown;
/// First SEH '__try' statement in the current function. SourceLocation FirstSEHTryLoc;
/// First use of a VLA within the current function. SourceLocation FirstVLALoc;
private: /// Used to determine if errors occurred in this function or block. DiagnosticErrorTrap ErrorTrap;
public: /// A SwitchStmt, along with a flag indicating if its list of case statements /// is incomplete (because we dropped an invalid one while parsing). using SwitchInfo = llvm::PointerIntPair<SwitchStmt*, 1, bool>;
/// SwitchStack - This is the current set of active switch statements in the /// block. SmallVector<SwitchInfo, 8> SwitchStack;
/// The list of return statements that occur within the function or /// block, if there is any chance of applying the named return value /// optimization, or if we need to infer a return type. SmallVector<ReturnStmt*, 4> Returns;
/// The promise object for this coroutine, if any. VarDecl *CoroutinePromise = nullptr;
/// A mapping between the coroutine function parameters that were moved /// to the coroutine frame, and their move statements. llvm::SmallMapVector<ParmVarDecl *, Stmt *, 4> CoroutineParameterMoves;
/// The initial and final coroutine suspend points. std::pair<Stmt *, Stmt *> CoroutineSuspends;
/// The stack of currently active compound statement scopes in the /// function. SmallVector<CompoundScopeInfo, 4> CompoundScopes;
/// The set of blocks that are introduced in this function. llvm::SmallPtrSet<const BlockDecl *, 1> Blocks;
/// The set of __block variables that are introduced in this function. llvm::TinyPtrVector<VarDecl *> ByrefBlockVars;
/// A list of PartialDiagnostics created but delayed within the /// current function scope. These diagnostics are vetted for reachability /// prior to being emitted. SmallVector<PossiblyUnreachableDiag, 4> PossiblyUnreachableDiags;
/// A list of parameters which have the nonnull attribute and are /// modified in the function. llvm::SmallPtrSet<const ParmVarDecl *, 8> ModifiedNonNullParams;
/// The set of GNU address of label extension "&&label". llvm::SmallVector<AddrLabelExpr *, 4> AddrLabels;
public: /// Represents a simple identification of a weak object. /// /// Part of the implementation of -Wrepeated-use-of-weak. /// /// This is used to determine if two weak accesses refer to the same object. /// Here are some examples of how various accesses are "profiled": /// /// Access Expression | "Base" Decl | "Property" Decl /// :---------------: | :-----------------: | :------------------------------: /// self.property | self (VarDecl) | property (ObjCPropertyDecl) /// self.implicitProp | self (VarDecl) | -implicitProp (ObjCMethodDecl) /// self->ivar.prop | ivar (ObjCIvarDecl) | prop (ObjCPropertyDecl) /// cxxObj.obj.prop | obj (FieldDecl) | prop (ObjCPropertyDecl) /// [self foo].prop | 0 (unknown) | prop (ObjCPropertyDecl) /// self.prop1.prop2 | prop1 (ObjCPropertyDecl) | prop2 (ObjCPropertyDecl) /// MyClass.prop | MyClass (ObjCInterfaceDecl) | -prop (ObjCMethodDecl) /// MyClass.foo.prop | +foo (ObjCMethodDecl) | -prop (ObjCPropertyDecl) /// weakVar | 0 (known) | weakVar (VarDecl) /// self->weakIvar | self (VarDecl) | weakIvar (ObjCIvarDecl) /// /// Objects are identified with only two Decls to make it reasonably fast to /// compare them. class WeakObjectProfileTy { /// The base object decl, as described in the class documentation. /// /// The extra flag is "true" if the Base and Property are enough to uniquely /// identify the object in memory. /// /// \sa isExactProfile() using BaseInfoTy = llvm::PointerIntPair<const NamedDecl *, 1, bool>; BaseInfoTy Base;
/// The "property" decl, as described in the class documentation. /// /// Note that this may not actually be an ObjCPropertyDecl, e.g. in the /// case of "implicit" properties (regular methods accessed via dot syntax). const NamedDecl *Property = nullptr;
