Viewing file: Module.h (28.78 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- Module.h - Describe a module -----------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// Defines the clang::Module class, which describes a module in the /// source code. // //===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_BASIC_MODULE_H #define LLVM_CLANG_BASIC_MODULE_H
#include "clang/Basic/DirectoryEntry.h" #include "clang/Basic/FileEntry.h" #include "clang/Basic/SourceLocation.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/iterator_range.h" #include <array> #include <cassert> #include <cstdint> #include <ctime> #include <iterator> #include <optional> #include <string> #include <utility> #include <variant> #include <vector>
namespace llvm {
class raw_ostream;
} // namespace llvm
namespace clang {
class FileManager; class LangOptions; class TargetInfo;
/// Describes the name of a module. using ModuleId = SmallVector<std::pair<std::string, SourceLocation>, 2>;
/// The signature of a module, which is a hash of the AST content. struct ASTFileSignature : std::array<uint8_t, 20> { using BaseT = std::array<uint8_t, 20>;
static constexpr size_t size = std::tuple_size<BaseT>::value;
ASTFileSignature(BaseT S = {{0}}) : BaseT(std::move(S)) {}
explicit operator bool() const { return *this != BaseT({{0}}); }
/// Returns the value truncated to the size of an uint64_t. uint64_t truncatedValue() const { uint64_t Value = 0; static_assert(sizeof(*this) >= sizeof(uint64_t), "No need to truncate."); for (unsigned I = 0; I < sizeof(uint64_t); ++I) Value |= static_cast<uint64_t>((*this)[I]) << (I * 8); return Value; }
static ASTFileSignature create(std::array<uint8_t, 20> Bytes) { return ASTFileSignature(std::move(Bytes)); }
static ASTFileSignature createDISentinel() { ASTFileSignature Sentinel; Sentinel.fill(0xFF); return Sentinel; }
static ASTFileSignature createDummy() { ASTFileSignature Dummy; Dummy.fill(0x00); return Dummy; }
template <typename InputIt> static ASTFileSignature create(InputIt First, InputIt Last) { assert(std::distance(First, Last) == size && "Wrong amount of bytes to create an ASTFileSignature");
ASTFileSignature Signature; std::copy(First, Last, Signature.begin()); return Signature; } };
/// Describes a module or submodule. /// /// Aligned to 8 bytes to allow for llvm::PointerIntPair<Module *, 3>. class alignas(8) Module { public: /// The name of this module. std::string Name;
/// The location of the module definition. SourceLocation DefinitionLoc;
// FIXME: Consider if reducing the size of this enum (having Partition and // Named modules only) then representing interface/implementation separately // is more efficient. enum ModuleKind { /// This is a module that was defined by a module map and built out /// of header files. ModuleMapModule,
/// This is a C++20 header unit. ModuleHeaderUnit,
/// This is a C++20 module interface unit. ModuleInterfaceUnit,
/// This is a C++20 module implementation unit. ModuleImplementationUnit,
/// This is a C++20 module partition interface. ModulePartitionInterface,
/// This is a C++20 module partition implementation. ModulePartitionImplementation,
/// This is the explicit Global Module Fragment of a modular TU. /// As per C++ [module.global.frag]. ExplicitGlobalModuleFragment,
/// This is the private module fragment within some C++ module. PrivateModuleFragment,
/// This is an implicit fragment of the global module which contains /// only language linkage declarations (made in the purview of the /// named module). ImplicitGlobalModuleFragment, };
/// The kind of this module. ModuleKind Kind = ModuleMapModule;
/// The parent of this module. This will be NULL for the top-level /// module. Module *Parent;
/// The build directory of this module. This is the directory in /// which the module is notionally built, and relative to which its headers /// are found. OptionalDirectoryEntryRef Directory;
/// The presumed file name for the module map defining this module. /// Only non-empty when building from preprocessed source. std::string PresumedModuleMapFile;
/// The umbrella header or directory. std::variant<std::monostate, FileEntryRef, DirectoryEntryRef> Umbrella;
/// The module signature. ASTFileSignature Signature;
/// The name of the umbrella entry, as written in the module map. std::string UmbrellaAsWritten;
// The path to the umbrella entry relative to the root module's \c Directory. std::string UmbrellaRelativeToRootModuleDirectory;
