Viewing file: Preprocessor.h (115.4 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- Preprocessor.h - C Language Family Preprocessor ----------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// Defines the clang::Preprocessor interface. // //===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_LEX_PREPROCESSOR_H #define LLVM_CLANG_LEX_PREPROCESSOR_H
#include "clang/Basic/Diagnostic.h" #include "clang/Basic/DiagnosticIDs.h" #include "clang/Basic/IdentifierTable.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/Module.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TokenKinds.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Lex/Lexer.h" #include "clang/Lex/MacroInfo.h" #include "clang/Lex/ModuleLoader.h" #include "clang/Lex/ModuleMap.h" #include "clang/Lex/PPCallbacks.h" #include "clang/Lex/PPEmbedParameters.h" #include "clang/Lex/Token.h" #include "clang/Lex/TokenLexer.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/FunctionExtras.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/TinyPtrVector.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Registry.h" #include <cassert> #include <cstddef> #include <cstdint> #include <map> #include <memory> #include <optional> #include <string> #include <utility> #include <vector>
namespace llvm {
template<unsigned InternalLen> class SmallString;
} // namespace llvm
namespace clang {
class CodeCompletionHandler; class CommentHandler; class DirectoryEntry; class EmptylineHandler; class ExternalPreprocessorSource; class FileEntry; class FileManager; class HeaderSearch; class MacroArgs; class PragmaHandler; class PragmaNamespace; class PreprocessingRecord; class PreprocessorLexer; class PreprocessorOptions; class ScratchBuffer; class TargetInfo;
namespace Builtin { class Context; }
/// Stores token information for comparing actual tokens with /// predefined values. Only handles simple tokens and identifiers. class TokenValue { tok::TokenKind Kind; IdentifierInfo *II;
public: TokenValue(tok::TokenKind Kind) : Kind(Kind), II(nullptr) { assert(Kind != tok::raw_identifier && "Raw identifiers are not supported."); assert(Kind != tok::identifier && "Identifiers should be created by TokenValue(IdentifierInfo *)"); assert(!tok::isLiteral(Kind) && "Literals are not supported."); assert(!tok::isAnnotation(Kind) && "Annotations are not supported."); }
TokenValue(IdentifierInfo *II) : Kind(tok::identifier), II(II) {}
bool operator==(const Token &Tok) const { return Tok.getKind() == Kind && (!II || II == Tok.getIdentifierInfo()); } };
/// Context in which macro name is used. enum MacroUse { // other than #define or #undef MU_Other = 0,
// macro name specified in #define MU_Define = 1,
// macro name specified in #undef MU_Undef = 2 };
enum class EmbedResult { Invalid = -1, // Parsing error occurred. NotFound = 0, // Corresponds to __STDC_EMBED_NOT_FOUND__ Found = 1, // Corresponds to __STDC_EMBED_FOUND__ Empty = 2, // Corresponds to __STDC_EMBED_EMPTY__ };
/// Engages in a tight little dance with the lexer to efficiently /// preprocess tokens. /// /// Lexers know only about tokens within a single source file, and don't /// know anything about preprocessor-level issues like the \#include stack, /// token expansion, etc. class Preprocessor { friend class VAOptDefinitionContext; friend class VariadicMacroScopeGuard;
llvm::unique_function<void(const clang::Token &)> OnToken; std::shared_ptr<PreprocessorOptions> PPOpts; DiagnosticsEngine *Diags; const LangOptions &LangOpts; const TargetInfo *Target = nullptr; const TargetInfo *AuxTarget = nullptr; FileManager &FileMgr; SourceManager &SourceMgr; std::unique_ptr<ScratchBuffer> ScratchBuf; HeaderSearch &HeaderInfo; ModuleLoader &TheModuleLoader;
/// External source of macros. ExternalPreprocessorSource *ExternalSource;
/// A BumpPtrAllocator object used to quickly allocate and release /// objects internal to the Preprocessor. llvm::BumpPtrAllocator BP;
/// Identifiers for builtin macros and other builtins. IdentifierInfo *Ident__LINE__, *Ident__FILE__; // __LINE__, __FILE__ IdentifierInfo *Ident__DATE__, *Ident__TIME__; // __DATE__, __TIME__ IdentifierInfo *Ident__INCLUDE_LEVEL__; // __INCLUDE_LEVEL__ IdentifierInfo *Ident__BASE_FILE__; // __BASE_FILE__ IdentifierInfo *Ident__FILE_NAME__; // __FILE_NAME__ IdentifierInfo *Ident__TIMESTAMP__; // __TIMESTAMP__ IdentifierInfo *Ident__COUNTER__; // __COUNTER__ IdentifierInfo *Ident_Pragma, *Ident__pragma; // _Pragma, __pragma IdentifierInfo *Ident__identifier; // __identifier IdentifierInfo *Ident__VA_ARGS__; // __VA_ARGS__ IdentifierInfo *Ident__VA_OPT__; // __VA_OPT__ IdentifierInfo *Ident__has_feature; // __has_feature IdentifierInfo *Ident__has_extension; // __has_extension IdentifierInfo *Ident__has_builtin; // __has_builtin IdentifierInfo *Ident__has_constexpr_builtin; // __has_constexpr_builtin IdentifierInfo *Ident__has_attribute; // __has_attribute IdentifierInfo *Ident__has_embed; // __has_embed IdentifierInfo *Ident__has_include; // __has_include IdentifierInfo *Ident__has_include_next; // __has_include_next IdentifierInfo *Ident__has_warning; // __has_warning IdentifierInfo *Ident__is_identifier; // __is_identifier IdentifierInfo *Ident__building_module; // __building_module IdentifierInfo *Ident__MODULE__; // __MODULE__ IdentifierInfo *Ident__has_cpp_attribute; // __has_cpp_attribute IdentifierInfo *Ident__has_c_attribute; // __has_c_attribute IdentifierInfo *Ident__has_declspec; // __has_declspec_attribute IdentifierInfo *Ident__is_target_arch; // __is_target_arch IdentifierInfo *Ident__is_target_vendor; // __is_target_vendor IdentifierInfo *Ident__is_target_os; // __is_target_os IdentifierInfo *Ident__is_target_environment; // __is_target_environment IdentifierInfo *Ident__is_target_variant_os; IdentifierInfo *Ident__is_target_variant_environment; IdentifierInfo *Ident__FLT_EVAL_METHOD__; // __FLT_EVAL_METHOD
// Weak, only valid (and set) while InMacroArgs is true. Token* ArgMacro;
SourceLocation DATELoc, TIMELoc;
// FEM_UnsetOnCommandLine means that an explicit evaluation method was // not specified on the command line. The target is queried to set the // default evaluation method. LangOptions::FPEvalMethodKind CurrentFPEvalMethod = LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine;
// The most recent pragma location where the floating point evaluation // method was modified. This is used to determine whether the // 'pragma clang fp eval_method' was used whithin the current scope. SourceLocation LastFPEvalPragmaLocation;
LangOptions::FPEvalMethodKind TUFPEvalMethod = LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine;
// Next __COUNTER__ value, starts at 0. unsigned CounterValue = 0;
enum { /// Maximum depth of \#includes. MaxAllowedIncludeStackDepth = 200 };
// State that is set before the preprocessor begins. bool KeepComments : 1; bool KeepMacroComments : 1; bool SuppressIncludeNotFoundError : 1;
// State that changes while the preprocessor runs: bool InMacroArgs : 1; // True if parsing fn macro invocation args.
/// Whether the preprocessor owns the header search object. bool OwnsHeaderSearch : 1;
/// True if macro expansion is disabled. bool DisableMacroExpansion : 1;
/// Temporarily disables DisableMacroExpansion (i.e. enables expansion) /// when parsing preprocessor directives. bool MacroExpansionInDirectivesOverride : 1;
class ResetMacroExpansionHelper;
/// Whether we have already loaded macros from the external source. mutable bool ReadMacrosFromExternalSource : 1;
/// True if pragmas are enabled. bool PragmasEnabled : 1;
/// True if the current build action is a preprocessing action. bool PreprocessedOutput : 1;
/// True if we are currently preprocessing a #if or #elif directive bool ParsingIfOrElifDirective;
/// True if we are pre-expanding macro arguments. bool InMacroArgPreExpansion;
/// Mapping/lookup information for all identifiers in /// the program, including program keywords. mutable IdentifierTable Identifiers;
/// This table contains all the selectors in the program. /// /// Unlike IdentifierTable above, this table *isn't* populated by the /// preprocessor. It is declared/expanded here because its role/lifetime is /// conceptually similar to the IdentifierTable. In addition, the current /// control flow (in clang::ParseAST()), make it convenient to put here. /// /// FIXME: Make sure the lifetime of Identifiers/Selectors *isn't* tied to /// the lifetime of the preprocessor. SelectorTable Selectors;
/// Information about builtins. std::unique_ptr<Builtin::Context> BuiltinInfo;
/// Tracks all of the pragmas that the client registered /// with this preprocessor. std::unique_ptr<PragmaNamespace> PragmaHandlers;
/// Pragma handlers of the original source is stored here during the /// parsing of a model file. std::unique_ptr<PragmaNamespace> PragmaHandlersBackup;
/// Tracks all of the comment handlers that the client registered /// with this preprocessor. std::vector<CommentHandler *> CommentHandlers;
/// Empty line handler. EmptylineHandler *Emptyline = nullptr;
/// True to avoid tearing down the lexer etc on EOF bool IncrementalProcessing = false;
public: /// The kind of translation unit we are processing. const TranslationUnitKind TUKind;
/// Returns a pointer into the given file's buffer that's guaranteed /// to be between tokens. The returned pointer is always before \p Start. /// The maximum distance betweenthe returned pointer and \p Start is /// limited by a constant value, but also an implementation detail. /// If no such check point exists, \c nullptr is returned. const char *getCheckPoint(FileID FID, const char *Start) const;
private: /// The code-completion handler. CodeCompletionHandler *CodeComplete = nullptr;
/// The file that we're performing code-completion for, if any. const FileEntry *CodeCompletionFile = nullptr;
/// The offset in file for the code-completion point. unsigned CodeCompletionOffset = 0;
/// The location for the code-completion point. This gets instantiated /// when the CodeCompletionFile gets \#include'ed for preprocessing. SourceLocation CodeCompletionLoc;
/// The start location for the file of the code-completion point. /// /// This gets instantiated when the CodeCompletionFile gets \#include'ed /// for preprocessing. SourceLocation CodeCompletionFileLoc;
/// The source location of the \c import contextual keyword we just /// lexed, if any. SourceLocation ModuleImportLoc;
/// The import path for named module that we're currently processing. SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> NamedModuleImportPath;
llvm::DenseMap<FileID, SmallVector<const char *>> CheckPoints; unsigned CheckPointCounter = 0;
/// Whether the import is an `@import` or a standard c++ modules import. bool IsAtImport = false;
/// Whether the last token we lexed was an '@'. bool LastTokenWasAt = false;
/// A position within a C++20 import-seq. class StdCXXImportSeq { public: enum State : int { // Positive values represent a number of unclosed brackets. AtTopLevel = 0, AfterTopLevelTokenSeq = -1, AfterExport = -2, AfterImportSeq = -3, };
StdCXXImportSeq(State S) : S(S) {}
/// Saw any kind of open bracket. void handleOpenBracket() { S = static_cast<State>(std::max<int>(S, 0) + 1); } /// Saw any kind of close bracket other than '}'. void handleCloseBracket() { S = static_cast<State>(std::max<int>(S, 1) - 1); } /// Saw a close brace. void handleCloseBrace() { handleCloseBracket(); if (S == AtTopLevel && !AfterHeaderName) S = AfterTopLevelTokenSeq; } /// Saw a semicolon. void handleSemi() { if (atTopLevel()) { S = AfterTopLevelTokenSeq; AfterHeaderName = false; } }
/// Saw an 'export' identifier. void handleExport() { if (S == AfterTopLevelTokenSeq) S = AfterExport; else if (S <= 0) S = AtTopLevel; } /// Saw an 'import' identifier. void handleImport() { if (S == AfterTopLevelTokenSeq || S == AfterExport) S = AfterImportSeq; else if (S <= 0) S = AtTopLevel; }
/// Saw a 'header-name' token; do not recognize any more 'import' tokens /// until we reach a top-level semicolon. void handleHeaderName() { if (S == AfterImportSeq) AfterHeaderName = true; handleMisc(); }
/// Saw any other token. void handleMisc() { if (S <= 0) S = AtTopLevel; }
bool atTopLevel() { return S <= 0; } bool afterImportSeq() { return S == AfterImportSeq; } bool afterTopLevelSeq() { return S == AfterTopLevelTokenSeq; }
private: State S; /// Whether we're in the pp-import-suffix following the header-name in a /// pp-import. If so, a close-brace is not sufficient to end the /// top-level-token-seq of an import-seq. bool AfterHeaderName = false; };
/// Our current position within a C++20 import-seq. StdCXXImportSeq StdCXXImportSeqState = StdCXXImportSeq::AfterTopLevelTokenSeq;
/// Track whether we are in a Global Module Fragment class TrackGMF { public: enum GMFState : int { GMFActive = 1, MaybeGMF = 0, BeforeGMFIntroducer = -1, GMFAbsentOrEnded = -2, };
TrackGMF(GMFState S) : S(S) {}
/// Saw a semicolon. void handleSemi() { // If it is immediately after the first instance of the module keyword, // then that introduces the GMF. if (S == MaybeGMF) S = GMFActive; }
/// Saw an 'export' identifier. void handleExport() { // The presence of an 'export' keyword always ends or excludes a GMF. S = GMFAbsentOrEnded; }