/// Used to find the proper base profile for a given base expression. static BaseInfoTy getBaseInfo(const Expr *BaseE);
inline WeakObjectProfileTy(); static inline WeakObjectProfileTy getSentinel();
public: WeakObjectProfileTy(const ObjCPropertyRefExpr *RE); WeakObjectProfileTy(const Expr *Base, const ObjCPropertyDecl *Property); WeakObjectProfileTy(const DeclRefExpr *RE); WeakObjectProfileTy(const ObjCIvarRefExpr *RE);
const NamedDecl *getBase() const { return Base.getPointer(); } const NamedDecl *getProperty() const { return Property; }
/// Returns true if the object base specifies a known object in memory, /// rather than, say, an instance variable or property of another object. /// /// Note that this ignores the effects of aliasing; that is, \c foo.bar is /// considered an exact profile if \c foo is a local variable, even if /// another variable \c foo2 refers to the same object as \c foo. /// /// For increased precision, accesses with base variables that are /// properties or ivars of 'self' (e.g. self.prop1.prop2) are considered to /// be exact, though this is not true for arbitrary variables /// (foo.prop1.prop2). bool isExactProfile() const { return Base.getInt(); }
bool operator==(const WeakObjectProfileTy &Other) const { return Base == Other.Base && Property == Other.Property; }
// For use in DenseMap. // We can't specialize the usual llvm::DenseMapInfo at the end of the file // because by that point the DenseMap in FunctionScopeInfo has already been // instantiated. class DenseMapInfo { public: static inline WeakObjectProfileTy getEmptyKey() { return WeakObjectProfileTy(); }
static inline WeakObjectProfileTy getTombstoneKey() { return WeakObjectProfileTy::getSentinel(); }
static unsigned getHashValue(const WeakObjectProfileTy &Val) { using Pair = std::pair<BaseInfoTy, const NamedDecl *>;
return llvm::DenseMapInfo<Pair>::getHashValue(Pair(Val.Base, Val.Property)); }
static bool isEqual(const WeakObjectProfileTy &LHS, const WeakObjectProfileTy &RHS) { return LHS == RHS; } }; };
/// Represents a single use of a weak object. /// /// Stores both the expression and whether the access is potentially unsafe /// (i.e. it could potentially be warned about). /// /// Part of the implementation of -Wrepeated-use-of-weak. class WeakUseTy { llvm::PointerIntPair<const Expr *, 1, bool> Rep;
public: WeakUseTy(const Expr *Use, bool IsRead) : Rep(Use, IsRead) {}
const Expr *getUseExpr() const { return Rep.getPointer(); } bool isUnsafe() const { return Rep.getInt(); } void markSafe() { Rep.setInt(false); }
bool operator==(const WeakUseTy &Other) const { return Rep == Other.Rep; } };
/// Used to collect uses of a particular weak object in a function body. /// /// Part of the implementation of -Wrepeated-use-of-weak. using WeakUseVector = SmallVector<WeakUseTy, 4>;
/// Used to collect all uses of weak objects in a function body. /// /// Part of the implementation of -Wrepeated-use-of-weak. using WeakObjectUseMap = llvm::SmallDenseMap<WeakObjectProfileTy, WeakUseVector, 8, WeakObjectProfileTy::DenseMapInfo>;
private: /// Used to collect all uses of weak objects in this function body. /// /// Part of the implementation of -Wrepeated-use-of-weak. WeakObjectUseMap WeakObjectUses;
protected: FunctionScopeInfo(const FunctionScopeInfo&) = default;
public: FunctionScopeInfo(DiagnosticsEngine &Diag) : Kind(SK_Function), HasBranchProtectedScope(false), HasBranchIntoScope(false), HasIndirectGoto(false), HasMustTail(false), HasDroppedStmt(false), HasOMPDeclareReductionCombiner(false), HasFallthroughStmt(false), UsesFPIntrin(false), HasPotentialAvailabilityViolations(false), ObjCShouldCallSuper(false), ObjCIsDesignatedInit(false), ObjCWarnForNoDesignatedInitChain(false), ObjCIsSecondaryInit(false), ObjCWarnForNoInitDelegation(false), NeedsCoroutineSuspends(true), FoundImmediateEscalatingExpression(false), ErrorTrap(Diag) {}