/// The module through which entities defined in this module will /// eventually be exposed, for use in "private" modules. std::string ExportAsModule;
/// For the debug info, the path to this module's .apinotes file, if any. std::string APINotesFile;
/// Does this Module is a named module of a standard named module? bool isNamedModule() const { switch (Kind) { case ModuleInterfaceUnit: case ModuleImplementationUnit: case ModulePartitionInterface: case ModulePartitionImplementation: case PrivateModuleFragment: return true; default: return false; } }
/// Does this Module scope describe a fragment of the global module within /// some C++ module. bool isGlobalModule() const { return isExplicitGlobalModule() || isImplicitGlobalModule(); } bool isExplicitGlobalModule() const { return Kind == ExplicitGlobalModuleFragment; } bool isImplicitGlobalModule() const { return Kind == ImplicitGlobalModuleFragment; }
bool isPrivateModule() const { return Kind == PrivateModuleFragment; }
bool isModuleMapModule() const { return Kind == ModuleMapModule; }
private: /// The submodules of this module, indexed by name. std::vector<Module *> SubModules;
/// A mapping from the submodule name to the index into the /// \c SubModules vector at which that submodule resides. llvm::StringMap<unsigned> SubModuleIndex;
/// The AST file if this is a top-level module which has a /// corresponding serialized AST file, or null otherwise. OptionalFileEntryRef ASTFile;
/// The top-level headers associated with this module. llvm::SmallSetVector<FileEntryRef, 2> TopHeaders;
/// top-level header filenames that aren't resolved to FileEntries yet. std::vector<std::string> TopHeaderNames;
/// Cache of modules visible to lookup in this module. mutable llvm::DenseSet<const Module*> VisibleModulesCache;
/// The ID used when referencing this module within a VisibleModuleSet. unsigned VisibilityID;
public: enum HeaderKind { HK_Normal, HK_Textual, HK_Private, HK_PrivateTextual, HK_Excluded }; static const int NumHeaderKinds = HK_Excluded + 1;
/// Information about a header directive as found in the module map /// file. struct Header { std::string NameAsWritten; std::string PathRelativeToRootModuleDirectory; FileEntryRef Entry; };
/// Information about a directory name as found in the module map /// file. struct DirectoryName { std::string NameAsWritten; std::string PathRelativeToRootModuleDirectory; DirectoryEntryRef Entry; };
/// The headers that are part of this module. SmallVector<Header, 2> Headers[5];
/// Stored information about a header directive that was found in the /// module map file but has not been resolved to a file. struct UnresolvedHeaderDirective { HeaderKind Kind = HK_Normal; SourceLocation FileNameLoc; std::string FileName; bool IsUmbrella = false; bool HasBuiltinHeader = false; std::optional<off_t> Size; std::optional<time_t> ModTime; };
/// Headers that are mentioned in the module map file but that we have not /// yet attempted to resolve to a file on the file system. SmallVector<UnresolvedHeaderDirective, 1> UnresolvedHeaders;
/// Headers that are mentioned in the module map file but could not be /// found on the file system. SmallVector<UnresolvedHeaderDirective, 1> MissingHeaders;
struct Requirement { std::string FeatureName; bool RequiredState; };
/// The set of language features required to use this module. /// /// If any of these requirements are not available, the \c IsAvailable bit /// will be false to indicate that this (sub)module is not available. SmallVector<Requirement, 2> Requirements;
/// A module with the same name that shadows this module. Module *ShadowingModule = nullptr;
/// Whether this module has declared itself unimportable, either because /// it's missing a requirement from \p Requirements or because it's been /// shadowed by another module. LLVM_PREFERRED_TYPE(bool) unsigned IsUnimportable : 1;
/// Whether we tried and failed to load a module file for this module. LLVM_PREFERRED_TYPE(bool) unsigned HasIncompatibleModuleFile : 1;
/// Whether this module is available in the current translation unit. /// /// If the module is missing headers or does not meet all requirements then /// this bit will be 0. LLVM_PREFERRED_TYPE(bool) unsigned IsAvailable : 1;
/// Whether this module was loaded from a module file. LLVM_PREFERRED_TYPE(bool) unsigned IsFromModuleFile : 1;
/// Whether this is a framework module. LLVM_PREFERRED_TYPE(bool) unsigned IsFramework : 1;
/// Whether this is an explicit submodule. LLVM_PREFERRED_TYPE(bool) unsigned IsExplicit : 1;