/// Saw an 'import' identifier. void handleImport(bool AfterTopLevelTokenSeq) { // If we see this before any 'module' kw, then we have no GMF. if (AfterTopLevelTokenSeq && S == BeforeGMFIntroducer) S = GMFAbsentOrEnded; }
/// Saw a 'module' identifier. void handleModule(bool AfterTopLevelTokenSeq) { // This was the first module identifier and not preceded by any token // that would exclude a GMF. It could begin a GMF, but only if directly // followed by a semicolon. if (AfterTopLevelTokenSeq && S == BeforeGMFIntroducer) S = MaybeGMF; else S = GMFAbsentOrEnded; }
/// Saw any other token. void handleMisc() { // We saw something other than ; after the 'module' kw, so not a GMF. if (S == MaybeGMF) S = GMFAbsentOrEnded; }
bool inGMF() { return S == GMFActive; }
private: /// Track the transitions into and out of a Global Module Fragment, /// if one is present. GMFState S; };
TrackGMF TrackGMFState = TrackGMF::BeforeGMFIntroducer;
/// Track the status of the c++20 module decl. /// /// module-declaration: /// 'export'[opt] 'module' module-name module-partition[opt] /// attribute-specifier-seq[opt] ';' /// /// module-name: /// module-name-qualifier[opt] identifier /// /// module-partition: /// ':' module-name-qualifier[opt] identifier /// /// module-name-qualifier: /// identifier '.' /// module-name-qualifier identifier '.' /// /// Transition state: /// /// NotAModuleDecl --- export ---> FoundExport /// NotAModuleDecl --- module ---> ImplementationCandidate /// FoundExport --- module ---> InterfaceCandidate /// ImplementationCandidate --- Identifier ---> ImplementationCandidate /// ImplementationCandidate --- period ---> ImplementationCandidate /// ImplementationCandidate --- colon ---> ImplementationCandidate /// InterfaceCandidate --- Identifier ---> InterfaceCandidate /// InterfaceCandidate --- period ---> InterfaceCandidate /// InterfaceCandidate --- colon ---> InterfaceCandidate /// ImplementationCandidate --- Semi ---> NamedModuleImplementation /// NamedModuleInterface --- Semi ---> NamedModuleInterface /// NamedModuleImplementation --- Anything ---> NamedModuleImplementation /// NamedModuleInterface --- Anything ---> NamedModuleInterface /// /// FIXME: We haven't handle attribute-specifier-seq here. It may not be bad /// soon since we don't support any module attributes yet. class ModuleDeclSeq { enum ModuleDeclState : int { NotAModuleDecl, FoundExport, InterfaceCandidate, ImplementationCandidate, NamedModuleInterface, NamedModuleImplementation, };
public: ModuleDeclSeq() = default;
void handleExport() { if (State == NotAModuleDecl) State = FoundExport; else if (!isNamedModule()) reset(); }
void handleModule() { if (State == FoundExport) State = InterfaceCandidate; else if (State == NotAModuleDecl) State = ImplementationCandidate; else if (!isNamedModule()) reset(); }
void handleIdentifier(IdentifierInfo *Identifier) { if (isModuleCandidate() && Identifier) Name += Identifier->getName().str(); else if (!isNamedModule()) reset(); }
void handleColon() { if (isModuleCandidate()) Name += ":"; else if (!isNamedModule()) reset(); }
void handlePeriod() { if (isModuleCandidate()) Name += "."; else if (!isNamedModule()) reset(); }
void handleSemi() { if (!Name.empty() && isModuleCandidate()) { if (State == InterfaceCandidate) State = NamedModuleInterface; else if (State == ImplementationCandidate) State = NamedModuleImplementation; else llvm_unreachable("Unimaged ModuleDeclState."); } else if (!isNamedModule()) reset(); }
void handleMisc() { if (!isNamedModule()) reset(); }
bool isModuleCandidate() const { return State == InterfaceCandidate || State == ImplementationCandidate; }
bool isNamedModule() const { return State == NamedModuleInterface || State == NamedModuleImplementation; }
bool isNamedInterface() const { return State == NamedModuleInterface; }
bool isImplementationUnit() const { return State == NamedModuleImplementation && !getName().contains(':'); }
StringRef getName() const { assert(isNamedModule() && "Can't get name from a non named module"); return Name; }
StringRef getPrimaryName() const { assert(isNamedModule() && "Can't get name from a non named module"); return getName().split(':').first; }
void reset() { Name.clear(); State = NotAModuleDecl; }
private: ModuleDeclState State = NotAModuleDecl; std::string Name; };
ModuleDeclSeq ModuleDeclState;
/// Whether the module import expects an identifier next. Otherwise, /// it expects a '.' or ';'. bool ModuleImportExpectsIdentifier = false;
/// The identifier and source location of the currently-active /// \#pragma clang arc_cf_code_audited begin. std::pair<IdentifierInfo *, SourceLocation> PragmaARCCFCodeAuditedInfo;
/// The source location of the currently-active /// \#pragma clang assume_nonnull begin. SourceLocation PragmaAssumeNonNullLoc;
/// Set only for preambles which end with an active /// \#pragma clang assume_nonnull begin. /// /// When the preamble is loaded into the main file, /// `PragmaAssumeNonNullLoc` will be set to this to /// replay the unterminated assume_nonnull. SourceLocation PreambleRecordedPragmaAssumeNonNullLoc;
/// True if we hit the code-completion point. bool CodeCompletionReached = false;
/// The code completion token containing the information /// on the stem that is to be code completed. IdentifierInfo *CodeCompletionII = nullptr;
/// Range for the code completion token. SourceRange CodeCompletionTokenRange;
/// The directory that the main file should be considered to occupy, /// if it does not correspond to a real file (as happens when building a /// module). OptionalDirectoryEntryRef MainFileDir;
/// The number of bytes that we will initially skip when entering the /// main file, along with a flag that indicates whether skipping this number /// of bytes will place the lexer at the start of a line. /// /// This is used when loading a precompiled preamble. std::pair<int, bool> SkipMainFilePreamble;
/// Whether we hit an error due to reaching max allowed include depth. Allows /// to avoid hitting the same error over and over again. bool HasReachedMaxIncludeDepth = false;
/// The number of currently-active calls to Lex. /// /// Lex is reentrant, and asking for an (end-of-phase-4) token can often /// require asking for multiple additional tokens. This counter makes it /// possible for Lex to detect whether it's producing a token for the end /// of phase 4 of translation or for some other situation. unsigned LexLevel = 0;
/// The number of (LexLevel 0) preprocessor tokens. unsigned TokenCount = 0;
/// Preprocess every token regardless of LexLevel. bool PreprocessToken = false;
/// The maximum number of (LexLevel 0) tokens before issuing a -Wmax-tokens /// warning, or zero for unlimited. unsigned MaxTokens = 0; SourceLocation MaxTokensOverrideLoc;
public: struct PreambleSkipInfo { SourceLocation HashTokenLoc; SourceLocation IfTokenLoc; bool FoundNonSkipPortion; bool FoundElse; SourceLocation ElseLoc;
PreambleSkipInfo(SourceLocation HashTokenLoc, SourceLocation IfTokenLoc, bool FoundNonSkipPortion, bool FoundElse, SourceLocation ElseLoc) : HashTokenLoc(HashTokenLoc), IfTokenLoc(IfTokenLoc), FoundNonSkipPortion(FoundNonSkipPortion), FoundElse(FoundElse), ElseLoc(ElseLoc) {} };
using IncludedFilesSet = llvm::DenseSet<const FileEntry *>;
private: friend class ASTReader; friend class MacroArgs;
class PreambleConditionalStackStore { enum State { Off = 0, Recording = 1, Replaying = 2, };
public: PreambleConditionalStackStore() = default;
void startRecording() { ConditionalStackState = Recording; } void startReplaying() { ConditionalStackState = Replaying; } bool isRecording() const { return ConditionalStackState == Recording; } bool isReplaying() const { return ConditionalStackState == Replaying; }
ArrayRef<PPConditionalInfo> getStack() const { return ConditionalStack; }
void doneReplaying() { ConditionalStack.clear(); ConditionalStackState = Off; }
void setStack(ArrayRef<PPConditionalInfo> s) { if (!isRecording() && !isReplaying()) return; ConditionalStack.clear(); ConditionalStack.append(s.begin(), s.end()); }
bool hasRecordedPreamble() const { return !ConditionalStack.empty(); }
bool reachedEOFWhileSkipping() const { return SkipInfo.has_value(); }
void clearSkipInfo() { SkipInfo.reset(); }
std::optional<PreambleSkipInfo> SkipInfo;
private: SmallVector<PPConditionalInfo, 4> ConditionalStack; State ConditionalStackState = Off; } PreambleConditionalStack;
/// The current top of the stack that we're lexing from if /// not expanding a macro and we are lexing directly from source code. /// /// Only one of CurLexer, or CurTokenLexer will be non-null. std::unique_ptr<Lexer> CurLexer;
/// The current top of the stack that we're lexing from /// if not expanding a macro. /// /// This is an alias for CurLexer. PreprocessorLexer *CurPPLexer = nullptr;
/// Used to find the current FileEntry, if CurLexer is non-null /// and if applicable. /// /// This allows us to implement \#include_next and find directory-specific /// properties. ConstSearchDirIterator CurDirLookup = nullptr;
/// The current macro we are expanding, if we are expanding a macro. /// /// One of CurLexer and CurTokenLexer must be null. std::unique_ptr<TokenLexer> CurTokenLexer;
/// The kind of lexer we're currently working with. typedef bool (*LexerCallback)(Preprocessor &, Token &); LexerCallback CurLexerCallback = &CLK_Lexer;
/// If the current lexer is for a submodule that is being built, this /// is that submodule. Module *CurLexerSubmodule = nullptr;
/// Keeps track of the stack of files currently /// \#included, and macros currently being expanded from, not counting /// CurLexer/CurTokenLexer. struct IncludeStackInfo { LexerCallback CurLexerCallback; Module *TheSubmodule; std::unique_ptr<Lexer> TheLexer; PreprocessorLexer *ThePPLexer; std::unique_ptr<TokenLexer> TheTokenLexer; ConstSearchDirIterator TheDirLookup;
// The following constructors are completely useless copies of the default // versions, only needed to pacify MSVC. IncludeStackInfo(LexerCallback CurLexerCallback, Module *TheSubmodule, std::unique_ptr<Lexer> &&TheLexer, PreprocessorLexer *ThePPLexer, std::unique_ptr<TokenLexer> &&TheTokenLexer, ConstSearchDirIterator TheDirLookup) : CurLexerCallback(std::move(CurLexerCallback)), TheSubmodule(std::move(TheSubmodule)), TheLexer(std::move(TheLexer)), ThePPLexer(std::move(ThePPLexer)), TheTokenLexer(std::move(TheTokenLexer)), TheDirLookup(std::move(TheDirLookup)) {} }; std::vector<IncludeStackInfo> IncludeMacroStack;
/// Actions invoked when some preprocessor activity is /// encountered (e.g. a file is \#included, etc). std::unique_ptr<PPCallbacks> Callbacks;
struct MacroExpandsInfo { Token Tok; MacroDefinition MD; SourceRange Range;
MacroExpandsInfo(Token Tok, MacroDefinition MD, SourceRange Range) : Tok(Tok), MD(MD), Range(Range) {} }; SmallVector<MacroExpandsInfo, 2> DelayedMacroExpandsCallbacks;
/// Information about a name that has been used to define a module macro. struct ModuleMacroInfo { /// The most recent macro directive for this identifier. MacroDirective *MD;
/// The active module macros for this identifier. llvm::TinyPtrVector<ModuleMacro *> ActiveModuleMacros;
/// The generation number at which we last updated ActiveModuleMacros. /// \see Preprocessor::VisibleModules. unsigned ActiveModuleMacrosGeneration = 0;
/// Whether this macro name is ambiguous. bool IsAmbiguous = false;
/// The module macros that are overridden by this macro. llvm::TinyPtrVector<ModuleMacro *> OverriddenMacros;
ModuleMacroInfo(MacroDirective *MD) : MD(MD) {} };
/// The state of a macro for an identifier. class MacroState { mutable llvm::PointerUnion<MacroDirective *, ModuleMacroInfo *> State;
ModuleMacroInfo *getModuleInfo(Preprocessor &PP, const IdentifierInfo *II) const { if (II->isOutOfDate()) PP.updateOutOfDateIdentifier(*II); // FIXME: Find a spare bit on IdentifierInfo and store a // HasModuleMacros flag. if (!II->hasMacroDefinition() || (!PP.getLangOpts().Modules && !PP.getLangOpts().ModulesLocalVisibility) || !PP.CurSubmoduleState->VisibleModules.getGeneration()) return nullptr;
auto *Info = State.dyn_cast<ModuleMacroInfo*>(); if (!Info) { Info = new (PP.getPreprocessorAllocator()) ModuleMacroInfo(State.get<MacroDirective *>()); State = Info; }
if (PP.CurSubmoduleState->VisibleModules.getGeneration() != Info->ActiveModuleMacrosGeneration) PP.updateModuleMacroInfo(II, *Info); return Info; }
public: MacroState() : MacroState(nullptr) {} MacroState(MacroDirective *MD) : State(MD) {}
MacroState(MacroState &&O) noexcept : State(O.State) { O.State = (MacroDirective *)nullptr; }
MacroState &operator=(MacroState &&O) noexcept { auto S = O.State; O.State = (MacroDirective *)nullptr; State = S; return *this; }
~MacroState() { if (auto *Info = State.dyn_cast<ModuleMacroInfo*>()) Info->~ModuleMacroInfo(); }
MacroDirective *getLatest() const { if (auto *Info = State.dyn_cast<ModuleMacroInfo*>()) return Info->MD; return State.get<MacroDirective*>(); }
void setLatest(MacroDirective *MD) { if (auto *Info = State.dyn_cast<ModuleMacroInfo*>()) Info->MD = MD; else State = MD; }
bool isAmbiguous(Preprocessor &PP, const IdentifierInfo *II) const { auto *Info = getModuleInfo(PP, II); return Info ? Info->IsAmbiguous : false; }