virtual ~FunctionScopeInfo();
/// Determine whether an unrecoverable error has occurred within this /// function. Note that this may return false even if the function body is /// invalid, because the errors may be suppressed if they're caused by prior /// invalid declarations. /// /// FIXME: Migrate the caller of this to use containsErrors() instead once /// it's ready. bool hasUnrecoverableErrorOccurred() const { return ErrorTrap.hasUnrecoverableErrorOccurred(); }
/// Record that a weak object was accessed. /// /// Part of the implementation of -Wrepeated-use-of-weak. template <typename ExprT> inline void recordUseOfWeak(const ExprT *E, bool IsRead = true);
void recordUseOfWeak(const ObjCMessageExpr *Msg, const ObjCPropertyDecl *Prop);
/// Record that a given expression is a "safe" access of a weak object (e.g. /// assigning it to a strong variable.) /// /// Part of the implementation of -Wrepeated-use-of-weak. void markSafeWeakUse(const Expr *E);
const WeakObjectUseMap &getWeakObjectUses() const { return WeakObjectUses; }
void setHasBranchIntoScope() { HasBranchIntoScope = true; }
void setHasBranchProtectedScope() { HasBranchProtectedScope = true; }
void setHasIndirectGoto() { HasIndirectGoto = true; }
void setHasMustTail() { HasMustTail = true; }
void setHasDroppedStmt() { HasDroppedStmt = true; }
void setHasOMPDeclareReductionCombiner() { HasOMPDeclareReductionCombiner = true; }
void setHasFallthroughStmt() { HasFallthroughStmt = true; }
void setUsesFPIntrin() { UsesFPIntrin = true; }
void setHasCXXTry(SourceLocation TryLoc) { setHasBranchProtectedScope(); FirstCXXOrObjCTryLoc = TryLoc; FirstTryType = TryLocIsCXX; }
void setHasObjCTry(SourceLocation TryLoc) { setHasBranchProtectedScope(); FirstCXXOrObjCTryLoc = TryLoc; FirstTryType = TryLocIsObjC; }
void setHasSEHTry(SourceLocation TryLoc) { setHasBranchProtectedScope(); FirstSEHTryLoc = TryLoc; }
void setHasVLA(SourceLocation VLALoc) { if (FirstVLALoc.isInvalid()) FirstVLALoc = VLALoc; }
bool NeedsScopeChecking() const { return !HasDroppedStmt && (HasIndirectGoto || HasMustTail || (HasBranchProtectedScope && HasBranchIntoScope)); }
// Add a block introduced in this function. void addBlock(const BlockDecl *BD) { Blocks.insert(BD); }
// Add a __block variable introduced in this function. void addByrefBlockVar(VarDecl *VD) { ByrefBlockVars.push_back(VD); }
bool isCoroutine() const { return !FirstCoroutineStmtLoc.isInvalid(); }
void setFirstCoroutineStmt(SourceLocation Loc, StringRef Keyword) { assert(FirstCoroutineStmtLoc.isInvalid() && "first coroutine statement location already set"); FirstCoroutineStmtLoc = Loc; FirstCoroutineStmtKind = llvm::StringSwitch<unsigned char>(Keyword) .Case("co_return", llvm::to_underlying(FirstCoroutineStmtKind::CoReturn)) .Case("co_await", llvm::to_underlying(FirstCoroutineStmtKind::CoAwait)) .Case("co_yield", llvm::to_underlying(FirstCoroutineStmtKind::CoYield)); }
StringRef getFirstCoroutineStmtKeyword() const { assert(FirstCoroutineStmtLoc.isValid() && "no coroutine statement available"); auto Value = static_cast<enum FirstCoroutineStmtKind>(FirstCoroutineStmtKind); switch (Value) { case FirstCoroutineStmtKind::CoReturn: return "co_return"; case FirstCoroutineStmtKind::CoAwait: return "co_await"; case FirstCoroutineStmtKind::CoYield: return "co_yield"; }; llvm_unreachable("FirstCoroutineStmtKind has an invalid value"); }
void setNeedsCoroutineSuspends(bool value = true) { assert((!value || CoroutineSuspends.first == nullptr) && "we already have valid suspend points"); NeedsCoroutineSuspends = value; }
bool hasInvalidCoroutineSuspends() const { return !NeedsCoroutineSuspends && CoroutineSuspends.first == nullptr; }