/// Whether this is a "system" module (which assumes that all /// headers in it are system headers). LLVM_PREFERRED_TYPE(bool) unsigned IsSystem : 1;
/// Whether this is an 'extern "C"' module (which implicitly puts all /// headers in it within an 'extern "C"' block, and allows the module to be /// imported within such a block). LLVM_PREFERRED_TYPE(bool) unsigned IsExternC : 1;
/// Whether this is an inferred submodule (module * { ... }). LLVM_PREFERRED_TYPE(bool) unsigned IsInferred : 1;
/// Whether we should infer submodules for this module based on /// the headers. /// /// Submodules can only be inferred for modules with an umbrella header. LLVM_PREFERRED_TYPE(bool) unsigned InferSubmodules : 1;
/// Whether, when inferring submodules, the inferred submodules /// should be explicit. LLVM_PREFERRED_TYPE(bool) unsigned InferExplicitSubmodules : 1;
/// Whether, when inferring submodules, the inferr submodules should /// export all modules they import (e.g., the equivalent of "export *"). LLVM_PREFERRED_TYPE(bool) unsigned InferExportWildcard : 1;
/// Whether the set of configuration macros is exhaustive. /// /// When the set of configuration macros is exhaustive, meaning /// that no identifier not in this list should affect how the module is /// built. LLVM_PREFERRED_TYPE(bool) unsigned ConfigMacrosExhaustive : 1;
/// Whether files in this module can only include non-modular headers /// and headers from used modules. LLVM_PREFERRED_TYPE(bool) unsigned NoUndeclaredIncludes : 1;
/// Whether this module came from a "private" module map, found next /// to a regular (public) module map. LLVM_PREFERRED_TYPE(bool) unsigned ModuleMapIsPrivate : 1;
/// Whether this C++20 named modules doesn't need an initializer. /// This is only meaningful for C++20 modules. LLVM_PREFERRED_TYPE(bool) unsigned NamedModuleHasInit : 1;
/// Describes the visibility of the various names within a /// particular module. enum NameVisibilityKind { /// All of the names in this module are hidden. Hidden, /// All of the names in this module are visible. AllVisible };
/// The visibility of names within this particular module. NameVisibilityKind NameVisibility;
/// The location of the inferred submodule. SourceLocation InferredSubmoduleLoc;
/// The set of modules imported by this module, and on which this /// module depends. llvm::SmallSetVector<Module *, 2> Imports;
/// The set of top-level modules that affected the compilation of this module, /// but were not imported. llvm::SmallSetVector<Module *, 2> AffectingClangModules;
/// Describes an exported module. /// /// The pointer is the module being re-exported, while the bit will be true /// to indicate that this is a wildcard export. using ExportDecl = llvm::PointerIntPair<Module *, 1, bool>;
/// The set of export declarations. SmallVector<ExportDecl, 2> Exports;
/// Describes an exported module that has not yet been resolved /// (perhaps because the module it refers to has not yet been loaded). struct UnresolvedExportDecl { /// The location of the 'export' keyword in the module map file. SourceLocation ExportLoc;
/// The name of the module. ModuleId Id;
/// Whether this export declaration ends in a wildcard, indicating /// that all of its submodules should be exported (rather than the named /// module itself). bool Wildcard; };
/// The set of export declarations that have yet to be resolved. SmallVector<UnresolvedExportDecl, 2> UnresolvedExports;
/// The directly used modules. SmallVector<Module *, 2> DirectUses;
/// The set of use declarations that have yet to be resolved. SmallVector<ModuleId, 2> UnresolvedDirectUses;
/// When \c NoUndeclaredIncludes is true, the set of modules this module tried /// to import but didn't because they are not direct uses. llvm::SmallSetVector<const Module *, 2> UndeclaredUses;
/// A library or framework to link against when an entity from this /// module is used. struct LinkLibrary { LinkLibrary() = default; LinkLibrary(const std::string &Library, bool IsFramework) : Library(Library), IsFramework(IsFramework) {}
/// The library to link against. /// /// This will typically be a library or framework name, but can also /// be an absolute path to the library or framework. std::string Library;
/// Whether this is a framework rather than a library. bool IsFramework = false; };
/// The set of libraries or frameworks to link against when /// an entity from this module is used. llvm::SmallVector<LinkLibrary, 2> LinkLibraries;