ArrayRef<ModuleMacro *> getActiveModuleMacros(Preprocessor &PP, const IdentifierInfo *II) const { if (auto *Info = getModuleInfo(PP, II)) return Info->ActiveModuleMacros; return std::nullopt; }
MacroDirective::DefInfo findDirectiveAtLoc(SourceLocation Loc, SourceManager &SourceMgr) const { // FIXME: Incorporate module macros into the result of this. if (auto *Latest = getLatest()) return Latest->findDirectiveAtLoc(Loc, SourceMgr); return {}; }
void overrideActiveModuleMacros(Preprocessor &PP, IdentifierInfo *II) { if (auto *Info = getModuleInfo(PP, II)) { Info->OverriddenMacros.insert(Info->OverriddenMacros.end(), Info->ActiveModuleMacros.begin(), Info->ActiveModuleMacros.end()); Info->ActiveModuleMacros.clear(); Info->IsAmbiguous = false; } }
ArrayRef<ModuleMacro*> getOverriddenMacros() const { if (auto *Info = State.dyn_cast<ModuleMacroInfo*>()) return Info->OverriddenMacros; return std::nullopt; }
void setOverriddenMacros(Preprocessor &PP, ArrayRef<ModuleMacro *> Overrides) { auto *Info = State.dyn_cast<ModuleMacroInfo*>(); if (!Info) { if (Overrides.empty()) return; Info = new (PP.getPreprocessorAllocator()) ModuleMacroInfo(State.get<MacroDirective *>()); State = Info; } Info->OverriddenMacros.clear(); Info->OverriddenMacros.insert(Info->OverriddenMacros.end(), Overrides.begin(), Overrides.end()); Info->ActiveModuleMacrosGeneration = 0; } };
/// For each IdentifierInfo that was associated with a macro, we /// keep a mapping to the history of all macro definitions and #undefs in /// the reverse order (the latest one is in the head of the list). /// /// This mapping lives within the \p CurSubmoduleState. using MacroMap = llvm::DenseMap<const IdentifierInfo *, MacroState>;
struct SubmoduleState;
/// Information about a submodule that we're currently building. struct BuildingSubmoduleInfo { /// The module that we are building. Module *M;
/// The location at which the module was included. SourceLocation ImportLoc;
/// Whether we entered this submodule via a pragma. bool IsPragma;
/// The previous SubmoduleState. SubmoduleState *OuterSubmoduleState;
/// The number of pending module macro names when we started building this. unsigned OuterPendingModuleMacroNames;
BuildingSubmoduleInfo(Module *M, SourceLocation ImportLoc, bool IsPragma, SubmoduleState *OuterSubmoduleState, unsigned OuterPendingModuleMacroNames) : M(M), ImportLoc(ImportLoc), IsPragma(IsPragma), OuterSubmoduleState(OuterSubmoduleState), OuterPendingModuleMacroNames(OuterPendingModuleMacroNames) {} }; SmallVector<BuildingSubmoduleInfo, 8> BuildingSubmoduleStack;
/// Information about a submodule's preprocessor state. struct SubmoduleState { /// The macros for the submodule. MacroMap Macros;
/// The set of modules that are visible within the submodule. VisibleModuleSet VisibleModules;
// FIXME: CounterValue? // FIXME: PragmaPushMacroInfo? }; std::map<Module *, SubmoduleState> Submodules;
/// The preprocessor state for preprocessing outside of any submodule. SubmoduleState NullSubmoduleState;
/// The current submodule state. Will be \p NullSubmoduleState if we're not /// in a submodule. SubmoduleState *CurSubmoduleState;
/// The files that have been included. IncludedFilesSet IncludedFiles;
/// The set of top-level modules that affected preprocessing, but were not /// imported. llvm::SmallSetVector<Module *, 2> AffectingClangModules;
/// The set of known macros exported from modules. llvm::FoldingSet<ModuleMacro> ModuleMacros;
/// The names of potential module macros that we've not yet processed. llvm::SmallVector<IdentifierInfo *, 32> PendingModuleMacroNames;
/// The list of module macros, for each identifier, that are not overridden by /// any other module macro. llvm::DenseMap<const IdentifierInfo *, llvm::TinyPtrVector<ModuleMacro *>> LeafModuleMacros;
/// Macros that we want to warn because they are not used at the end /// of the translation unit. /// /// We store just their SourceLocations instead of /// something like MacroInfo*. The benefit of this is that when we are /// deserializing from PCH, we don't need to deserialize identifier & macros /// just so that we can report that they are unused, we just warn using /// the SourceLocations of this set (that will be filled by the ASTReader). using WarnUnusedMacroLocsTy = llvm::SmallDenseSet<SourceLocation, 32>; WarnUnusedMacroLocsTy WarnUnusedMacroLocs;
/// This is a pair of an optional message and source location used for pragmas /// that annotate macros like pragma clang restrict_expansion and pragma clang /// deprecated. This pair stores the optional message and the location of the /// annotation pragma for use producing diagnostics and notes. using MsgLocationPair = std::pair<std::string, SourceLocation>;
struct MacroAnnotationInfo { SourceLocation Location; std::string Message; };
struct MacroAnnotations { std::optional<MacroAnnotationInfo> DeprecationInfo; std::optional<MacroAnnotationInfo> RestrictExpansionInfo; std::optional<SourceLocation> FinalAnnotationLoc;
static MacroAnnotations makeDeprecation(SourceLocation Loc, std::string Msg) { return MacroAnnotations{MacroAnnotationInfo{Loc, std::move(Msg)}, std::nullopt, std::nullopt}; }
static MacroAnnotations makeRestrictExpansion(SourceLocation Loc, std::string Msg) { return MacroAnnotations{ std::nullopt, MacroAnnotationInfo{Loc, std::move(Msg)}, std::nullopt}; }
static MacroAnnotations makeFinal(SourceLocation Loc) { return MacroAnnotations{std::nullopt, std::nullopt, Loc}; } };
/// Warning information for macro annotations. llvm::DenseMap<const IdentifierInfo *, MacroAnnotations> AnnotationInfos;
/// A "freelist" of MacroArg objects that can be /// reused for quick allocation. MacroArgs *MacroArgCache = nullptr;
/// For each IdentifierInfo used in a \#pragma push_macro directive, /// we keep a MacroInfo stack used to restore the previous macro value. llvm::DenseMap<IdentifierInfo *, std::vector<MacroInfo *>> PragmaPushMacroInfo;
// Various statistics we track for performance analysis. unsigned NumDirectives = 0; unsigned NumDefined = 0; unsigned NumUndefined = 0; unsigned NumPragma = 0; unsigned NumIf = 0; unsigned NumElse = 0; unsigned NumEndif = 0; unsigned NumEnteredSourceFiles = 0; unsigned MaxIncludeStackDepth = 0; unsigned NumMacroExpanded = 0; unsigned NumFnMacroExpanded = 0; unsigned NumBuiltinMacroExpanded = 0; unsigned NumFastMacroExpanded = 0; unsigned NumTokenPaste = 0; unsigned NumFastTokenPaste = 0; unsigned NumSkipped = 0;
/// The predefined macros that preprocessor should use from the /// command line etc. std::string Predefines;
/// The file ID for the preprocessor predefines. FileID PredefinesFileID;
/// The file ID for the PCH through header. FileID PCHThroughHeaderFileID;
/// Whether tokens are being skipped until a #pragma hdrstop is seen. bool SkippingUntilPragmaHdrStop = false;
/// Whether tokens are being skipped until the through header is seen. bool SkippingUntilPCHThroughHeader = false;
/// \{ /// Cache of macro expanders to reduce malloc traffic. enum { TokenLexerCacheSize = 8 }; unsigned NumCachedTokenLexers; std::unique_ptr<TokenLexer> TokenLexerCache[TokenLexerCacheSize]; /// \}
/// Keeps macro expanded tokens for TokenLexers. // /// Works like a stack; a TokenLexer adds the macro expanded tokens that is /// going to lex in the cache and when it finishes the tokens are removed /// from the end of the cache. SmallVector<Token, 16> MacroExpandedTokens; std::vector<std::pair<TokenLexer *, size_t>> MacroExpandingLexersStack;
/// A record of the macro definitions and expansions that /// occurred during preprocessing. /// /// This is an optional side structure that can be enabled with /// \c createPreprocessingRecord() prior to preprocessing. PreprocessingRecord *Record = nullptr;
/// Cached tokens state. using CachedTokensTy = SmallVector<Token, 1>;
/// Cached tokens are stored here when we do backtracking or /// lookahead. They are "lexed" by the CachingLex() method. CachedTokensTy CachedTokens;
/// The position of the cached token that CachingLex() should /// "lex" next. /// /// If it points beyond the CachedTokens vector, it means that a normal /// Lex() should be invoked. CachedTokensTy::size_type CachedLexPos = 0;
/// Stack of backtrack positions, allowing nested backtracks. /// /// The EnableBacktrackAtThisPos() method pushes a position to /// indicate where CachedLexPos should be set when the BackTrack() method is /// invoked (at which point the last position is popped). std::vector<CachedTokensTy::size_type> BacktrackPositions;
/// True if \p Preprocessor::SkipExcludedConditionalBlock() is running. /// This is used to guard against calling this function recursively. /// /// See comments at the use-site for more context about why it is needed. bool SkippingExcludedConditionalBlock = false;
/// Keeps track of skipped range mappings that were recorded while skipping /// excluded conditional directives. It maps the source buffer pointer at /// the beginning of a skipped block, to the number of bytes that should be /// skipped. llvm::DenseMap<const char *, unsigned> RecordedSkippedRanges;
void updateOutOfDateIdentifier(const IdentifierInfo &II) const;
public: Preprocessor(std::shared_ptr<PreprocessorOptions> PPOpts, DiagnosticsEngine &diags, const LangOptions &LangOpts, SourceManager &SM, HeaderSearch &Headers, ModuleLoader &TheModuleLoader, IdentifierInfoLookup *IILookup = nullptr, bool OwnsHeaderSearch = false, TranslationUnitKind TUKind = TU_Complete);
~Preprocessor();
/// Initialize the preprocessor using information about the target. /// /// \param Target is owned by the caller and must remain valid for the /// lifetime of the preprocessor. /// \param AuxTarget is owned by the caller and must remain valid for /// the lifetime of the preprocessor. void Initialize(const TargetInfo &Target, const TargetInfo *AuxTarget = nullptr);
/// Initialize the preprocessor to parse a model file /// /// To parse model files the preprocessor of the original source is reused to /// preserver the identifier table. However to avoid some duplicate /// information in the preprocessor some cleanup is needed before it is used /// to parse model files. This method does that cleanup. void InitializeForModelFile();
/// Cleanup after model file parsing void FinalizeForModelFile();
/// Retrieve the preprocessor options used to initialize this /// preprocessor. PreprocessorOptions &getPreprocessorOpts() const { return *PPOpts; }
DiagnosticsEngine &getDiagnostics() const { return *Diags; } void setDiagnostics(DiagnosticsEngine &D) { Diags = &D; }
const LangOptions &getLangOpts() const { return LangOpts; } const TargetInfo &getTargetInfo() const { return *Target; } const TargetInfo *getAuxTargetInfo() const { return AuxTarget; } FileManager &getFileManager() const { return FileMgr; } SourceManager &getSourceManager() const { return SourceMgr; } HeaderSearch &getHeaderSearchInfo() const { return HeaderInfo; }
IdentifierTable &getIdentifierTable() { return Identifiers; } const IdentifierTable &getIdentifierTable() const { return Identifiers; } SelectorTable &getSelectorTable() { return Selectors; } Builtin::Context &getBuiltinInfo() { return *BuiltinInfo; } llvm::BumpPtrAllocator &getPreprocessorAllocator() { return BP; }
void setExternalSource(ExternalPreprocessorSource *Source) { ExternalSource = Source; }
ExternalPreprocessorSource *getExternalSource() const { return ExternalSource; }
/// Retrieve the module loader associated with this preprocessor. ModuleLoader &getModuleLoader() const { return TheModuleLoader; }
bool hadModuleLoaderFatalFailure() const { return TheModuleLoader.HadFatalFailure; }
/// Retrieve the number of Directives that have been processed by the /// Preprocessor. unsigned getNumDirectives() const { return NumDirectives; }
/// True if we are currently preprocessing a #if or #elif directive bool isParsingIfOrElifDirective() const { return ParsingIfOrElifDirective; }
/// Control whether the preprocessor retains comments in output. void SetCommentRetentionState(bool KeepComments, bool KeepMacroComments) { this->KeepComments = KeepComments | KeepMacroComments; this->KeepMacroComments = KeepMacroComments; }
bool getCommentRetentionState() const { return KeepComments; }
void setPragmasEnabled(bool Enabled) { PragmasEnabled = Enabled; } bool getPragmasEnabled() const { return PragmasEnabled; }
void SetSuppressIncludeNotFoundError(bool Suppress) { SuppressIncludeNotFoundError = Suppress; }
bool GetSuppressIncludeNotFoundError() { return SuppressIncludeNotFoundError; }
/// Sets whether the preprocessor is responsible for producing output or if /// it is producing tokens to be consumed by Parse and Sema. void setPreprocessedOutput(bool IsPreprocessedOutput) { PreprocessedOutput = IsPreprocessedOutput; }
/// Returns true if the preprocessor is responsible for generating output, /// false if it is producing tokens to be consumed by Parse and Sema. bool isPreprocessedOutput() const { return PreprocessedOutput; }
/// Return true if we are lexing directly from the specified lexer. bool isCurrentLexer(const PreprocessorLexer *L) const { return CurPPLexer == L; }
/// Return the current lexer being lexed from. /// /// Note that this ignores any potentially active macro expansions and _Pragma /// expansions going on at the time. PreprocessorLexer *getCurrentLexer() const { return CurPPLexer; }