void setCoroutineSuspends(Stmt *Initial, Stmt *Final) { assert(Initial && Final && "suspend points cannot be null"); assert(CoroutineSuspends.first == nullptr && "suspend points already set"); NeedsCoroutineSuspends = false; CoroutineSuspends.first = Initial; CoroutineSuspends.second = Final; }
/// Clear out the information in this function scope, making it /// suitable for reuse. void Clear();
bool isPlainFunction() const { return Kind == SK_Function; } };
class Capture { // There are three categories of capture: capturing 'this', capturing // local variables, and C++1y initialized captures (which can have an // arbitrary initializer, and don't really capture in the traditional // sense at all). // // There are three ways to capture a local variable: // - capture by copy in the C++11 sense, // - capture by reference in the C++11 sense, and // - __block capture. // Lambdas explicitly specify capture by copy or capture by reference. // For blocks, __block capture applies to variables with that annotation, // variables of reference type are captured by reference, and other // variables are captured by copy. enum CaptureKind { Cap_ByCopy, Cap_ByRef, Cap_Block, Cap_VLA };
union { /// If Kind == Cap_VLA, the captured type. const VariableArrayType *CapturedVLA;
/// Otherwise, the captured variable (if any). ValueDecl *CapturedVar; };
/// The source location at which the first capture occurred. SourceLocation Loc;
/// The location of the ellipsis that expands a parameter pack. SourceLocation EllipsisLoc;
/// The type as it was captured, which is the type of the non-static data /// member that would hold the capture. QualType CaptureType;
/// The CaptureKind of this capture. LLVM_PREFERRED_TYPE(CaptureKind) unsigned Kind : 2;
/// Whether this is a nested capture (a capture of an enclosing capturing /// scope's capture). LLVM_PREFERRED_TYPE(bool) unsigned Nested : 1;
/// Whether this is a capture of '*this'. LLVM_PREFERRED_TYPE(bool) unsigned CapturesThis : 1;
/// Whether an explicit capture has been odr-used in the body of the /// lambda. LLVM_PREFERRED_TYPE(bool) unsigned ODRUsed : 1;
/// Whether an explicit capture has been non-odr-used in the body of /// the lambda. LLVM_PREFERRED_TYPE(bool) unsigned NonODRUsed : 1;
/// Whether the capture is invalid (a capture was required but the entity is /// non-capturable). LLVM_PREFERRED_TYPE(bool) unsigned Invalid : 1;
public: Capture(ValueDecl *Var, bool Block, bool ByRef, bool IsNested, SourceLocation Loc, SourceLocation EllipsisLoc, QualType CaptureType, bool Invalid) : CapturedVar(Var), Loc(Loc), EllipsisLoc(EllipsisLoc), CaptureType(CaptureType), Kind(Block ? Cap_Block : ByRef ? Cap_ByRef : Cap_ByCopy), Nested(IsNested), CapturesThis(false), ODRUsed(false), NonODRUsed(false), Invalid(Invalid) {}
enum IsThisCapture { ThisCapture }; Capture(IsThisCapture, bool IsNested, SourceLocation Loc, QualType CaptureType, const bool ByCopy, bool Invalid) : Loc(Loc), CaptureType(CaptureType), Kind(ByCopy ? Cap_ByCopy : Cap_ByRef), Nested(IsNested), CapturesThis(true), ODRUsed(false), NonODRUsed(false), Invalid(Invalid) {}
enum IsVLACapture { VLACapture }; Capture(IsVLACapture, const VariableArrayType *VLA, bool IsNested, SourceLocation Loc, QualType CaptureType) : CapturedVLA(VLA), Loc(Loc), CaptureType(CaptureType), Kind(Cap_VLA), Nested(IsNested), CapturesThis(false), ODRUsed(false), NonODRUsed(false), Invalid(false) {}
bool isThisCapture() const { return CapturesThis; } bool isVariableCapture() const { return !isThisCapture() && !isVLATypeCapture(); }
bool isCopyCapture() const { return Kind == Cap_ByCopy; } bool isReferenceCapture() const { return Kind == Cap_ByRef; } bool isBlockCapture() const { return Kind == Cap_Block; } bool isVLATypeCapture() const { return Kind == Cap_VLA; }
bool isNested() const { return Nested; }