/// Autolinking uses the framework name for linking purposes /// when this is false and the export_as name otherwise. bool UseExportAsModuleLinkName = false;
/// The set of "configuration macros", which are macros that /// (intentionally) change how this module is built. std::vector<std::string> ConfigMacros;
/// An unresolved conflict with another module. struct UnresolvedConflict { /// The (unresolved) module id. ModuleId Id;
/// The message provided to the user when there is a conflict. std::string Message; };
/// The list of conflicts for which the module-id has not yet been /// resolved. std::vector<UnresolvedConflict> UnresolvedConflicts;
/// A conflict between two modules. struct Conflict { /// The module that this module conflicts with. Module *Other;
/// The message provided to the user when there is a conflict. std::string Message; };
/// The list of conflicts. std::vector<Conflict> Conflicts;
/// Construct a new module or submodule. Module(StringRef Name, SourceLocation DefinitionLoc, Module *Parent, bool IsFramework, bool IsExplicit, unsigned VisibilityID);
~Module();
/// Determine whether this module has been declared unimportable. bool isUnimportable() const { return IsUnimportable; }
/// Determine whether this module has been declared unimportable. /// /// \param LangOpts The language options used for the current /// translation unit. /// /// \param Target The target options used for the current translation unit. /// /// \param Req If this module is unimportable because of a missing /// requirement, this parameter will be set to one of the requirements that /// is not met for use of this module. /// /// \param ShadowingModule If this module is unimportable because it is /// shadowed, this parameter will be set to the shadowing module. bool isUnimportable(const LangOptions &LangOpts, const TargetInfo &Target, Requirement &Req, Module *&ShadowingModule) const;
/// Determine whether this module can be built in this compilation. bool isForBuilding(const LangOptions &LangOpts) const;
/// Determine whether this module is available for use within the /// current translation unit. bool isAvailable() const { return IsAvailable; }
/// Determine whether this module is available for use within the /// current translation unit. /// /// \param LangOpts The language options used for the current /// translation unit. /// /// \param Target The target options used for the current translation unit. /// /// \param Req If this module is unavailable because of a missing requirement, /// this parameter will be set to one of the requirements that is not met for /// use of this module. /// /// \param MissingHeader If this module is unavailable because of a missing /// header, this parameter will be set to one of the missing headers. /// /// \param ShadowingModule If this module is unavailable because it is /// shadowed, this parameter will be set to the shadowing module. bool isAvailable(const LangOptions &LangOpts, const TargetInfo &Target, Requirement &Req, UnresolvedHeaderDirective &MissingHeader, Module *&ShadowingModule) const;
/// Determine whether this module is a submodule. bool isSubModule() const { return Parent != nullptr; }
/// Check if this module is a (possibly transitive) submodule of \p Other. /// /// The 'A is a submodule of B' relation is a partial order based on the /// the parent-child relationship between individual modules. /// /// Returns \c false if \p Other is \c nullptr. bool isSubModuleOf(const Module *Other) const;
/// Determine whether this module is a part of a framework, /// either because it is a framework module or because it is a submodule /// of a framework module. bool isPartOfFramework() const { for (const Module *Mod = this; Mod; Mod = Mod->Parent) if (Mod->IsFramework) return true;
return false; }
/// Determine whether this module is a subframework of another /// framework. bool isSubFramework() const { return IsFramework && Parent && Parent->isPartOfFramework(); }
/// Set the parent of this module. This should only be used if the parent /// could not be set during module creation. void setParent(Module *M) { assert(!Parent); Parent = M; Parent->SubModuleIndex[Name] = Parent->SubModules.size(); Parent->SubModules.push_back(this); }
/// Is this module have similar semantics as headers. bool isHeaderLikeModule() const { return isModuleMapModule() || isHeaderUnit(); }
/// Is this a module partition. bool isModulePartition() const { return Kind == ModulePartitionInterface || Kind == ModulePartitionImplementation; }