/// Return the current file lexer being lexed from. /// /// Note that this ignores any potentially active macro expansions and _Pragma /// expansions going on at the time. PreprocessorLexer *getCurrentFileLexer() const;
/// Return the submodule owning the file being lexed. This may not be /// the current module if we have changed modules since entering the file. Module *getCurrentLexerSubmodule() const { return CurLexerSubmodule; }
/// Returns the FileID for the preprocessor predefines. FileID getPredefinesFileID() const { return PredefinesFileID; }
/// \{ /// Accessors for preprocessor callbacks. /// /// Note that this class takes ownership of any PPCallbacks object given to /// it. PPCallbacks *getPPCallbacks() const { return Callbacks.get(); } void addPPCallbacks(std::unique_ptr<PPCallbacks> C) { if (Callbacks) C = std::make_unique<PPChainedCallbacks>(std::move(C), std::move(Callbacks)); Callbacks = std::move(C); } /// \}
/// Get the number of tokens processed so far. unsigned getTokenCount() const { return TokenCount; }
/// Get the max number of tokens before issuing a -Wmax-tokens warning. unsigned getMaxTokens() const { return MaxTokens; }
void overrideMaxTokens(unsigned Value, SourceLocation Loc) { MaxTokens = Value; MaxTokensOverrideLoc = Loc; };
SourceLocation getMaxTokensOverrideLoc() const { return MaxTokensOverrideLoc; }
/// Register a function that would be called on each token in the final /// expanded token stream. /// This also reports annotation tokens produced by the parser. void setTokenWatcher(llvm::unique_function<void(const clang::Token &)> F) { OnToken = std::move(F); }
void setPreprocessToken(bool Preprocess) { PreprocessToken = Preprocess; }
bool isMacroDefined(StringRef Id) { return isMacroDefined(&Identifiers.get(Id)); } bool isMacroDefined(const IdentifierInfo *II) { return II->hasMacroDefinition() && (!getLangOpts().Modules || (bool)getMacroDefinition(II)); }
/// Determine whether II is defined as a macro within the module M, /// if that is a module that we've already preprocessed. Does not check for /// macros imported into M. bool isMacroDefinedInLocalModule(const IdentifierInfo *II, Module *M) { if (!II->hasMacroDefinition()) return false; auto I = Submodules.find(M); if (I == Submodules.end()) return false; auto J = I->second.Macros.find(II); if (J == I->second.Macros.end()) return false; auto *MD = J->second.getLatest(); return MD && MD->isDefined(); }
MacroDefinition getMacroDefinition(const IdentifierInfo *II) { if (!II->hasMacroDefinition()) return {};
MacroState &S = CurSubmoduleState->Macros[II]; auto *MD = S.getLatest(); while (isa_and_nonnull<VisibilityMacroDirective>(MD)) MD = MD->getPrevious(); return MacroDefinition(dyn_cast_or_null<DefMacroDirective>(MD), S.getActiveModuleMacros(*this, II), S.isAmbiguous(*this, II)); }
MacroDefinition getMacroDefinitionAtLoc(const IdentifierInfo *II, SourceLocation Loc) { if (!II->hadMacroDefinition()) return {};
MacroState &S = CurSubmoduleState->Macros[II]; MacroDirective::DefInfo DI; if (auto *MD = S.getLatest()) DI = MD->findDirectiveAtLoc(Loc, getSourceManager()); // FIXME: Compute the set of active module macros at the specified location. return MacroDefinition(DI.getDirective(), S.getActiveModuleMacros(*this, II), S.isAmbiguous(*this, II)); }
/// Given an identifier, return its latest non-imported MacroDirective /// if it is \#define'd and not \#undef'd, or null if it isn't \#define'd. MacroDirective *getLocalMacroDirective(const IdentifierInfo *II) const { if (!II->hasMacroDefinition()) return nullptr;
auto *MD = getLocalMacroDirectiveHistory(II); if (!MD || MD->getDefinition().isUndefined()) return nullptr;
return MD; }
const MacroInfo *getMacroInfo(const IdentifierInfo *II) const { return const_cast<Preprocessor*>(this)->getMacroInfo(II); }
MacroInfo *getMacroInfo(const IdentifierInfo *II) { if (!II->hasMacroDefinition()) return nullptr; if (auto MD = getMacroDefinition(II)) return MD.getMacroInfo(); return nullptr; }
/// Given an identifier, return the latest non-imported macro /// directive for that identifier. /// /// One can iterate over all previous macro directives from the most recent /// one. MacroDirective *getLocalMacroDirectiveHistory(const IdentifierInfo *II) const;
/// Add a directive to the macro directive history for this identifier. void appendMacroDirective(IdentifierInfo *II, MacroDirective *MD); DefMacroDirective *appendDefMacroDirective(IdentifierInfo *II, MacroInfo *MI, SourceLocation Loc) { DefMacroDirective *MD = AllocateDefMacroDirective(MI, Loc); appendMacroDirective(II, MD); return MD; } DefMacroDirective *appendDefMacroDirective(IdentifierInfo *II, MacroInfo *MI) { return appendDefMacroDirective(II, MI, MI->getDefinitionLoc()); }
/// Set a MacroDirective that was loaded from a PCH file. void setLoadedMacroDirective(IdentifierInfo *II, MacroDirective *ED, MacroDirective *MD);
/// Register an exported macro for a module and identifier. ModuleMacro *addModuleMacro(Module *Mod, IdentifierInfo *II, MacroInfo *Macro, ArrayRef<ModuleMacro *> Overrides, bool &IsNew); ModuleMacro *getModuleMacro(Module *Mod, const IdentifierInfo *II);
/// Get the list of leaf (non-overridden) module macros for a name. ArrayRef<ModuleMacro*> getLeafModuleMacros(const IdentifierInfo *II) const { if (II->isOutOfDate()) updateOutOfDateIdentifier(*II); auto I = LeafModuleMacros.find(II); if (I != LeafModuleMacros.end()) return I->second; return std::nullopt; }
/// Get the list of submodules that we're currently building. ArrayRef<BuildingSubmoduleInfo> getBuildingSubmodules() const { return BuildingSubmoduleStack; }
/// \{ /// Iterators for the macro history table. Currently defined macros have /// IdentifierInfo::hasMacroDefinition() set and an empty /// MacroInfo::getUndefLoc() at the head of the list. using macro_iterator = MacroMap::const_iterator;
macro_iterator macro_begin(bool IncludeExternalMacros = true) const; macro_iterator macro_end(bool IncludeExternalMacros = true) const;
llvm::iterator_range<macro_iterator> macros(bool IncludeExternalMacros = true) const { macro_iterator begin = macro_begin(IncludeExternalMacros); macro_iterator end = macro_end(IncludeExternalMacros); return llvm::make_range(begin, end); }
/// \}
/// Mark the given clang module as affecting the current clang module or translation unit. void markClangModuleAsAffecting(Module *M) { assert(M->isModuleMapModule()); if (!BuildingSubmoduleStack.empty()) { if (M != BuildingSubmoduleStack.back().M) BuildingSubmoduleStack.back().M->AffectingClangModules.insert(M); } else { AffectingClangModules.insert(M); } }
/// Get the set of top-level clang modules that affected preprocessing, but were not /// imported. const llvm::SmallSetVector<Module *, 2> &getAffectingClangModules() const { return AffectingClangModules; }
/// Mark the file as included. /// Returns true if this is the first time the file was included. bool markIncluded(FileEntryRef File) { HeaderInfo.getFileInfo(File); return IncludedFiles.insert(File).second; }
/// Return true if this header has already been included. bool alreadyIncluded(FileEntryRef File) const { HeaderInfo.getFileInfo(File); return IncludedFiles.count(File); }
/// Get the set of included files. IncludedFilesSet &getIncludedFiles() { return IncludedFiles; } const IncludedFilesSet &getIncludedFiles() const { return IncludedFiles; }
/// Return the name of the macro defined before \p Loc that has /// spelling \p Tokens. If there are multiple macros with same spelling, /// return the last one defined. StringRef getLastMacroWithSpelling(SourceLocation Loc, ArrayRef<TokenValue> Tokens) const;
/// Get the predefines for this processor. /// Used by some third-party tools to inspect and add predefines (see /// https://github.com/llvm/llvm-project/issues/57483). const std::string &getPredefines() const { return Predefines; }
/// Set the predefines for this Preprocessor. /// /// These predefines are automatically injected when parsing the main file. void setPredefines(std::string P) { Predefines = std::move(P); }
/// Return information about the specified preprocessor /// identifier token. IdentifierInfo *getIdentifierInfo(StringRef Name) const { return &Identifiers.get(Name); }
/// Add the specified pragma handler to this preprocessor. /// /// If \p Namespace is non-null, then it is a token required to exist on the /// pragma line before the pragma string starts, e.g. "STDC" or "GCC". void AddPragmaHandler(StringRef Namespace, PragmaHandler *Handler); void AddPragmaHandler(PragmaHandler *Handler) { AddPragmaHandler(StringRef(), Handler); }
/// Remove the specific pragma handler from this preprocessor. /// /// If \p Namespace is non-null, then it should be the namespace that /// \p Handler was added to. It is an error to remove a handler that /// has not been registered. void RemovePragmaHandler(StringRef Namespace, PragmaHandler *Handler); void RemovePragmaHandler(PragmaHandler *Handler) { RemovePragmaHandler(StringRef(), Handler); }
/// Install empty handlers for all pragmas (making them ignored). void IgnorePragmas();
/// Set empty line handler. void setEmptylineHandler(EmptylineHandler *Handler) { Emptyline = Handler; }
EmptylineHandler *getEmptylineHandler() const { return Emptyline; }
/// Add the specified comment handler to the preprocessor. void addCommentHandler(CommentHandler *Handler);
/// Remove the specified comment handler. /// /// It is an error to remove a handler that has not been registered. void removeCommentHandler(CommentHandler *Handler);
/// Set the code completion handler to the given object. void setCodeCompletionHandler(CodeCompletionHandler &Handler) { CodeComplete = &Handler; }
/// Retrieve the current code-completion handler. CodeCompletionHandler *getCodeCompletionHandler() const { return CodeComplete; }
/// Clear out the code completion handler. void clearCodeCompletionHandler() { CodeComplete = nullptr; }
/// Hook used by the lexer to invoke the "included file" code /// completion point. void CodeCompleteIncludedFile(llvm::StringRef Dir, bool IsAngled);
/// Hook used by the lexer to invoke the "natural language" code /// completion point. void CodeCompleteNaturalLanguage();
/// Set the code completion token for filtering purposes. void setCodeCompletionIdentifierInfo(IdentifierInfo *Filter) { CodeCompletionII = Filter; }
/// Set the code completion token range for detecting replacement range later /// on. void setCodeCompletionTokenRange(const SourceLocation Start, const SourceLocation End) { CodeCompletionTokenRange = {Start, End}; } SourceRange getCodeCompletionTokenRange() const { return CodeCompletionTokenRange; }
/// Get the code completion token for filtering purposes. StringRef getCodeCompletionFilter() { if (CodeCompletionII) return CodeCompletionII->getName(); return {}; }
/// Retrieve the preprocessing record, or NULL if there is no /// preprocessing record. PreprocessingRecord *getPreprocessingRecord() const { return Record; }
/// Create a new preprocessing record, which will keep track of /// all macro expansions, macro definitions, etc. void createPreprocessingRecord();
/// Returns true if the FileEntry is the PCH through header. bool isPCHThroughHeader(const FileEntry *FE);
/// True if creating a PCH with a through header. bool creatingPCHWithThroughHeader();
/// True if using a PCH with a through header. bool usingPCHWithThroughHeader();
/// True if creating a PCH with a #pragma hdrstop. bool creatingPCHWithPragmaHdrStop();
/// True if using a PCH with a #pragma hdrstop. bool usingPCHWithPragmaHdrStop();
/// Skip tokens until after the #include of the through header or /// until after a #pragma hdrstop. void SkipTokensWhileUsingPCH();
/// Process directives while skipping until the through header or /// #pragma hdrstop is found. void HandleSkippedDirectiveWhileUsingPCH(Token &Result, SourceLocation HashLoc);
/// Enter the specified FileID as the main source file, /// which implicitly adds the builtin defines etc. void EnterMainSourceFile();
/// Inform the preprocessor callbacks that processing is complete. void EndSourceFile();
/// Add a source file to the top of the include stack and /// start lexing tokens from it instead of the current buffer. /// /// Emits a diagnostic, doesn't enter the file, and returns true on error. bool EnterSourceFile(FileID FID, ConstSearchDirIterator Dir, SourceLocation Loc, bool IsFirstIncludeOfFile = true);
/// Add a Macro to the top of the include stack and start lexing /// tokens from it instead of the current buffer. /// /// \param Args specifies the tokens input to a function-like macro. /// \param ILEnd specifies the location of the ')' for a function-like macro /// or the identifier for an object-like macro. void EnterMacro(Token &Tok, SourceLocation ILEnd, MacroInfo *Macro, MacroArgs *Args);