bool isInvalid() const { return Invalid; }
/// Determine whether this capture is an init-capture. bool isInitCapture() const;
bool isODRUsed() const { return ODRUsed; } bool isNonODRUsed() const { return NonODRUsed; } void markUsed(bool IsODRUse) { if (IsODRUse) ODRUsed = true; else NonODRUsed = true; }
ValueDecl *getVariable() const { assert(isVariableCapture()); return CapturedVar; }
const VariableArrayType *getCapturedVLAType() const { assert(isVLATypeCapture()); return CapturedVLA; }
/// Retrieve the location at which this variable was captured. SourceLocation getLocation() const { return Loc; }
/// Retrieve the source location of the ellipsis, whose presence /// indicates that the capture is a pack expansion. SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
/// Retrieve the capture type for this capture, which is effectively /// the type of the non-static data member in the lambda/block structure /// that would store this capture. QualType getCaptureType() const { return CaptureType; } };
class CapturingScopeInfo : public FunctionScopeInfo { protected: CapturingScopeInfo(const CapturingScopeInfo&) = default;
public: enum ImplicitCaptureStyle { ImpCap_None, ImpCap_LambdaByval, ImpCap_LambdaByref, ImpCap_Block, ImpCap_CapturedRegion };
ImplicitCaptureStyle ImpCaptureStyle;
CapturingScopeInfo(DiagnosticsEngine &Diag, ImplicitCaptureStyle Style) : FunctionScopeInfo(Diag), ImpCaptureStyle(Style) {}
/// CaptureMap - A map of captured variables to (index+1) into Captures. llvm::DenseMap<ValueDecl *, unsigned> CaptureMap;
/// CXXThisCaptureIndex - The (index+1) of the capture of 'this'; /// zero if 'this' is not captured. unsigned CXXThisCaptureIndex = 0;
/// Captures - The captures. SmallVector<Capture, 4> Captures;
/// - Whether the target type of return statements in this context /// is deduced (e.g. a lambda or block with omitted return type). bool HasImplicitReturnType = false;
/// ReturnType - The target type of return statements in this context, /// or null if unknown. QualType ReturnType;
void addCapture(ValueDecl *Var, bool isBlock, bool isByref, bool isNested, SourceLocation Loc, SourceLocation EllipsisLoc, QualType CaptureType, bool Invalid) { Captures.push_back(Capture(Var, isBlock, isByref, isNested, Loc, EllipsisLoc, CaptureType, Invalid)); CaptureMap[Var] = Captures.size(); }
void addVLATypeCapture(SourceLocation Loc, const VariableArrayType *VLAType, QualType CaptureType) { Captures.push_back(Capture(Capture::VLACapture, VLAType, /*FIXME: IsNested*/ false, Loc, CaptureType)); }
void addThisCapture(bool isNested, SourceLocation Loc, QualType CaptureType, bool ByCopy);
/// Determine whether the C++ 'this' is captured. bool isCXXThisCaptured() const { return CXXThisCaptureIndex != 0; }
/// Retrieve the capture of C++ 'this', if it has been captured. Capture &getCXXThisCapture() { assert(isCXXThisCaptured() && "this has not been captured"); return Captures[CXXThisCaptureIndex - 1]; }
/// Determine whether the given variable has been captured. bool isCaptured(ValueDecl *Var) const { return CaptureMap.count(Var); }
/// Determine whether the given variable-array type has been captured. bool isVLATypeCaptured(const VariableArrayType *VAT) const;
/// Retrieve the capture of the given variable, if it has been /// captured already. Capture &getCapture(ValueDecl *Var) { assert(isCaptured(Var) && "Variable has not been captured"); return Captures[CaptureMap[Var] - 1]; }
const Capture &getCapture(ValueDecl *Var) const { llvm::DenseMap<ValueDecl *, unsigned>::const_iterator Known = CaptureMap.find(Var); assert(Known != CaptureMap.end() && "Variable has not been captured"); return Captures[Known->second - 1]; }
static bool classof(const FunctionScopeInfo *FSI) { return FSI->Kind == SK_Block || FSI->Kind == SK_Lambda || FSI->Kind == SK_CapturedRegion; } };
