Viewing file: Diagnostic.h (63.57 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- Diagnostic.h - C Language Family Diagnostic Handling -----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// Defines the Diagnostic-related interfaces. // //===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_BASIC_DIAGNOSTIC_H #define LLVM_CLANG_BASIC_DIAGNOSTIC_H
#include "clang/Basic/DiagnosticIDs.h" #include "clang/Basic/DiagnosticOptions.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/Specifiers.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/IntrusiveRefCntPtr.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Support/Compiler.h" #include <cassert> #include <cstdint> #include <limits> #include <list> #include <map> #include <memory> #include <optional> #include <string> #include <type_traits> #include <utility> #include <vector>
namespace llvm { class Error; class raw_ostream; } // namespace llvm
namespace clang {
class DeclContext; class DiagnosticBuilder; class DiagnosticConsumer; class IdentifierInfo; class LangOptions; class Preprocessor; class SourceManager; class StoredDiagnostic;
namespace tok {
enum TokenKind : unsigned short;
} // namespace tok
/// Annotates a diagnostic with some code that should be /// inserted, removed, or replaced to fix the problem. /// /// This kind of hint should be used when we are certain that the /// introduction, removal, or modification of a particular (small!) /// amount of code will correct a compilation error. The compiler /// should also provide full recovery from such errors, such that /// suppressing the diagnostic output can still result in successful /// compilation. class FixItHint { public: /// Code that should be replaced to correct the error. Empty for an /// insertion hint. CharSourceRange RemoveRange;
/// Code in the specific range that should be inserted in the insertion /// location. CharSourceRange InsertFromRange;
/// The actual code to insert at the insertion location, as a /// string. std::string CodeToInsert;
bool BeforePreviousInsertions = false;
/// Empty code modification hint, indicating that no code /// modification is known. FixItHint() = default;
bool isNull() const { return !RemoveRange.isValid(); }
/// Create a code modification hint that inserts the given /// code string at a specific location. static FixItHint CreateInsertion(SourceLocation InsertionLoc, StringRef Code, bool BeforePreviousInsertions = false) { FixItHint Hint; Hint.RemoveRange = CharSourceRange::getCharRange(InsertionLoc, InsertionLoc); Hint.CodeToInsert = std::string(Code); Hint.BeforePreviousInsertions = BeforePreviousInsertions; return Hint; }
/// Create a code modification hint that inserts the given /// code from \p FromRange at a specific location. static FixItHint CreateInsertionFromRange(SourceLocation InsertionLoc, CharSourceRange FromRange, bool BeforePreviousInsertions = false) { FixItHint Hint; Hint.RemoveRange = CharSourceRange::getCharRange(InsertionLoc, InsertionLoc); Hint.InsertFromRange = FromRange; Hint.BeforePreviousInsertions = BeforePreviousInsertions; return Hint; }
/// Create a code modification hint that removes the given /// source range. static FixItHint CreateRemoval(CharSourceRange RemoveRange) { FixItHint Hint; Hint.RemoveRange = RemoveRange; return Hint; } static FixItHint CreateRemoval(SourceRange RemoveRange) { return CreateRemoval(CharSourceRange::getTokenRange(RemoveRange)); }
/// Create a code modification hint that replaces the given /// source range with the given code string. static FixItHint CreateReplacement(CharSourceRange RemoveRange, StringRef Code) { FixItHint Hint; Hint.RemoveRange = RemoveRange; Hint.CodeToInsert = std::string(Code); return Hint; }
static FixItHint CreateReplacement(SourceRange RemoveRange, StringRef Code) { return CreateReplacement(CharSourceRange::getTokenRange(RemoveRange), Code); } };
struct DiagnosticStorage { enum { /// The maximum number of arguments we can hold. We /// currently only support up to 10 arguments (%0-%9). /// /// A single diagnostic with more than that almost certainly has to /// be simplified anyway. MaxArguments = 10 };