private: /// Add a "macro" context to the top of the include stack, /// which will cause the lexer to start returning the specified tokens. /// /// If \p DisableMacroExpansion is true, tokens lexed from the token stream /// will not be subject to further macro expansion. Otherwise, these tokens /// will be re-macro-expanded when/if expansion is enabled. /// /// If \p OwnsTokens is false, this method assumes that the specified stream /// of tokens has a permanent owner somewhere, so they do not need to be /// copied. If it is true, it assumes the array of tokens is allocated with /// \c new[] and the Preprocessor will delete[] it. /// /// If \p IsReinject the resulting tokens will have Token::IsReinjected flag /// set, see the flag documentation for details. void EnterTokenStream(const Token *Toks, unsigned NumToks, bool DisableMacroExpansion, bool OwnsTokens, bool IsReinject);
public: void EnterTokenStream(std::unique_ptr<Token[]> Toks, unsigned NumToks, bool DisableMacroExpansion, bool IsReinject) { EnterTokenStream(Toks.release(), NumToks, DisableMacroExpansion, true, IsReinject); }
void EnterTokenStream(ArrayRef<Token> Toks, bool DisableMacroExpansion, bool IsReinject) { EnterTokenStream(Toks.data(), Toks.size(), DisableMacroExpansion, false, IsReinject); }
/// Pop the current lexer/macro exp off the top of the lexer stack. /// /// This should only be used in situations where the current state of the /// top-of-stack lexer is known. void RemoveTopOfLexerStack();
/// From the point that this method is called, and until /// CommitBacktrackedTokens() or Backtrack() is called, the Preprocessor /// keeps track of the lexed tokens so that a subsequent Backtrack() call will /// make the Preprocessor re-lex the same tokens. /// /// Nested backtracks are allowed, meaning that EnableBacktrackAtThisPos can /// be called multiple times and CommitBacktrackedTokens/Backtrack calls will /// be combined with the EnableBacktrackAtThisPos calls in reverse order. /// /// NOTE: *DO NOT* forget to call either CommitBacktrackedTokens or Backtrack /// at some point after EnableBacktrackAtThisPos. If you don't, caching of /// tokens will continue indefinitely. /// void EnableBacktrackAtThisPos();
/// Disable the last EnableBacktrackAtThisPos call. void CommitBacktrackedTokens();
/// Make Preprocessor re-lex the tokens that were lexed since /// EnableBacktrackAtThisPos() was previously called. void Backtrack();
/// True if EnableBacktrackAtThisPos() was called and /// caching of tokens is on. bool isBacktrackEnabled() const { return !BacktrackPositions.empty(); }
/// Lex the next token for this preprocessor. void Lex(Token &Result);
/// Lex all tokens for this preprocessor until (and excluding) end of file. void LexTokensUntilEOF(std::vector<Token> *Tokens = nullptr);
/// Lex a token, forming a header-name token if possible. bool LexHeaderName(Token &Result, bool AllowMacroExpansion = true);
/// Lex the parameters for an #embed directive, returns nullopt on error. std::optional<LexEmbedParametersResult> LexEmbedParameters(Token &Current, bool ForHasEmbed);
bool LexAfterModuleImport(Token &Result); void CollectPpImportSuffix(SmallVectorImpl<Token> &Toks);
void makeModuleVisible(Module *M, SourceLocation Loc);
SourceLocation getModuleImportLoc(Module *M) const { return CurSubmoduleState->VisibleModules.getImportLoc(M); }
/// Lex a string literal, which may be the concatenation of multiple /// string literals and may even come from macro expansion. /// \returns true on success, false if a error diagnostic has been generated. bool LexStringLiteral(Token &Result, std::string &String, const char *DiagnosticTag, bool AllowMacroExpansion) { if (AllowMacroExpansion) Lex(Result); else LexUnexpandedToken(Result); return FinishLexStringLiteral(Result, String, DiagnosticTag, AllowMacroExpansion); }
/// Complete the lexing of a string literal where the first token has /// already been lexed (see LexStringLiteral). bool FinishLexStringLiteral(Token &Result, std::string &String, const char *DiagnosticTag, bool AllowMacroExpansion);
/// Lex a token. If it's a comment, keep lexing until we get /// something not a comment. /// /// This is useful in -E -C mode where comments would foul up preprocessor /// directive handling. void LexNonComment(Token &Result) { do Lex(Result); while (Result.getKind() == tok::comment); }
/// Just like Lex, but disables macro expansion of identifier tokens. void LexUnexpandedToken(Token &Result) { // Disable macro expansion. bool OldVal = DisableMacroExpansion; DisableMacroExpansion = true; // Lex the token. Lex(Result);
// Reenable it. DisableMacroExpansion = OldVal; }
/// Like LexNonComment, but this disables macro expansion of /// identifier tokens. void LexUnexpandedNonComment(Token &Result) { do LexUnexpandedToken(Result); while (Result.getKind() == tok::comment); }
/// Parses a simple integer literal to get its numeric value. Floating /// point literals and user defined literals are rejected. Used primarily to /// handle pragmas that accept integer arguments. bool parseSimpleIntegerLiteral(Token &Tok, uint64_t &Value);
/// Disables macro expansion everywhere except for preprocessor directives. void SetMacroExpansionOnlyInDirectives() { DisableMacroExpansion = true; MacroExpansionInDirectivesOverride = true; }
/// Peeks ahead N tokens and returns that token without consuming any /// tokens. /// /// LookAhead(0) returns the next token that would be returned by Lex(), /// LookAhead(1) returns the token after it, etc. This returns normal /// tokens after phase 5. As such, it is equivalent to using /// 'Lex', not 'LexUnexpandedToken'. const Token &LookAhead(unsigned N) { assert(LexLevel == 0 && "cannot use lookahead while lexing"); if (CachedLexPos + N < CachedTokens.size()) return CachedTokens[CachedLexPos+N]; else return PeekAhead(N+1); }
/// When backtracking is enabled and tokens are cached, /// this allows to revert a specific number of tokens. /// /// Note that the number of tokens being reverted should be up to the last /// backtrack position, not more. void RevertCachedTokens(unsigned N) { assert(isBacktrackEnabled() && "Should only be called when tokens are cached for backtracking"); assert(signed(CachedLexPos) - signed(N) >= signed(BacktrackPositions.back()) && "Should revert tokens up to the last backtrack position, not more"); assert(signed(CachedLexPos) - signed(N) >= 0 && "Corrupted backtrack positions ?"); CachedLexPos -= N; }
/// Enters a token in the token stream to be lexed next. /// /// If BackTrack() is called afterwards, the token will remain at the /// insertion point. /// If \p IsReinject is true, resulting token will have Token::IsReinjected /// flag set. See the flag documentation for details. void EnterToken(const Token &Tok, bool IsReinject) { if (LexLevel) { // It's not correct in general to enter caching lex mode while in the // middle of a nested lexing action. auto TokCopy = std::make_unique<Token[]>(1); TokCopy[0] = Tok; EnterTokenStream(std::move(TokCopy), 1, true, IsReinject); } else { EnterCachingLexMode(); assert(IsReinject && "new tokens in the middle of cached stream"); CachedTokens.insert(CachedTokens.begin()+CachedLexPos, Tok); } }
/// We notify the Preprocessor that if it is caching tokens (because /// backtrack is enabled) it should replace the most recent cached tokens /// with the given annotation token. This function has no effect if /// backtracking is not enabled. /// /// Note that the use of this function is just for optimization, so that the /// cached tokens doesn't get re-parsed and re-resolved after a backtrack is /// invoked. void AnnotateCachedTokens(const Token &Tok) { assert(Tok.isAnnotation() && "Expected annotation token"); if (CachedLexPos != 0 && isBacktrackEnabled()) AnnotatePreviousCachedTokens(Tok); }
/// Get the location of the last cached token, suitable for setting the end /// location of an annotation token. SourceLocation getLastCachedTokenLocation() const { assert(CachedLexPos != 0); return CachedTokens[CachedLexPos-1].getLastLoc(); }
/// Whether \p Tok is the most recent token (`CachedLexPos - 1`) in /// CachedTokens. bool IsPreviousCachedToken(const Token &Tok) const;
/// Replace token in `CachedLexPos - 1` in CachedTokens by the tokens /// in \p NewToks. /// /// Useful when a token needs to be split in smaller ones and CachedTokens /// most recent token must to be updated to reflect that. void ReplacePreviousCachedToken(ArrayRef<Token> NewToks);
/// Replace the last token with an annotation token. /// /// Like AnnotateCachedTokens(), this routine replaces an /// already-parsed (and resolved) token with an annotation /// token. However, this routine only replaces the last token with /// the annotation token; it does not affect any other cached /// tokens. This function has no effect if backtracking is not /// enabled. void ReplaceLastTokenWithAnnotation(const Token &Tok) { assert(Tok.isAnnotation() && "Expected annotation token"); if (CachedLexPos != 0 && isBacktrackEnabled()) CachedTokens[CachedLexPos-1] = Tok; }
/// Enter an annotation token into the token stream. void EnterAnnotationToken(SourceRange Range, tok::TokenKind Kind, void *AnnotationVal);
/// Determine whether it's possible for a future call to Lex to produce an /// annotation token created by a previous call to EnterAnnotationToken. bool mightHavePendingAnnotationTokens() { return CurLexerCallback != CLK_Lexer; }
/// Update the current token to represent the provided /// identifier, in order to cache an action performed by typo correction. void TypoCorrectToken(const Token &Tok) { assert(Tok.getIdentifierInfo() && "Expected identifier token"); if (CachedLexPos != 0 && isBacktrackEnabled()) CachedTokens[CachedLexPos-1] = Tok; }
/// Recompute the current lexer kind based on the CurLexer/ /// CurTokenLexer pointers. void recomputeCurLexerKind();
/// Returns true if incremental processing is enabled bool isIncrementalProcessingEnabled() const { return IncrementalProcessing; }
/// Enables the incremental processing void enableIncrementalProcessing(bool value = true) { IncrementalProcessing = value; }
/// Specify the point at which code-completion will be performed. /// /// \param File the file in which code completion should occur. If /// this file is included multiple times, code-completion will /// perform completion the first time it is included. If NULL, this /// function clears out the code-completion point. /// /// \param Line the line at which code completion should occur /// (1-based). /// /// \param Column the column at which code completion should occur /// (1-based). /// /// \returns true if an error occurred, false otherwise. bool SetCodeCompletionPoint(FileEntryRef File, unsigned Line, unsigned Column);
/// Determine if we are performing code completion. bool isCodeCompletionEnabled() const { return CodeCompletionFile != nullptr; }
/// Returns the location of the code-completion point. /// /// Returns an invalid location if code-completion is not enabled or the file /// containing the code-completion point has not been lexed yet. SourceLocation getCodeCompletionLoc() const { return CodeCompletionLoc; }
/// Returns the start location of the file of code-completion point. /// /// Returns an invalid location if code-completion is not enabled or the file /// containing the code-completion point has not been lexed yet. SourceLocation getCodeCompletionFileLoc() const { return CodeCompletionFileLoc; }
/// Returns true if code-completion is enabled and we have hit the /// code-completion point. bool isCodeCompletionReached() const { return CodeCompletionReached; }
/// Note that we hit the code-completion point. void setCodeCompletionReached() { assert(isCodeCompletionEnabled() && "Code-completion not enabled!"); CodeCompletionReached = true; // Silence any diagnostics that occur after we hit the code-completion. getDiagnostics().setSuppressAllDiagnostics(true); }
/// The location of the currently-active \#pragma clang /// arc_cf_code_audited begin. /// /// Returns an invalid location if there is no such pragma active. std::pair<IdentifierInfo *, SourceLocation> getPragmaARCCFCodeAuditedInfo() const { return PragmaARCCFCodeAuditedInfo; }
/// Set the location of the currently-active \#pragma clang /// arc_cf_code_audited begin. An invalid location ends the pragma. void setPragmaARCCFCodeAuditedInfo(IdentifierInfo *Ident, SourceLocation Loc) { PragmaARCCFCodeAuditedInfo = {Ident, Loc}; }
/// The location of the currently-active \#pragma clang /// assume_nonnull begin. /// /// Returns an invalid location if there is no such pragma active. SourceLocation getPragmaAssumeNonNullLoc() const { return PragmaAssumeNonNullLoc; }
/// Set the location of the currently-active \#pragma clang /// assume_nonnull begin. An invalid location ends the pragma. void setPragmaAssumeNonNullLoc(SourceLocation Loc) { PragmaAssumeNonNullLoc = Loc; }
/// Get the location of the recorded unterminated \#pragma clang /// assume_nonnull begin in the preamble, if one exists. /// /// Returns an invalid location if the premable did not end with /// such a pragma active or if there is no recorded preamble. SourceLocation getPreambleRecordedPragmaAssumeNonNullLoc() const { return PreambleRecordedPragmaAssumeNonNullLoc; }
/// Record the location of the unterminated \#pragma clang /// assume_nonnull begin in the preamble. void setPreambleRecordedPragmaAssumeNonNullLoc(SourceLocation Loc) { PreambleRecordedPragmaAssumeNonNullLoc = Loc; }