/// Retains information about a block that is currently being parsed. class BlockScopeInfo final : public CapturingScopeInfo { public: BlockDecl *TheDecl;
/// TheScope - This is the scope for the block itself, which contains /// arguments etc. Scope *TheScope;
/// BlockType - The function type of the block, if one was given. /// Its return type may be BuiltinType::Dependent. QualType FunctionType;
BlockScopeInfo(DiagnosticsEngine &Diag, Scope *BlockScope, BlockDecl *Block) : CapturingScopeInfo(Diag, ImpCap_Block), TheDecl(Block), TheScope(BlockScope) { Kind = SK_Block; }
~BlockScopeInfo() override;
static bool classof(const FunctionScopeInfo *FSI) { return FSI->Kind == SK_Block; } };
/// Retains information about a captured region. class CapturedRegionScopeInfo final : public CapturingScopeInfo { public: /// The CapturedDecl for this statement. CapturedDecl *TheCapturedDecl;
/// The captured record type. RecordDecl *TheRecordDecl;
/// This is the enclosing scope of the captured region. Scope *TheScope;
/// The implicit parameter for the captured variables. ImplicitParamDecl *ContextParam;
/// The kind of captured region. unsigned short CapRegionKind;
unsigned short OpenMPLevel; unsigned short OpenMPCaptureLevel;
CapturedRegionScopeInfo(DiagnosticsEngine &Diag, Scope *S, CapturedDecl *CD, RecordDecl *RD, ImplicitParamDecl *Context, CapturedRegionKind K, unsigned OpenMPLevel, unsigned OpenMPCaptureLevel) : CapturingScopeInfo(Diag, ImpCap_CapturedRegion), TheCapturedDecl(CD), TheRecordDecl(RD), TheScope(S), ContextParam(Context), CapRegionKind(K), OpenMPLevel(OpenMPLevel), OpenMPCaptureLevel(OpenMPCaptureLevel) { Kind = SK_CapturedRegion; }
~CapturedRegionScopeInfo() override;
/// A descriptive name for the kind of captured region this is. StringRef getRegionName() const { switch (CapRegionKind) { case CR_Default: return "default captured statement"; case CR_ObjCAtFinally: return "Objective-C @finally statement"; case CR_OpenMP: return "OpenMP region"; } llvm_unreachable("Invalid captured region kind!"); }
static bool classof(const FunctionScopeInfo *FSI) { return FSI->Kind == SK_CapturedRegion; } };
class LambdaScopeInfo final : public CapturingScopeInfo, public InventedTemplateParameterInfo { public: /// The class that describes the lambda. CXXRecordDecl *Lambda = nullptr;
/// The lambda's compiler-generated \c operator(). CXXMethodDecl *CallOperator = nullptr;
/// Indicate that we parsed the parameter list /// at which point the mutability of the lambda /// is known. bool AfterParameterList = true;
ParmVarDecl *ExplicitObjectParameter = nullptr;
/// Source range covering the lambda introducer [...]. SourceRange IntroducerRange;
/// Source location of the '&' or '=' specifying the default capture /// type, if any. SourceLocation CaptureDefaultLoc;
/// The number of captures in the \c Captures list that are /// explicit captures. unsigned NumExplicitCaptures = 0;
/// Whether this is a mutable lambda. Until the mutable keyword is parsed, /// we assume the lambda is mutable. bool Mutable = true;
/// Whether the (empty) parameter list is explicit. bool ExplicitParams = false;
/// Whether any of the capture expressions requires cleanups. CleanupInfo Cleanup;
/// Whether the lambda contains an unexpanded parameter pack. bool ContainsUnexpandedParameterPack = false;
/// Packs introduced by this lambda, if any. SmallVector<NamedDecl*, 4> LocalPacks;
/// Source range covering the explicit template parameter list (if it exists). SourceRange ExplicitTemplateParamsRange;
/// The requires-clause immediately following the explicit template parameter /// list, if any. (Note that there may be another requires-clause included as /// part of the lambda-declarator.) ExprResult RequiresClause;