/// The number of entries in Arguments. unsigned char NumDiagArgs = 0;
/// Specifies for each argument whether it is in DiagArgumentsStr /// or in DiagArguments. unsigned char DiagArgumentsKind[MaxArguments];
/// The values for the various substitution positions. /// /// This is used when the argument is not an std::string. The specific value /// is mangled into an uint64_t and the interpretation depends on exactly /// what sort of argument kind it is. uint64_t DiagArgumentsVal[MaxArguments];
/// The values for the various substitution positions that have /// string arguments. std::string DiagArgumentsStr[MaxArguments];
/// The list of ranges added to this diagnostic. SmallVector<CharSourceRange, 8> DiagRanges;
/// If valid, provides a hint with some code to insert, remove, or /// modify at a particular position. SmallVector<FixItHint, 6> FixItHints;
DiagnosticStorage() = default; };
/// Concrete class used by the front-end to report problems and issues. /// /// This massages the diagnostics (e.g. handling things like "report warnings /// as errors" and passes them off to the DiagnosticConsumer for reporting to /// the user. DiagnosticsEngine is tied to one translation unit and one /// SourceManager. class DiagnosticsEngine : public RefCountedBase<DiagnosticsEngine> { public: /// The level of the diagnostic, after it has been through mapping. enum Level { Ignored = DiagnosticIDs::Ignored, Note = DiagnosticIDs::Note, Remark = DiagnosticIDs::Remark, Warning = DiagnosticIDs::Warning, Error = DiagnosticIDs::Error, Fatal = DiagnosticIDs::Fatal };
enum ArgumentKind { /// std::string ak_std_string,
/// const char * ak_c_string,
/// int ak_sint,
/// unsigned ak_uint,
/// enum TokenKind : unsigned ak_tokenkind,
/// IdentifierInfo ak_identifierinfo,
/// address space ak_addrspace,
/// Qualifiers ak_qual,
/// QualType ak_qualtype,
/// DeclarationName ak_declarationname,
/// NamedDecl * ak_nameddecl,
/// NestedNameSpecifier * ak_nestednamespec,
/// DeclContext * ak_declcontext,
/// pair<QualType, QualType> ak_qualtype_pair,
/// Attr * ak_attr };
/// Represents on argument value, which is a union discriminated /// by ArgumentKind, with a value. using ArgumentValue = std::pair<ArgumentKind, intptr_t>;
private: // Used by __extension__ unsigned char AllExtensionsSilenced = 0;
// Treat fatal errors like errors. bool FatalsAsError = false;
// Suppress all diagnostics. bool SuppressAllDiagnostics = false;
// Elide common types of templates. bool ElideType = true;
// Print a tree when comparing templates. bool PrintTemplateTree = false;
// Color printing is enabled. bool ShowColors = false;
// Which overload candidates to show. OverloadsShown ShowOverloads = Ovl_All;
// With Ovl_Best, the number of overload candidates to show when we encounter // an error. // // The value here is the number of candidates to show in the first nontrivial // error. Future errors may show a different number of candidates. unsigned NumOverloadsToShow = 32;
// Cap of # errors emitted, 0 -> no limit. unsigned ErrorLimit = 0;
// Cap on depth of template backtrace stack, 0 -> no limit. unsigned TemplateBacktraceLimit = 0;
// Cap on depth of constexpr evaluation backtrace stack, 0 -> no limit. unsigned ConstexprBacktraceLimit = 0;
IntrusiveRefCntPtr<DiagnosticIDs> Diags; IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts; DiagnosticConsumer *Client = nullptr; std::unique_ptr<DiagnosticConsumer> Owner; SourceManager *SourceMgr = nullptr;
/// Mapping information for diagnostics. /// /// Mapping info is packed into four bits per diagnostic. The low three /// bits are the mapping (an instance of diag::Severity), or zero if unset. /// The high bit is set when the mapping was established as a user mapping. /// If the high bit is clear, then the low bits are set to the default /// value, and should be mapped with -pedantic, -Werror, etc. /// /// A new DiagState is created and kept around when diagnostic pragmas modify /// the state so that we know what is the diagnostic state at any given /// source location. class DiagState { llvm::DenseMap<unsigned, DiagnosticMapping> DiagMap;
public: // "Global" configuration state that can actually vary between modules.