/// Set the directory in which the main file should be considered /// to have been found, if it is not a real file. void setMainFileDir(DirectoryEntryRef Dir) { MainFileDir = Dir; }
/// Instruct the preprocessor to skip part of the main source file. /// /// \param Bytes The number of bytes in the preamble to skip. /// /// \param StartOfLine Whether skipping these bytes puts the lexer at the /// start of a line. void setSkipMainFilePreamble(unsigned Bytes, bool StartOfLine) { SkipMainFilePreamble.first = Bytes; SkipMainFilePreamble.second = StartOfLine; }
/// Forwarding function for diagnostics. This emits a diagnostic at /// the specified Token's location, translating the token's start /// position in the current buffer into a SourcePosition object for rendering. DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID) const { return Diags->Report(Loc, DiagID); }
DiagnosticBuilder Diag(const Token &Tok, unsigned DiagID) const { return Diags->Report(Tok.getLocation(), DiagID); }
/// Return the 'spelling' of the token at the given /// location; does not go up to the spelling location or down to the /// expansion location. /// /// \param buffer A buffer which will be used only if the token requires /// "cleaning", e.g. if it contains trigraphs or escaped newlines /// \param invalid If non-null, will be set \c true if an error occurs. StringRef getSpelling(SourceLocation loc, SmallVectorImpl<char> &buffer, bool *invalid = nullptr) const { return Lexer::getSpelling(loc, buffer, SourceMgr, LangOpts, invalid); }
/// Return the 'spelling' of the Tok token. /// /// The spelling of a token is the characters used to represent the token in /// the source file after trigraph expansion and escaped-newline folding. In /// particular, this wants to get the true, uncanonicalized, spelling of /// things like digraphs, UCNs, etc. /// /// \param Invalid If non-null, will be set \c true if an error occurs. std::string getSpelling(const Token &Tok, bool *Invalid = nullptr) const { return Lexer::getSpelling(Tok, SourceMgr, LangOpts, Invalid); }
/// Get the spelling of a token into a preallocated buffer, instead /// of as an std::string. /// /// The caller is required to allocate enough space for the token, which is /// guaranteed to be at least Tok.getLength() bytes long. The length of the /// actual result is returned. /// /// Note that this method may do two possible things: it may either fill in /// the buffer specified with characters, or it may *change the input pointer* /// to point to a constant buffer with the data already in it (avoiding a /// copy). The caller is not allowed to modify the returned buffer pointer /// if an internal buffer is returned. unsigned getSpelling(const Token &Tok, const char *&Buffer, bool *Invalid = nullptr) const { return Lexer::getSpelling(Tok, Buffer, SourceMgr, LangOpts, Invalid); }
/// Get the spelling of a token into a SmallVector. /// /// Note that the returned StringRef may not point to the /// supplied buffer if a copy can be avoided. StringRef getSpelling(const Token &Tok, SmallVectorImpl<char> &Buffer, bool *Invalid = nullptr) const;
/// Relex the token at the specified location. /// \returns true if there was a failure, false on success. bool getRawToken(SourceLocation Loc, Token &Result, bool IgnoreWhiteSpace = false) { return Lexer::getRawToken(Loc, Result, SourceMgr, LangOpts, IgnoreWhiteSpace); }
/// Given a Token \p Tok that is a numeric constant with length 1, /// return the character. char getSpellingOfSingleCharacterNumericConstant(const Token &Tok, bool *Invalid = nullptr) const { assert((Tok.is(tok::numeric_constant) || Tok.is(tok::binary_data)) && Tok.getLength() == 1 && "Called on unsupported token"); assert(!Tok.needsCleaning() && "Token can't need cleaning with length 1");
// If the token is carrying a literal data pointer, just use it. if (const char *D = Tok.getLiteralData()) return (Tok.getKind() == tok::binary_data) ? *D : *D - '0';
assert(Tok.is(tok::numeric_constant) && "binary data with no data"); // Otherwise, fall back on getCharacterData, which is slower, but always // works. return *SourceMgr.getCharacterData(Tok.getLocation(), Invalid) - '0'; }
/// Retrieve the name of the immediate macro expansion. /// /// This routine starts from a source location, and finds the name of the /// macro responsible for its immediate expansion. It looks through any /// intervening macro argument expansions to compute this. It returns a /// StringRef that refers to the SourceManager-owned buffer of the source /// where that macro name is spelled. Thus, the result shouldn't out-live /// the SourceManager. StringRef getImmediateMacroName(SourceLocation Loc) { return Lexer::getImmediateMacroName(Loc, SourceMgr, getLangOpts()); }
/// Plop the specified string into a scratch buffer and set the /// specified token's location and length to it. /// /// If specified, the source location provides a location of the expansion /// point of the token. void CreateString(StringRef Str, Token &Tok, SourceLocation ExpansionLocStart = SourceLocation(), SourceLocation ExpansionLocEnd = SourceLocation());
/// Split the first Length characters out of the token starting at TokLoc /// and return a location pointing to the split token. Re-lexing from the /// split token will return the split token rather than the original. SourceLocation SplitToken(SourceLocation TokLoc, unsigned Length);
/// Computes the source location just past the end of the /// token at this source location. /// /// This routine can be used to produce a source location that /// points just past the end of the token referenced by \p Loc, and /// is generally used when a diagnostic needs to point just after a /// token where it expected something different that it received. If /// the returned source location would not be meaningful (e.g., if /// it points into a macro), this routine returns an invalid /// source location. /// /// \param Offset an offset from the end of the token, where the source /// location should refer to. The default offset (0) produces a source /// location pointing just past the end of the token; an offset of 1 produces /// a source location pointing to the last character in the token, etc. SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset = 0) { return Lexer::getLocForEndOfToken(Loc, Offset, SourceMgr, LangOpts); }
/// Returns true if the given MacroID location points at the first /// token of the macro expansion. /// /// \param MacroBegin If non-null and function returns true, it is set to /// begin location of the macro. bool isAtStartOfMacroExpansion(SourceLocation loc, SourceLocation *MacroBegin = nullptr) const { return Lexer::isAtStartOfMacroExpansion(loc, SourceMgr, LangOpts, MacroBegin); }
/// Returns true if the given MacroID location points at the last /// token of the macro expansion. /// /// \param MacroEnd If non-null and function returns true, it is set to /// end location of the macro. bool isAtEndOfMacroExpansion(SourceLocation loc, SourceLocation *MacroEnd = nullptr) const { return Lexer::isAtEndOfMacroExpansion(loc, SourceMgr, LangOpts, MacroEnd); }
/// Print the token to stderr, used for debugging. void DumpToken(const Token &Tok, bool DumpFlags = false) const; void DumpLocation(SourceLocation Loc) const; void DumpMacro(const MacroInfo &MI) const; void dumpMacroInfo(const IdentifierInfo *II);
/// Given a location that specifies the start of a /// token, return a new location that specifies a character within the token. SourceLocation AdvanceToTokenCharacter(SourceLocation TokStart, unsigned Char) const { return Lexer::AdvanceToTokenCharacter(TokStart, Char, SourceMgr, LangOpts); }
/// Increment the counters for the number of token paste operations /// performed. /// /// If fast was specified, this is a 'fast paste' case we handled. void IncrementPasteCounter(bool isFast) { if (isFast) ++NumFastTokenPaste; else ++NumTokenPaste; }
void PrintStats();
size_t getTotalMemory() const;
/// When the macro expander pastes together a comment (/##/) in Microsoft /// mode, this method handles updating the current state, returning the /// token on the next source line. void HandleMicrosoftCommentPaste(Token &Tok);
//===--------------------------------------------------------------------===// // Preprocessor callback methods. These are invoked by a lexer as various // directives and events are found.
/// Given a tok::raw_identifier token, look up the /// identifier information for the token and install it into the token, /// updating the token kind accordingly. IdentifierInfo *LookUpIdentifierInfo(Token &Identifier) const;
private: llvm::DenseMap<IdentifierInfo*,unsigned> PoisonReasons;
public: /// Specifies the reason for poisoning an identifier. /// /// If that identifier is accessed while poisoned, then this reason will be /// used instead of the default "poisoned" diagnostic. void SetPoisonReason(IdentifierInfo *II, unsigned DiagID);
/// Display reason for poisoned identifier. void HandlePoisonedIdentifier(Token & Identifier);
void MaybeHandlePoisonedIdentifier(Token & Identifier) { if(IdentifierInfo * II = Identifier.getIdentifierInfo()) { if(II->isPoisoned()) { HandlePoisonedIdentifier(Identifier); } } }
private: /// Identifiers used for SEH handling in Borland. These are only /// allowed in particular circumstances // __except block IdentifierInfo *Ident__exception_code, *Ident___exception_code, *Ident_GetExceptionCode; // __except filter expression IdentifierInfo *Ident__exception_info, *Ident___exception_info, *Ident_GetExceptionInfo; // __finally IdentifierInfo *Ident__abnormal_termination, *Ident___abnormal_termination, *Ident_AbnormalTermination;
const char *getCurLexerEndPos(); void diagnoseMissingHeaderInUmbrellaDir(const Module &Mod);
public: void PoisonSEHIdentifiers(bool Poison = true); // Borland
/// Callback invoked when the lexer reads an identifier and has /// filled in the tokens IdentifierInfo member. /// /// This callback potentially macro expands it or turns it into a named /// token (like 'for'). /// /// \returns true if we actually computed a token, false if we need to /// lex again. bool HandleIdentifier(Token &Identifier);
/// Callback invoked when the lexer hits the end of the current file. /// /// This either returns the EOF token and returns true, or /// pops a level off the include stack and returns false, at which point the /// client should call lex again. bool HandleEndOfFile(Token &Result, bool isEndOfMacro = false);
/// Callback invoked when the current TokenLexer hits the end of its /// token stream. bool HandleEndOfTokenLexer(Token &Result);
/// Callback invoked when the lexer sees a # token at the start of a /// line. /// /// This consumes the directive, modifies the lexer/preprocessor state, and /// advances the lexer(s) so that the next token read is the correct one. void HandleDirective(Token &Result);
/// Ensure that the next token is a tok::eod token. /// /// If not, emit a diagnostic and consume up until the eod. /// If \p EnableMacros is true, then we consider macros that expand to zero /// tokens as being ok. /// /// \return The location of the end of the directive (the terminating /// newline). SourceLocation CheckEndOfDirective(const char *DirType, bool EnableMacros = false);
/// Read and discard all tokens remaining on the current line until /// the tok::eod token is found. Returns the range of the skipped tokens. SourceRange DiscardUntilEndOfDirective() { Token Tmp; return DiscardUntilEndOfDirective(Tmp); }
/// Same as above except retains the token that was found. SourceRange DiscardUntilEndOfDirective(Token &Tok);
/// Returns true if the preprocessor has seen a use of /// __DATE__ or __TIME__ in the file so far. bool SawDateOrTime() const { return DATELoc != SourceLocation() || TIMELoc != SourceLocation(); } unsigned getCounterValue() const { return CounterValue; } void setCounterValue(unsigned V) { CounterValue = V; }
LangOptions::FPEvalMethodKind getCurrentFPEvalMethod() const { assert(CurrentFPEvalMethod != LangOptions::FEM_UnsetOnCommandLine && "FPEvalMethod should be set either from command line or from the " "target info"); return CurrentFPEvalMethod; }
LangOptions::FPEvalMethodKind getTUFPEvalMethod() const { return TUFPEvalMethod; }
SourceLocation getLastFPEvalPragmaLocation() const { return LastFPEvalPragmaLocation; }
void setCurrentFPEvalMethod(SourceLocation PragmaLoc, LangOptions::FPEvalMethodKind Val) { assert(Val != LangOptions::FEM_UnsetOnCommandLine && "FPEvalMethod should never be set to FEM_UnsetOnCommandLine"); // This is the location of the '#pragma float_control" where the // execution state is modifed. LastFPEvalPragmaLocation = PragmaLoc; CurrentFPEvalMethod = Val; TUFPEvalMethod = Val; }
void setTUFPEvalMethod(LangOptions::FPEvalMethodKind Val) { assert(Val != LangOptions::FEM_UnsetOnCommandLine && "TUPEvalMethod should never be set to FEM_UnsetOnCommandLine"); TUFPEvalMethod = Val; }
/// Retrieves the module that we're currently building, if any. Module *getCurrentModule();
/// Retrieves the module whose implementation we're current compiling, if any. Module *getCurrentModuleImplementation();
/// If we are preprocessing a named module. bool isInNamedModule() const { return ModuleDeclState.isNamedModule(); }