/// If this is a generic lambda, and the template parameter /// list has been created (from the TemplateParams) then store /// a reference to it (cache it to avoid reconstructing it). TemplateParameterList *GLTemplateParameterList = nullptr;
/// Contains all variable-referring-expressions (i.e. DeclRefExprs /// or MemberExprs) that refer to local variables in a generic lambda /// or a lambda in a potentially-evaluated-if-used context. /// /// Potentially capturable variables of a nested lambda that might need /// to be captured by the lambda are housed here. /// This is specifically useful for generic lambdas or /// lambdas within a potentially evaluated-if-used context. /// If an enclosing variable is named in an expression of a lambda nested /// within a generic lambda, we don't always know whether the variable /// will truly be odr-used (i.e. need to be captured) by that nested lambda, /// until its instantiation. But we still need to capture it in the /// enclosing lambda if all intervening lambdas can capture the variable. llvm::SmallVector<Expr*, 4> PotentiallyCapturingExprs;
/// Contains all variable-referring-expressions that refer /// to local variables that are usable as constant expressions and /// do not involve an odr-use (they may still need to be captured /// if the enclosing full-expression is instantiation dependent). llvm::SmallSet<Expr *, 8> NonODRUsedCapturingExprs;
/// A map of explicit capture indices to their introducer source ranges. llvm::DenseMap<unsigned, SourceRange> ExplicitCaptureRanges;
/// Contains all of the variables defined in this lambda that shadow variables /// that were defined in parent contexts. Used to avoid warnings when the /// shadowed variables are uncaptured by this lambda. struct ShadowedOuterDecl { const NamedDecl *VD; const NamedDecl *ShadowedDecl; }; llvm::SmallVector<ShadowedOuterDecl, 4> ShadowingDecls;
SourceLocation PotentialThisCaptureLocation;
LambdaScopeInfo(DiagnosticsEngine &Diag) : CapturingScopeInfo(Diag, ImpCap_None) { Kind = SK_Lambda; }
/// Note when all explicit captures have been added. void finishedExplicitCaptures() { NumExplicitCaptures = Captures.size(); }
static bool classof(const FunctionScopeInfo *FSI) { return FSI->Kind == SK_Lambda; }
/// Is this scope known to be for a generic lambda? (This will be false until /// we parse a template parameter list or the first 'auto'-typed parameter). bool isGenericLambda() const { return !TemplateParams.empty() || GLTemplateParameterList; }
/// Add a variable that might potentially be captured by the /// lambda and therefore the enclosing lambdas. /// /// This is also used by enclosing lambda's to speculatively capture /// variables that nested lambda's - depending on their enclosing /// specialization - might need to capture. /// Consider: /// void f(int, int); <-- don't capture /// void f(const int&, double); <-- capture /// void foo() { /// const int x = 10; /// auto L = [=](auto a) { // capture 'x' /// return [=](auto b) { /// f(x, a); // we may or may not need to capture 'x' /// }; /// }; /// } void addPotentialCapture(Expr *VarExpr) { assert(isa<DeclRefExpr>(VarExpr) || isa<MemberExpr>(VarExpr) || isa<FunctionParmPackExpr>(VarExpr)); PotentiallyCapturingExprs.push_back(VarExpr); }
void addPotentialThisCapture(SourceLocation Loc) { PotentialThisCaptureLocation = Loc; }
bool hasPotentialThisCapture() const { return PotentialThisCaptureLocation.isValid(); }