// Ignore all warnings: -w LLVM_PREFERRED_TYPE(bool) unsigned IgnoreAllWarnings : 1;
// Enable all warnings. LLVM_PREFERRED_TYPE(bool) unsigned EnableAllWarnings : 1;
// Treat warnings like errors. LLVM_PREFERRED_TYPE(bool) unsigned WarningsAsErrors : 1;
// Treat errors like fatal errors. LLVM_PREFERRED_TYPE(bool) unsigned ErrorsAsFatal : 1;
// Suppress warnings in system headers. LLVM_PREFERRED_TYPE(bool) unsigned SuppressSystemWarnings : 1;
// Map extensions to warnings or errors? diag::Severity ExtBehavior = diag::Severity::Ignored;
DiagState() : IgnoreAllWarnings(false), EnableAllWarnings(false), WarningsAsErrors(false), ErrorsAsFatal(false), SuppressSystemWarnings(false) {}
using iterator = llvm::DenseMap<unsigned, DiagnosticMapping>::iterator; using const_iterator = llvm::DenseMap<unsigned, DiagnosticMapping>::const_iterator;
void setMapping(diag::kind Diag, DiagnosticMapping Info) { DiagMap[Diag] = Info; }
DiagnosticMapping lookupMapping(diag::kind Diag) const { return DiagMap.lookup(Diag); }
DiagnosticMapping &getOrAddMapping(diag::kind Diag);
const_iterator begin() const { return DiagMap.begin(); } const_iterator end() const { return DiagMap.end(); } };
/// Keeps and automatically disposes all DiagStates that we create. std::list<DiagState> DiagStates;
/// A mapping from files to the diagnostic states for those files. Lazily /// built on demand for files in which the diagnostic state has not changed. class DiagStateMap { public: /// Add an initial diagnostic state. void appendFirst(DiagState *State);
/// Add a new latest state point. void append(SourceManager &SrcMgr, SourceLocation Loc, DiagState *State);
/// Look up the diagnostic state at a given source location. DiagState *lookup(SourceManager &SrcMgr, SourceLocation Loc) const;
/// Determine whether this map is empty. bool empty() const { return Files.empty(); }
/// Clear out this map. void clear() { Files.clear(); FirstDiagState = CurDiagState = nullptr; CurDiagStateLoc = SourceLocation(); }
/// Produce a debugging dump of the diagnostic state. LLVM_DUMP_METHOD void dump(SourceManager &SrcMgr, StringRef DiagName = StringRef()) const;
/// Grab the most-recently-added state point. DiagState *getCurDiagState() const { return CurDiagState; }
/// Get the location at which a diagnostic state was last added. SourceLocation getCurDiagStateLoc() const { return CurDiagStateLoc; }
private: friend class ASTReader; friend class ASTWriter;
/// Represents a point in source where the diagnostic state was /// modified because of a pragma. /// /// 'Loc' can be null if the point represents the diagnostic state /// modifications done through the command-line. struct DiagStatePoint { DiagState *State; unsigned Offset;
DiagStatePoint(DiagState *State, unsigned Offset) : State(State), Offset(Offset) {} };
/// Description of the diagnostic states and state transitions for a /// particular FileID. struct File { /// The diagnostic state for the parent file. This is strictly redundant, /// as looking up the DecomposedIncludedLoc for the FileID in the Files /// map would give us this, but we cache it here for performance. File *Parent = nullptr;
/// The offset of this file within its parent. unsigned ParentOffset = 0;
/// Whether this file has any local (not imported from an AST file) /// diagnostic state transitions. bool HasLocalTransitions = false;
/// The points within the file where the state changes. There will always /// be at least one of these (the state on entry to the file). llvm::SmallVector<DiagStatePoint, 4> StateTransitions;
DiagState *lookup(unsigned Offset) const; };
/// The diagnostic states for each file. mutable std::map<FileID, File> Files;
/// The initial diagnostic state. DiagState *FirstDiagState;
/// The current diagnostic state. DiagState *CurDiagState;
/// The location at which the current diagnostic state was established. SourceLocation CurDiagStateLoc;
/// Get the diagnostic state information for a file. File *getFile(SourceManager &SrcMgr, FileID ID) const; };
DiagStateMap DiagStatesByLoc;
/// Keeps the DiagState that was active during each diagnostic 'push' /// so we can get back at it when we 'pop'. std::vector<DiagState *> DiagStateOnPushStack;