/// If we are proprocessing a named interface unit. /// Note that a module implementation partition is not considered as an /// named interface unit here although it is importable /// to ease the parsing. bool isInNamedInterfaceUnit() const { return ModuleDeclState.isNamedInterface(); }
/// Get the named module name we're preprocessing. /// Requires we're preprocessing a named module. StringRef getNamedModuleName() const { return ModuleDeclState.getName(); }
/// If we are implementing an implementation module unit. /// Note that the module implementation partition is not considered as an /// implementation unit. bool isInImplementationUnit() const { return ModuleDeclState.isImplementationUnit(); }
/// If we're importing a standard C++20 Named Modules. bool isInImportingCXXNamedModules() const { // NamedModuleImportPath will be non-empty only if we're importing // Standard C++ named modules. return !NamedModuleImportPath.empty() && getLangOpts().CPlusPlusModules && !IsAtImport; }
/// Allocate a new MacroInfo object with the provided SourceLocation. MacroInfo *AllocateMacroInfo(SourceLocation L);
/// Turn the specified lexer token into a fully checked and spelled /// filename, e.g. as an operand of \#include. /// /// The caller is expected to provide a buffer that is large enough to hold /// the spelling of the filename, but is also expected to handle the case /// when this method decides to use a different buffer. /// /// \returns true if the input filename was in <>'s or false if it was /// in ""'s. bool GetIncludeFilenameSpelling(SourceLocation Loc,StringRef &Buffer);
/// Given a "foo" or \<foo> reference, look up the indicated file. /// /// Returns std::nullopt on failure. \p isAngled indicates whether the file /// reference is for system \#include's or not (i.e. using <> instead of ""). OptionalFileEntryRef LookupFile(SourceLocation FilenameLoc, StringRef Filename, bool isAngled, ConstSearchDirIterator FromDir, const FileEntry *FromFile, ConstSearchDirIterator *CurDir, SmallVectorImpl<char> *SearchPath, SmallVectorImpl<char> *RelativePath, ModuleMap::KnownHeader *SuggestedModule, bool *IsMapped, bool *IsFrameworkFound, bool SkipCache = false, bool OpenFile = true, bool CacheFailures = true);
/// Given a "Filename" or \<Filename> reference, look up the indicated embed /// resource. \p isAngled indicates whether the file reference is for /// system \#include's or not (i.e. using <> instead of ""). If \p OpenFile /// is true, the file looked up is opened for reading, otherwise it only /// validates that the file exists. Quoted filenames are looked up relative /// to \p LookupFromFile if it is nonnull. /// /// Returns std::nullopt on failure. OptionalFileEntryRef LookupEmbedFile(StringRef Filename, bool isAngled, bool OpenFile, const FileEntry *LookupFromFile = nullptr);
/// Return true if we're in the top-level file, not in a \#include. bool isInPrimaryFile() const;
/// Lex an on-off-switch (C99 6.10.6p2) and verify that it is /// followed by EOD. Return true if the token is not a valid on-off-switch. bool LexOnOffSwitch(tok::OnOffSwitch &Result);
bool CheckMacroName(Token &MacroNameTok, MacroUse isDefineUndef, bool *ShadowFlag = nullptr);
void EnterSubmodule(Module *M, SourceLocation ImportLoc, bool ForPragma); Module *LeaveSubmodule(bool ForPragma);
private: friend void TokenLexer::ExpandFunctionArguments();
void PushIncludeMacroStack() { assert(CurLexerCallback != CLK_CachingLexer && "cannot push a caching lexer"); IncludeMacroStack.emplace_back(CurLexerCallback, CurLexerSubmodule, std::move(CurLexer), CurPPLexer, std::move(CurTokenLexer), CurDirLookup); CurPPLexer = nullptr; }
void PopIncludeMacroStack() { CurLexer = std::move(IncludeMacroStack.back().TheLexer); CurPPLexer = IncludeMacroStack.back().ThePPLexer; CurTokenLexer = std::move(IncludeMacroStack.back().TheTokenLexer); CurDirLookup = IncludeMacroStack.back().TheDirLookup; CurLexerSubmodule = IncludeMacroStack.back().TheSubmodule; CurLexerCallback = IncludeMacroStack.back().CurLexerCallback; IncludeMacroStack.pop_back(); }
void PropagateLineStartLeadingSpaceInfo(Token &Result);
/// Determine whether we need to create module macros for #defines in the /// current context. bool needModuleMacros() const;
/// Update the set of active module macros and ambiguity flag for a module /// macro name. void updateModuleMacroInfo(const IdentifierInfo *II, ModuleMacroInfo &Info);
DefMacroDirective *AllocateDefMacroDirective(MacroInfo *MI, SourceLocation Loc); UndefMacroDirective *AllocateUndefMacroDirective(SourceLocation UndefLoc); VisibilityMacroDirective *AllocateVisibilityMacroDirective(SourceLocation Loc, bool isPublic);
/// Lex and validate a macro name, which occurs after a /// \#define or \#undef. /// /// \param MacroNameTok Token that represents the name defined or undefined. /// \param IsDefineUndef Kind if preprocessor directive. /// \param ShadowFlag Points to flag that is set if macro name shadows /// a keyword. /// /// This emits a diagnostic, sets the token kind to eod, /// and discards the rest of the macro line if the macro name is invalid. void ReadMacroName(Token &MacroNameTok, MacroUse IsDefineUndef = MU_Other, bool *ShadowFlag = nullptr);
/// ReadOptionalMacroParameterListAndBody - This consumes all (i.e. the /// entire line) of the macro's tokens and adds them to MacroInfo, and while /// doing so performs certain validity checks including (but not limited to): /// - # (stringization) is followed by a macro parameter /// \param MacroNameTok - Token that represents the macro name /// \param ImmediatelyAfterHeaderGuard - Macro follows an #ifdef header guard /// /// Either returns a pointer to a MacroInfo object OR emits a diagnostic and /// returns a nullptr if an invalid sequence of tokens is encountered. MacroInfo *ReadOptionalMacroParameterListAndBody( const Token &MacroNameTok, bool ImmediatelyAfterHeaderGuard);
/// The ( starting an argument list of a macro definition has just been read. /// Lex the rest of the parameters and the closing ), updating \p MI with /// what we learn and saving in \p LastTok the last token read. /// Return true if an error occurs parsing the arg list. bool ReadMacroParameterList(MacroInfo *MI, Token& LastTok);
/// Provide a suggestion for a typoed directive. If there is no typo, then /// just skip suggesting. /// /// \param Tok - Token that represents the directive /// \param Directive - String reference for the directive name void SuggestTypoedDirective(const Token &Tok, StringRef Directive) const;
/// We just read a \#if or related directive and decided that the /// subsequent tokens are in the \#if'd out portion of the /// file. Lex the rest of the file, until we see an \#endif. If \p /// FoundNonSkipPortion is true, then we have already emitted code for part of /// this \#if directive, so \#else/\#elif blocks should never be entered. If /// \p FoundElse is false, then \#else directives are ok, if not, then we have /// already seen one so a \#else directive is a duplicate. When this returns, /// the caller can lex the first valid token. void SkipExcludedConditionalBlock(SourceLocation HashTokenLoc, SourceLocation IfTokenLoc, bool FoundNonSkipPortion, bool FoundElse, SourceLocation ElseLoc = SourceLocation());
/// Information about the result for evaluating an expression for a /// preprocessor directive. struct DirectiveEvalResult { /// The integral value of the expression. std::optional<llvm::APSInt> Value;
/// Whether the expression was evaluated as true or not. bool Conditional;
/// True if the expression contained identifiers that were undefined. bool IncludedUndefinedIds;
/// The source range for the expression. SourceRange ExprRange; };
/// Evaluate an integer constant expression that may occur after a /// \#if or \#elif directive and return a \p DirectiveEvalResult object. /// /// If the expression is equivalent to "!defined(X)" return X in IfNDefMacro. DirectiveEvalResult EvaluateDirectiveExpression(IdentifierInfo *&IfNDefMacro, bool CheckForEoD = true);
/// Evaluate an integer constant expression that may occur after a /// \#if or \#elif directive and return a \p DirectiveEvalResult object. /// /// If the expression is equivalent to "!defined(X)" return X in IfNDefMacro. /// \p EvaluatedDefined will contain the result of whether "defined" appeared /// in the evaluated expression or not. DirectiveEvalResult EvaluateDirectiveExpression(IdentifierInfo *&IfNDefMacro, Token &Tok, bool &EvaluatedDefined, bool CheckForEoD = true);
/// Process a '__has_embed("path" [, ...])' expression. /// /// Returns predefined `__STDC_EMBED_*` macro values if /// successful. EmbedResult EvaluateHasEmbed(Token &Tok, IdentifierInfo *II);
/// Process a '__has_include("path")' expression. /// /// Returns true if successful. bool EvaluateHasInclude(Token &Tok, IdentifierInfo *II);
/// Process '__has_include_next("path")' expression. /// /// Returns true if successful. bool EvaluateHasIncludeNext(Token &Tok, IdentifierInfo *II);
/// Get the directory and file from which to start \#include_next lookup. std::pair<ConstSearchDirIterator, const FileEntry *> getIncludeNextStart(const Token &IncludeNextTok) const;
/// Install the standard preprocessor pragmas: /// \#pragma GCC poison/system_header/dependency and \#pragma once. void RegisterBuiltinPragmas();
/// Register builtin macros such as __LINE__ with the identifier table. void RegisterBuiltinMacros();
/// If an identifier token is read that is to be expanded as a macro, handle /// it and return the next token as 'Tok'. If we lexed a token, return true; /// otherwise the caller should lex again. bool HandleMacroExpandedIdentifier(Token &Identifier, const MacroDefinition &MD);
/// Cache macro expanded tokens for TokenLexers. // /// Works like a stack; a TokenLexer adds the macro expanded tokens that is /// going to lex in the cache and when it finishes the tokens are removed /// from the end of the cache. Token *cacheMacroExpandedTokens(TokenLexer *tokLexer, ArrayRef<Token> tokens);
void removeCachedMacroExpandedTokensOfLastLexer();
/// Determine whether the next preprocessor token to be /// lexed is a '('. If so, consume the token and return true, if not, this /// method should have no observable side-effect on the lexed tokens. bool isNextPPTokenLParen();
/// After reading "MACRO(", this method is invoked to read all of the formal /// arguments specified for the macro invocation. Returns null on error. MacroArgs *ReadMacroCallArgumentList(Token &MacroName, MacroInfo *MI, SourceLocation &MacroEnd);
/// If an identifier token is read that is to be expanded /// as a builtin macro, handle it and return the next token as 'Tok'. void ExpandBuiltinMacro(Token &Tok);
/// Read a \c _Pragma directive, slice it up, process it, then /// return the first token after the directive. /// This assumes that the \c _Pragma token has just been read into \p Tok. void Handle_Pragma(Token &Tok);
/// Like Handle_Pragma except the pragma text is not enclosed within /// a string literal. void HandleMicrosoft__pragma(Token &Tok);
/// Add a lexer to the top of the include stack and /// start lexing tokens from it instead of the current buffer. void EnterSourceFileWithLexer(Lexer *TheLexer, ConstSearchDirIterator Dir);
/// Set the FileID for the preprocessor predefines. void setPredefinesFileID(FileID FID) { assert(PredefinesFileID.isInvalid() && "PredefinesFileID already set!"); PredefinesFileID = FID; }
/// Set the FileID for the PCH through header. void setPCHThroughHeaderFileID(FileID FID);
/// Returns true if we are lexing from a file and not a /// pragma or a macro. static bool IsFileLexer(const Lexer* L, const PreprocessorLexer* P) { return L ? !L->isPragmaLexer() : P != nullptr; }
static bool IsFileLexer(const IncludeStackInfo& I) { return IsFileLexer(I.TheLexer.get(), I.ThePPLexer); }
bool IsFileLexer() const { return IsFileLexer(CurLexer.get(), CurPPLexer); }
//===--------------------------------------------------------------------===// // Caching stuff. void CachingLex(Token &Result);
bool InCachingLexMode() const { // If the Lexer pointers are 0 and IncludeMacroStack is empty, it means // that we are past EOF, not that we are in CachingLex mode. return !CurPPLexer && !CurTokenLexer && !IncludeMacroStack.empty(); }
void EnterCachingLexMode(); void EnterCachingLexModeUnchecked();
void ExitCachingLexMode() { if (InCachingLexMode()) RemoveTopOfLexerStack(); }
const Token &PeekAhead(unsigned N); void AnnotatePreviousCachedTokens(const Token &Tok);
//===--------------------------------------------------------------------===// /// Handle*Directive - implement the various preprocessor directives. These /// should side-effect the current preprocessor object so that the next call /// to Lex() will return the appropriate token next. void HandleLineDirective(); void HandleDigitDirective(Token &Tok); void HandleUserDiagnosticDirective(Token &Tok, bool isWarning); void HandleIdentSCCSDirective(Token &Tok); void HandleMacroPublicDirective(Token &Tok); void HandleMacroPrivateDirective();
/// An additional notification that can be produced by a header inclusion or /// import to tell the parser what happened. struct ImportAction { enum ActionKind { None, ModuleBegin, ModuleImport, HeaderUnitImport, SkippedModuleImport, Failure, } Kind; Module *ModuleForHeader = nullptr;