/// Mark a variable's reference in a lambda as non-odr using. /// /// For generic lambdas, if a variable is named in a potentially evaluated /// expression, where the enclosing full expression is dependent then we /// must capture the variable (given a default capture). /// This is accomplished by recording all references to variables /// (DeclRefExprs or MemberExprs) within said nested lambda in its array of /// PotentialCaptures. All such variables have to be captured by that lambda, /// except for as described below. /// If that variable is usable as a constant expression and is named in a /// manner that does not involve its odr-use (e.g. undergoes /// lvalue-to-rvalue conversion, or discarded) record that it is so. Upon the /// act of analyzing the enclosing full expression (ActOnFinishFullExpr) /// if we can determine that the full expression is not instantiation- /// dependent, then we can entirely avoid its capture. /// /// const int n = 0; /// [&] (auto x) { /// (void)+n + x; /// }; /// Interestingly, this strategy would involve a capture of n, even though /// it's obviously not odr-used here, because the full-expression is /// instantiation-dependent. It could be useful to avoid capturing such /// variables, even when they are referred to in an instantiation-dependent /// expression, if we can unambiguously determine that they shall never be /// odr-used. This would involve removal of the variable-referring-expression /// from the array of PotentialCaptures during the lvalue-to-rvalue /// conversions. But per the working draft N3797, (post-chicago 2013) we must /// capture such variables. /// Before anyone is tempted to implement a strategy for not-capturing 'n', /// consider the insightful warning in: /// /cfe-commits/Week-of-Mon-20131104/092596.html /// "The problem is that the set of captures for a lambda is part of the ABI /// (since lambda layout can be made visible through inline functions and the /// like), and there are no guarantees as to which cases we'll manage to build /// an lvalue-to-rvalue conversion in, when parsing a template -- some /// seemingly harmless change elsewhere in Sema could cause us to start or stop /// building such a node. So we need a rule that anyone can implement and get /// exactly the same result". void markVariableExprAsNonODRUsed(Expr *CapturingVarExpr) { assert(isa<DeclRefExpr>(CapturingVarExpr) || isa<MemberExpr>(CapturingVarExpr) || isa<FunctionParmPackExpr>(CapturingVarExpr)); NonODRUsedCapturingExprs.insert(CapturingVarExpr); } bool isVariableExprMarkedAsNonODRUsed(Expr *CapturingVarExpr) const { assert(isa<DeclRefExpr>(CapturingVarExpr) || isa<MemberExpr>(CapturingVarExpr) || isa<FunctionParmPackExpr>(CapturingVarExpr)); return NonODRUsedCapturingExprs.count(CapturingVarExpr); } void removePotentialCapture(Expr *E) { llvm::erase(PotentiallyCapturingExprs, E); } void clearPotentialCaptures() { PotentiallyCapturingExprs.clear(); PotentialThisCaptureLocation = SourceLocation(); } unsigned getNumPotentialVariableCaptures() const { return PotentiallyCapturingExprs.size(); }
bool hasPotentialCaptures() const { return getNumPotentialVariableCaptures() || PotentialThisCaptureLocation.isValid(); }
void visitPotentialCaptures( llvm::function_ref<void(ValueDecl *, Expr *)> Callback) const;
bool lambdaCaptureShouldBeConst() const; };
FunctionScopeInfo::WeakObjectProfileTy::WeakObjectProfileTy() : Base(nullptr, false) {}
FunctionScopeInfo::WeakObjectProfileTy FunctionScopeInfo::WeakObjectProfileTy::getSentinel() { FunctionScopeInfo::WeakObjectProfileTy Result; Result.Base.setInt(true); return Result; }
template <typename ExprT> void FunctionScopeInfo::recordUseOfWeak(const ExprT *E, bool IsRead) { assert(E); WeakUseVector &Uses = WeakObjectUses[WeakObjectProfileTy(E)]; Uses.push_back(WeakUseTy(E, IsRead)); }
inline void CapturingScopeInfo::addThisCapture(bool isNested, SourceLocation Loc, QualType CaptureType, bool ByCopy) { Captures.push_back(Capture(Capture::ThisCapture, isNested, Loc, CaptureType, ByCopy, /*Invalid*/ false)); CXXThisCaptureIndex = Captures.size(); }
} // namespace sema
} // namespace clang
#endif // LLVM_CLANG_SEMA_SCOPEINFO_H
|