DiagState *GetCurDiagState() const { return DiagStatesByLoc.getCurDiagState(); }
void PushDiagStatePoint(DiagState *State, SourceLocation L);
/// Finds the DiagStatePoint that contains the diagnostic state of /// the given source location. DiagState *GetDiagStateForLoc(SourceLocation Loc) const { return SourceMgr ? DiagStatesByLoc.lookup(*SourceMgr, Loc) : DiagStatesByLoc.getCurDiagState(); }
/// Sticky flag set to \c true when an error is emitted. bool ErrorOccurred;
/// Sticky flag set to \c true when an "uncompilable error" occurs. /// I.e. an error that was not upgraded from a warning by -Werror. bool UncompilableErrorOccurred;
/// Sticky flag set to \c true when a fatal error is emitted. bool FatalErrorOccurred;
/// Indicates that an unrecoverable error has occurred. bool UnrecoverableErrorOccurred;
/// Counts for DiagnosticErrorTrap to check whether an error occurred /// during a parsing section, e.g. during parsing a function. unsigned TrapNumErrorsOccurred; unsigned TrapNumUnrecoverableErrorsOccurred;
/// The level of the last diagnostic emitted. /// /// This is used to emit continuation diagnostics with the same level as the /// diagnostic that they follow. DiagnosticIDs::Level LastDiagLevel;
/// Number of warnings reported unsigned NumWarnings;
/// Number of errors reported unsigned NumErrors;
/// A function pointer that converts an opaque diagnostic /// argument to a strings. /// /// This takes the modifiers and argument that was present in the diagnostic. /// /// The PrevArgs array indicates the previous arguments formatted for this /// diagnostic. Implementations of this function can use this information to /// avoid redundancy across arguments. /// /// This is a hack to avoid a layering violation between libbasic and libsema. using ArgToStringFnTy = void (*)( ArgumentKind Kind, intptr_t Val, StringRef Modifier, StringRef Argument, ArrayRef<ArgumentValue> PrevArgs, SmallVectorImpl<char> &Output, void *Cookie, ArrayRef<intptr_t> QualTypeVals);
void *ArgToStringCookie = nullptr; ArgToStringFnTy ArgToStringFn;
/// ID of the "delayed" diagnostic, which is a (typically /// fatal) diagnostic that had to be delayed because it was found /// while emitting another diagnostic. unsigned DelayedDiagID;
/// First string argument for the delayed diagnostic. std::string DelayedDiagArg1;
/// Second string argument for the delayed diagnostic. std::string DelayedDiagArg2;
/// Third string argument for the delayed diagnostic. std::string DelayedDiagArg3;
/// Optional flag value. /// /// Some flags accept values, for instance: -Wframe-larger-than=<value> and /// -Rpass=<value>. The content of this string is emitted after the flag name /// and '='. std::string FlagValue;
public: explicit DiagnosticsEngine(IntrusiveRefCntPtr<DiagnosticIDs> Diags, IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts, DiagnosticConsumer *client = nullptr, bool ShouldOwnClient = true); DiagnosticsEngine(const DiagnosticsEngine &) = delete; DiagnosticsEngine &operator=(const DiagnosticsEngine &) = delete; ~DiagnosticsEngine();
friend void DiagnosticsTestHelper(DiagnosticsEngine &); LLVM_DUMP_METHOD void dump() const; LLVM_DUMP_METHOD void dump(StringRef DiagName) const;
const IntrusiveRefCntPtr<DiagnosticIDs> &getDiagnosticIDs() const { return Diags; }
/// Retrieve the diagnostic options. DiagnosticOptions &getDiagnosticOptions() const { return *DiagOpts; }
using diag_mapping_range = llvm::iterator_range<DiagState::const_iterator>;
/// Get the current set of diagnostic mappings. diag_mapping_range getDiagnosticMappings() const { const DiagState &DS = *GetCurDiagState(); return diag_mapping_range(DS.begin(), DS.end()); }
DiagnosticConsumer *getClient() { return Client; } const DiagnosticConsumer *getClient() const { return Client; }
/// Determine whether this \c DiagnosticsEngine object own its client. bool ownsClient() const { return Owner != nullptr; }
/// Return the current diagnostic client along with ownership of that /// client. std::unique_ptr<DiagnosticConsumer> takeClient() { return std::move(Owner); }
bool hasSourceManager() const { return SourceMgr != nullptr; }
SourceManager &getSourceManager() const { assert(SourceMgr && "SourceManager not set!"); return *SourceMgr; }