/// Is this a module partition implementation unit. bool isModulePartitionImplementation() const { return Kind == ModulePartitionImplementation; }
/// Is this a module implementation. bool isModuleImplementation() const { return Kind == ModuleImplementationUnit; }
/// Is this module a header unit. bool isHeaderUnit() const { return Kind == ModuleHeaderUnit; } // Is this a C++20 module interface or a partition. bool isInterfaceOrPartition() const { return Kind == ModuleInterfaceUnit || isModulePartition(); }
/// Is this a C++20 named module unit. bool isNamedModuleUnit() const { return isInterfaceOrPartition() || isModuleImplementation(); }
bool isModuleInterfaceUnit() const { return Kind == ModuleInterfaceUnit || Kind == ModulePartitionInterface; }
bool isNamedModuleInterfaceHasInit() const { return NamedModuleHasInit; }
/// Get the primary module interface name from a partition. StringRef getPrimaryModuleInterfaceName() const { // Technically, global module fragment belongs to global module. And global // module has no name: [module.unit]p6: // The global module has no name, no module interface unit, and is not // introduced by any module-declaration. // // <global> is the default name showed in module map. if (isGlobalModule()) return "<global>";
if (isModulePartition()) { auto pos = Name.find(':'); return StringRef(Name.data(), pos); }
if (isPrivateModule()) return getTopLevelModuleName();
return Name; }
/// Retrieve the full name of this module, including the path from /// its top-level module. /// \param AllowStringLiterals If \c true, components that might not be /// lexically valid as identifiers will be emitted as string literals. std::string getFullModuleName(bool AllowStringLiterals = false) const;
/// Whether the full name of this module is equal to joining /// \p nameParts with "."s. /// /// This is more efficient than getFullModuleName(). bool fullModuleNameIs(ArrayRef<StringRef> nameParts) const;
/// Retrieve the top-level module for this (sub)module, which may /// be this module. Module *getTopLevelModule() { return const_cast<Module *>( const_cast<const Module *>(this)->getTopLevelModule()); }
/// Retrieve the top-level module for this (sub)module, which may /// be this module. const Module *getTopLevelModule() const;
/// Retrieve the name of the top-level module. StringRef getTopLevelModuleName() const { return getTopLevelModule()->Name; }
/// The serialized AST file for this module, if one was created. OptionalFileEntryRef getASTFile() const { return getTopLevelModule()->ASTFile; }
/// Set the serialized AST file for the top-level module of this module. void setASTFile(OptionalFileEntryRef File) { assert((!getASTFile() || getASTFile() == File) && "file path changed"); getTopLevelModule()->ASTFile = File; }
/// Retrieve the umbrella directory as written. std::optional<DirectoryName> getUmbrellaDirAsWritten() const { if (const auto *Dir = std::get_if<DirectoryEntryRef>(&Umbrella)) return DirectoryName{UmbrellaAsWritten, UmbrellaRelativeToRootModuleDirectory, *Dir}; return std::nullopt; }
/// Retrieve the umbrella header as written. std::optional<Header> getUmbrellaHeaderAsWritten() const { if (const auto *Hdr = std::get_if<FileEntryRef>(&Umbrella)) return Header{UmbrellaAsWritten, UmbrellaRelativeToRootModuleDirectory, *Hdr}; return std::nullopt; }
/// Get the effective umbrella directory for this module: either the one /// explicitly written in the module map file, or the parent of the umbrella /// header. OptionalDirectoryEntryRef getEffectiveUmbrellaDir() const;
/// Add a top-level header associated with this module. void addTopHeader(FileEntryRef File);
/// Add a top-level header filename associated with this module. void addTopHeaderFilename(StringRef Filename) { TopHeaderNames.push_back(std::string(Filename)); }
/// The top-level headers associated with this module. ArrayRef<FileEntryRef> getTopHeaders(FileManager &FileMgr);
/// Determine whether this module has declared its intention to /// directly use another module. bool directlyUses(const Module *Requested);
/// Add the given feature requirement to the list of features /// required by this module. /// /// \param Feature The feature that is required by this module (and /// its submodules). /// /// \param RequiredState The required state of this feature: \c true /// if it must be present, \c false if it must be absent. /// /// \param LangOpts The set of language options that will be used to /// evaluate the availability of this feature. /// /// \param Target The target options that will be used to evaluate the /// availability of this feature. void addRequirement(StringRef Feature, bool RequiredState, const LangOptions &LangOpts, const TargetInfo &Target);