ImportAction(ActionKind AK, Module *Mod = nullptr) : Kind(AK), ModuleForHeader(Mod) { assert((AK == None || Mod || AK == Failure) && "no module for module action"); } };
OptionalFileEntryRef LookupHeaderIncludeOrImport( ConstSearchDirIterator *CurDir, StringRef &Filename, SourceLocation FilenameLoc, CharSourceRange FilenameRange, const Token &FilenameTok, bool &IsFrameworkFound, bool IsImportDecl, bool &IsMapped, ConstSearchDirIterator LookupFrom, const FileEntry *LookupFromFile, StringRef &LookupFilename, SmallVectorImpl<char> &RelativePath, SmallVectorImpl<char> &SearchPath, ModuleMap::KnownHeader &SuggestedModule, bool isAngled); // Binary data inclusion void HandleEmbedDirective(SourceLocation HashLoc, Token &Tok, const FileEntry *LookupFromFile = nullptr); void HandleEmbedDirectiveImpl(SourceLocation HashLoc, const LexEmbedParametersResult &Params, StringRef BinaryContents);
// File inclusion. void HandleIncludeDirective(SourceLocation HashLoc, Token &Tok, ConstSearchDirIterator LookupFrom = nullptr, const FileEntry *LookupFromFile = nullptr); ImportAction HandleHeaderIncludeOrImport(SourceLocation HashLoc, Token &IncludeTok, Token &FilenameTok, SourceLocation EndLoc, ConstSearchDirIterator LookupFrom = nullptr, const FileEntry *LookupFromFile = nullptr); void HandleIncludeNextDirective(SourceLocation HashLoc, Token &Tok); void HandleIncludeMacrosDirective(SourceLocation HashLoc, Token &Tok); void HandleImportDirective(SourceLocation HashLoc, Token &Tok); void HandleMicrosoftImportDirective(Token &Tok);
public: /// Check that the given module is available, producing a diagnostic if not. /// \return \c true if the check failed (because the module is not available). /// \c false if the module appears to be usable. static bool checkModuleIsAvailable(const LangOptions &LangOpts, const TargetInfo &TargetInfo, const Module &M, DiagnosticsEngine &Diags);
// Module inclusion testing. /// Find the module that owns the source or header file that /// \p Loc points to. If the location is in a file that was included /// into a module, or is outside any module, returns nullptr. Module *getModuleForLocation(SourceLocation Loc, bool AllowTextual);
/// We want to produce a diagnostic at location IncLoc concerning an /// unreachable effect at location MLoc (eg, where a desired entity was /// declared or defined). Determine whether the right way to make MLoc /// reachable is by #include, and if so, what header should be included. /// /// This is not necessarily fast, and might load unexpected module maps, so /// should only be called by code that intends to produce an error. /// /// \param IncLoc The location at which the missing effect was detected. /// \param MLoc A location within an unimported module at which the desired /// effect occurred. /// \return A file that can be #included to provide the desired effect. Null /// if no such file could be determined or if a #include is not /// appropriate (eg, if a module should be imported instead). OptionalFileEntryRef getHeaderToIncludeForDiagnostics(SourceLocation IncLoc, SourceLocation MLoc);
bool isRecordingPreamble() const { return PreambleConditionalStack.isRecording(); }
bool hasRecordedPreamble() const { return PreambleConditionalStack.hasRecordedPreamble(); }
ArrayRef<PPConditionalInfo> getPreambleConditionalStack() const { return PreambleConditionalStack.getStack(); }
void setRecordedPreambleConditionalStack(ArrayRef<PPConditionalInfo> s) { PreambleConditionalStack.setStack(s); }
void setReplayablePreambleConditionalStack( ArrayRef<PPConditionalInfo> s, std::optional<PreambleSkipInfo> SkipInfo) { PreambleConditionalStack.startReplaying(); PreambleConditionalStack.setStack(s); PreambleConditionalStack.SkipInfo = SkipInfo; }
std::optional<PreambleSkipInfo> getPreambleSkipInfo() const { return PreambleConditionalStack.SkipInfo; }
private: /// After processing predefined file, initialize the conditional stack from /// the preamble. void replayPreambleConditionalStack();
// Macro handling. void HandleDefineDirective(Token &Tok, bool ImmediatelyAfterHeaderGuard); void HandleUndefDirective();
// Conditional Inclusion. void HandleIfdefDirective(Token &Result, const Token &HashToken, bool isIfndef, bool ReadAnyTokensBeforeDirective); void HandleIfDirective(Token &IfToken, const Token &HashToken, bool ReadAnyTokensBeforeDirective); void HandleEndifDirective(Token &EndifToken); void HandleElseDirective(Token &Result, const Token &HashToken); void HandleElifFamilyDirective(Token &ElifToken, const Token &HashToken, tok::PPKeywordKind Kind);
// Pragmas. void HandlePragmaDirective(PragmaIntroducer Introducer);
public: void HandlePragmaOnce(Token &OnceTok); void HandlePragmaMark(Token &MarkTok); void HandlePragmaPoison(); void HandlePragmaSystemHeader(Token &SysHeaderTok); void HandlePragmaDependency(Token &DependencyTok); void HandlePragmaPushMacro(Token &Tok); void HandlePragmaPopMacro(Token &Tok); void HandlePragmaIncludeAlias(Token &Tok); void HandlePragmaModuleBuild(Token &Tok); void HandlePragmaHdrstop(Token &Tok); IdentifierInfo *ParsePragmaPushOrPopMacro(Token &Tok);
// Return true and store the first token only if any CommentHandler // has inserted some tokens and getCommentRetentionState() is false. bool HandleComment(Token &result, SourceRange Comment);
/// A macro is used, update information about macros that need unused /// warnings. void markMacroAsUsed(MacroInfo *MI);
void addMacroDeprecationMsg(const IdentifierInfo *II, std::string Msg, SourceLocation AnnotationLoc) { auto Annotations = AnnotationInfos.find(II); if (Annotations == AnnotationInfos.end()) AnnotationInfos.insert(std::make_pair( II, MacroAnnotations::makeDeprecation(AnnotationLoc, std::move(Msg)))); else Annotations->second.DeprecationInfo = MacroAnnotationInfo{AnnotationLoc, std::move(Msg)}; }
void addRestrictExpansionMsg(const IdentifierInfo *II, std::string Msg, SourceLocation AnnotationLoc) { auto Annotations = AnnotationInfos.find(II); if (Annotations == AnnotationInfos.end()) AnnotationInfos.insert( std::make_pair(II, MacroAnnotations::makeRestrictExpansion( AnnotationLoc, std::move(Msg)))); else Annotations->second.RestrictExpansionInfo = MacroAnnotationInfo{AnnotationLoc, std::move(Msg)}; }
void addFinalLoc(const IdentifierInfo *II, SourceLocation AnnotationLoc) { auto Annotations = AnnotationInfos.find(II); if (Annotations == AnnotationInfos.end()) AnnotationInfos.insert( std::make_pair(II, MacroAnnotations::makeFinal(AnnotationLoc))); else Annotations->second.FinalAnnotationLoc = AnnotationLoc; }
const MacroAnnotations &getMacroAnnotations(const IdentifierInfo *II) const { return AnnotationInfos.find(II)->second; }
void emitMacroExpansionWarnings(const Token &Identifier, bool IsIfnDef = false) const { IdentifierInfo *Info = Identifier.getIdentifierInfo(); if (Info->isDeprecatedMacro()) emitMacroDeprecationWarning(Identifier);
if (Info->isRestrictExpansion() && !SourceMgr.isInMainFile(Identifier.getLocation())) emitRestrictExpansionWarning(Identifier);
if (!IsIfnDef) { if (Info->getName() == "INFINITY" && getLangOpts().NoHonorInfs) emitRestrictInfNaNWarning(Identifier, 0); if (Info->getName() == "NAN" && getLangOpts().NoHonorNaNs) emitRestrictInfNaNWarning(Identifier, 1); } }
static void processPathForFileMacro(SmallVectorImpl<char> &Path, const LangOptions &LangOpts, const TargetInfo &TI);
static void processPathToFileName(SmallVectorImpl<char> &FileName, const PresumedLoc &PLoc, const LangOptions &LangOpts, const TargetInfo &TI);
private: void emitMacroDeprecationWarning(const Token &Identifier) const; void emitRestrictExpansionWarning(const Token &Identifier) const; void emitFinalMacroWarning(const Token &Identifier, bool IsUndef) const; void emitRestrictInfNaNWarning(const Token &Identifier, unsigned DiagSelection) const;
/// This boolean state keeps track if the current scanned token (by this PP) /// is in an "-Wunsafe-buffer-usage" opt-out region. Assuming PP scans a /// translation unit in a linear order. bool InSafeBufferOptOutRegion = false;
/// Hold the start location of the current "-Wunsafe-buffer-usage" opt-out /// region if PP is currently in such a region. Hold undefined value /// otherwise. SourceLocation CurrentSafeBufferOptOutStart; // It is used to report the start location of an never-closed region.
using SafeBufferOptOutRegionsTy = SmallVector<std::pair<SourceLocation, SourceLocation>, 16>; // An ordered sequence of "-Wunsafe-buffer-usage" opt-out regions in this // translation unit. Each region is represented by a pair of start and // end locations. SafeBufferOptOutRegionsTy SafeBufferOptOutMap;
// The "-Wunsafe-buffer-usage" opt-out regions in loaded ASTs. We use the // following structure to manage them by their ASTs. struct { // A map from unique IDs to region maps of loaded ASTs. The ID identifies a // loaded AST. See `SourceManager::getUniqueLoadedASTID`. llvm::DenseMap<FileID, SafeBufferOptOutRegionsTy> LoadedRegions;
// Returns a reference to the safe buffer opt-out regions of the loaded // AST where `Loc` belongs to. (Construct if absent) SafeBufferOptOutRegionsTy & findAndConsLoadedOptOutMap(SourceLocation Loc, SourceManager &SrcMgr) { return LoadedRegions[SrcMgr.getUniqueLoadedASTFileID(Loc)]; }
// Returns a reference to the safe buffer opt-out regions of the loaded // AST where `Loc` belongs to. (This const function returns nullptr if // absent.) const SafeBufferOptOutRegionsTy * lookupLoadedOptOutMap(SourceLocation Loc, const SourceManager &SrcMgr) const { FileID FID = SrcMgr.getUniqueLoadedASTFileID(Loc); auto Iter = LoadedRegions.find(FID);
if (Iter == LoadedRegions.end()) return nullptr; return &Iter->getSecond(); } } LoadedSafeBufferOptOutMap;
public: /// \return true iff the given `Loc` is in a "-Wunsafe-buffer-usage" opt-out /// region. This `Loc` must be a source location that has been pre-processed. bool isSafeBufferOptOut(const SourceManager&SourceMgr, const SourceLocation &Loc) const;
/// Alter the state of whether this PP currently is in a /// "-Wunsafe-buffer-usage" opt-out region. /// /// \param isEnter true if this PP is entering a region; otherwise, this PP /// is exiting a region /// \param Loc the location of the entry or exit of a /// region /// \return true iff it is INVALID to enter or exit a region, i.e., /// attempt to enter a region before exiting a previous region, or exiting a /// region that PP is not currently in. bool enterOrExitSafeBufferOptOutRegion(bool isEnter, const SourceLocation &Loc);
/// \return true iff this PP is currently in a "-Wunsafe-buffer-usage" /// opt-out region bool isPPInSafeBufferOptOutRegion();
/// \param StartLoc output argument. It will be set to the start location of /// the current "-Wunsafe-buffer-usage" opt-out region iff this function /// returns true. /// \return true iff this PP is currently in a "-Wunsafe-buffer-usage" /// opt-out region bool isPPInSafeBufferOptOutRegion(SourceLocation &StartLoc);
/// \return a sequence of SourceLocations representing ordered opt-out regions /// specified by /// `\#pragma clang unsafe_buffer_usage begin/end`s of this translation unit. SmallVector<SourceLocation, 64> serializeSafeBufferOptOutMap() const;
/// \param SrcLocSeqs a sequence of SourceLocations deserialized from a /// record of code `PP_UNSAFE_BUFFER_USAGE`. /// \return true iff the `Preprocessor` has been updated; false `Preprocessor` /// is same as itself before the call. bool setDeserializedSafeBufferOptOutMap( const SmallVectorImpl<SourceLocation> &SrcLocSeqs);
private: /// Helper functions to forward lexing to the actual lexer. They all share the /// same signature. static bool CLK_Lexer(Preprocessor &P, Token &Result) { return P.CurLexer->Lex(Result); } static bool CLK_TokenLexer(Preprocessor &P, Token &Result) { return P.CurTokenLexer->Lex(Result); } static bool CLK_CachingLexer(Preprocessor &P, Token &Result) { P.CachingLex(Result); return true; } static bool CLK_DependencyDirectivesLexer(Preprocessor &P, Token &Result) { return P.CurLexer->LexDependencyDirectiveToken(Result); } static bool CLK_LexAfterModuleImport(Preprocessor &P, Token &Result) { return P.LexAfterModuleImport(Result); } };
/// Abstract base class that describes a handler that will receive /// source ranges for each of the comments encountered in the source file. class CommentHandler { public: virtual ~CommentHandler();
// The handler shall return true if it has pushed any tokens // to be read using e.g. EnterToken or EnterTokenStream. virtual bool HandleComment(Preprocessor &PP, SourceRange Comment) = 0; };
/// Abstract base class that describes a handler that will receive /// source ranges for empty lines encountered in the source file. class EmptylineHandler { public: virtual ~EmptylineHandler();
// The handler handles empty lines. virtual void HandleEmptyline(SourceRange Range) = 0; };
/// Helper class to shuttle information about #embed directives from the /// preprocessor to the parser through an annotation token. struct EmbedAnnotationData { StringRef BinaryData; };
/// Registry of pragma handlers added by plugins using PragmaHandlerRegistry = llvm::Registry<PragmaHandler>;
} // namespace clang
#endif // LLVM_CLANG_LEX_PREPROCESSOR_H
|