void setSourceManager(SourceManager *SrcMgr) { assert(DiagStatesByLoc.empty() && "Leftover diag state from a different SourceManager."); SourceMgr = SrcMgr; }
//===--------------------------------------------------------------------===// // DiagnosticsEngine characterization methods, used by a client to customize // how diagnostics are emitted. //
/// Copies the current DiagMappings and pushes the new copy /// onto the top of the stack. void pushMappings(SourceLocation Loc);
/// Pops the current DiagMappings off the top of the stack, /// causing the new top of the stack to be the active mappings. /// /// \returns \c true if the pop happens, \c false if there is only one /// DiagMapping on the stack. bool popMappings(SourceLocation Loc);
/// Set the diagnostic client associated with this diagnostic object. /// /// \param ShouldOwnClient true if the diagnostic object should take /// ownership of \c client. void setClient(DiagnosticConsumer *client, bool ShouldOwnClient = true);
/// Specify a limit for the number of errors we should /// emit before giving up. /// /// Zero disables the limit. void setErrorLimit(unsigned Limit) { ErrorLimit = Limit; }
/// Specify the maximum number of template instantiation /// notes to emit along with a given diagnostic. void setTemplateBacktraceLimit(unsigned Limit) { TemplateBacktraceLimit = Limit; }
/// Retrieve the maximum number of template instantiation /// notes to emit along with a given diagnostic. unsigned getTemplateBacktraceLimit() const { return TemplateBacktraceLimit; }
/// Specify the maximum number of constexpr evaluation /// notes to emit along with a given diagnostic. void setConstexprBacktraceLimit(unsigned Limit) { ConstexprBacktraceLimit = Limit; }
/// Retrieve the maximum number of constexpr evaluation /// notes to emit along with a given diagnostic. unsigned getConstexprBacktraceLimit() const { return ConstexprBacktraceLimit; }
/// When set to true, any unmapped warnings are ignored. /// /// If this and WarningsAsErrors are both set, then this one wins. void setIgnoreAllWarnings(bool Val) { GetCurDiagState()->IgnoreAllWarnings = Val; } bool getIgnoreAllWarnings() const { return GetCurDiagState()->IgnoreAllWarnings; }
/// When set to true, any unmapped ignored warnings are no longer /// ignored. /// /// If this and IgnoreAllWarnings are both set, then that one wins. void setEnableAllWarnings(bool Val) { GetCurDiagState()->EnableAllWarnings = Val; } bool getEnableAllWarnings() const { return GetCurDiagState()->EnableAllWarnings; }
/// When set to true, any warnings reported are issued as errors. void setWarningsAsErrors(bool Val) { GetCurDiagState()->WarningsAsErrors = Val; } bool getWarningsAsErrors() const { return GetCurDiagState()->WarningsAsErrors; }
/// When set to true, any error reported is made a fatal error. void setErrorsAsFatal(bool Val) { GetCurDiagState()->ErrorsAsFatal = Val; } bool getErrorsAsFatal() const { return GetCurDiagState()->ErrorsAsFatal; }
/// \brief When set to true, any fatal error reported is made an error. /// /// This setting takes precedence over the setErrorsAsFatal setting above. void setFatalsAsError(bool Val) { FatalsAsError = Val; } bool getFatalsAsError() const { return FatalsAsError; }
/// When set to true mask warnings that come from system headers. void setSuppressSystemWarnings(bool Val) { GetCurDiagState()->SuppressSystemWarnings = Val; } bool getSuppressSystemWarnings() const { return GetCurDiagState()->SuppressSystemWarnings; }
/// Suppress all diagnostics, to silence the front end when we /// know that we don't want any more diagnostics to be passed along to the /// client void setSuppressAllDiagnostics(bool Val) { SuppressAllDiagnostics = Val; } bool getSuppressAllDiagnostics() const { return SuppressAllDiagnostics; }
/// Set type eliding, to skip outputting same types occurring in /// template types. void setElideType(bool Val) { ElideType = Val; } bool getElideType() { return ElideType; }
/// Set tree printing, to outputting the template difference in a /// tree format. void setPrintTemplateTree(bool Val) { PrintTemplateTree = Val; } bool getPrintTemplateTree() { return PrintTemplateTree; }