/// Mark this module and all of its submodules as unavailable. void markUnavailable(bool Unimportable);
/// Find the submodule with the given name. /// /// \returns The submodule if found, or NULL otherwise. Module *findSubmodule(StringRef Name) const; Module *findOrInferSubmodule(StringRef Name);
/// Get the Global Module Fragment (sub-module) for this module, it there is /// one. /// /// \returns The GMF sub-module if found, or NULL otherwise. Module *getGlobalModuleFragment() const;
/// Get the Private Module Fragment (sub-module) for this module, it there is /// one. /// /// \returns The PMF sub-module if found, or NULL otherwise. Module *getPrivateModuleFragment() const;
/// Determine whether the specified module would be visible to /// a lookup at the end of this module. /// /// FIXME: This may return incorrect results for (submodules of) the /// module currently being built, if it's queried before we see all /// of its imports. bool isModuleVisible(const Module *M) const { if (VisibleModulesCache.empty()) buildVisibleModulesCache(); return VisibleModulesCache.count(M); }
unsigned getVisibilityID() const { return VisibilityID; }
using submodule_iterator = std::vector<Module *>::iterator; using submodule_const_iterator = std::vector<Module *>::const_iterator;
llvm::iterator_range<submodule_iterator> submodules() { return llvm::make_range(SubModules.begin(), SubModules.end()); } llvm::iterator_range<submodule_const_iterator> submodules() const { return llvm::make_range(SubModules.begin(), SubModules.end()); }
/// Appends this module's list of exported modules to \p Exported. /// /// This provides a subset of immediately imported modules (the ones that are /// directly exported), not the complete set of exported modules. void getExportedModules(SmallVectorImpl<Module *> &Exported) const;
static StringRef getModuleInputBufferName() { return "<module-includes>"; }
/// Print the module map for this module to the given stream. void print(raw_ostream &OS, unsigned Indent = 0, bool Dump = false) const;
/// Dump the contents of this module to the given output stream. void dump() const;
private: void buildVisibleModulesCache() const; };
/// A set of visible modules. class VisibleModuleSet { public: VisibleModuleSet() = default; VisibleModuleSet(VisibleModuleSet &&O) : ImportLocs(std::move(O.ImportLocs)), Generation(O.Generation ? 1 : 0) { O.ImportLocs.clear(); ++O.Generation; }
/// Move from another visible modules set. Guaranteed to leave the source /// empty and bump the generation on both. VisibleModuleSet &operator=(VisibleModuleSet &&O) { ImportLocs = std::move(O.ImportLocs); O.ImportLocs.clear(); ++O.Generation; ++Generation; return *this; }
/// Get the current visibility generation. Incremented each time the /// set of visible modules changes in any way. unsigned getGeneration() const { return Generation; }
/// Determine whether a module is visible. bool isVisible(const Module *M) const { return getImportLoc(M).isValid(); }
/// Get the location at which the import of a module was triggered. SourceLocation getImportLoc(const Module *M) const { return M->getVisibilityID() < ImportLocs.size() ? ImportLocs[M->getVisibilityID()] : SourceLocation(); }
/// A callback to call when a module is made visible (directly or /// indirectly) by a call to \ref setVisible. using VisibleCallback = llvm::function_ref<void(Module *M)>;
/// A callback to call when a module conflict is found. \p Path /// consists of a sequence of modules from the conflicting module to the one /// made visible, where each was exported by the next. using ConflictCallback = llvm::function_ref<void(ArrayRef<Module *> Path, Module *Conflict, StringRef Message)>;
/// Make a specific module visible. void setVisible(Module *M, SourceLocation Loc, VisibleCallback Vis = [](Module *) {}, ConflictCallback Cb = [](ArrayRef<Module *>, Module *, StringRef) {}); private: /// Import locations for each visible module. Indexed by the module's /// VisibilityID. std::vector<SourceLocation> ImportLocs;
/// Visibility generation, bumped every time the visibility state changes. unsigned Generation = 0; };
} // namespace clang
#endif // LLVM_CLANG_BASIC_MODULE_H
|