/// Set color printing, so the type diffing will inject color markers /// into the output. void setShowColors(bool Val) { ShowColors = Val; } bool getShowColors() { return ShowColors; }
/// Specify which overload candidates to show when overload resolution /// fails. /// /// By default, we show all candidates. void setShowOverloads(OverloadsShown Val) { ShowOverloads = Val; } OverloadsShown getShowOverloads() const { return ShowOverloads; }
/// When a call or operator fails, print out up to this many candidate /// overloads as suggestions. /// /// With Ovl_Best, we set a high limit for the first nontrivial overload set /// we print, and a lower limit for later sets. This way the user has a /// chance of diagnosing at least one callsite in their program without /// having to recompile with -fshow-overloads=all. unsigned getNumOverloadCandidatesToShow() const { switch (getShowOverloads()) { case Ovl_All: // INT_MAX rather than UINT_MAX so that we don't have to think about the // effect of implicit conversions on this value. In practice we'll never // hit 2^31 candidates anyway. return std::numeric_limits<int>::max(); case Ovl_Best: return NumOverloadsToShow; } llvm_unreachable("invalid OverloadsShown kind"); }
/// Call this after showing N overload candidates. This influences the value /// returned by later calls to getNumOverloadCandidatesToShow(). void overloadCandidatesShown(unsigned N) { // Current heuristic: Start out with a large value for NumOverloadsToShow, // and then once we print one nontrivially-large overload set, decrease it // for future calls. if (N > 4) { NumOverloadsToShow = 4; } }
/// Pretend that the last diagnostic issued was ignored, so any /// subsequent notes will be suppressed, or restore a prior ignoring /// state after ignoring some diagnostics and their notes, possibly in /// the middle of another diagnostic. /// /// This can be used by clients who suppress diagnostics themselves. void setLastDiagnosticIgnored(bool Ignored) { if (LastDiagLevel == DiagnosticIDs::Fatal) FatalErrorOccurred = true; LastDiagLevel = Ignored ? DiagnosticIDs::Ignored : DiagnosticIDs::Warning; }
/// Determine whether the previous diagnostic was ignored. This can /// be used by clients that want to determine whether notes attached to a /// diagnostic will be suppressed. bool isLastDiagnosticIgnored() const { return LastDiagLevel == DiagnosticIDs::Ignored; }
/// Controls whether otherwise-unmapped extension diagnostics are /// mapped onto ignore/warning/error. /// /// This corresponds to the GCC -pedantic and -pedantic-errors option. void setExtensionHandlingBehavior(diag::Severity H) { GetCurDiagState()->ExtBehavior = H; } diag::Severity getExtensionHandlingBehavior() const { return GetCurDiagState()->ExtBehavior; }
/// Counter bumped when an __extension__ block is/ encountered. /// /// When non-zero, all extension diagnostics are entirely silenced, no /// matter how they are mapped. void IncrementAllExtensionsSilenced() { ++AllExtensionsSilenced; } void DecrementAllExtensionsSilenced() { --AllExtensionsSilenced; } bool hasAllExtensionsSilenced() { return AllExtensionsSilenced != 0; }
/// This allows the client to specify that certain warnings are /// ignored. /// /// Notes can never be mapped, errors can only be mapped to fatal, and /// WARNINGs and EXTENSIONs can be mapped arbitrarily. /// /// \param Loc The source location that this change of diagnostic state should /// take affect. It can be null if we are setting the latest state. void setSeverity(diag::kind Diag, diag::Severity Map, SourceLocation Loc);
/// Change an entire diagnostic group (e.g. "unknown-pragmas") to /// have the specified mapping. /// /// \returns true (and ignores the request) if "Group" was unknown, false /// otherwise. /// /// \param Flavor The flavor of group to affect. -Rfoo does not affect the /// state of the -Wfoo group and vice versa. /// /// \param Loc The source location that this change of diagnostic state should /// take affect. It can be null if we are setting the state from command-line. bool setSeverityForGroup(diag::Flavor Flavor, StringRef Group, diag::Severity Map, SourceLocation Loc = SourceLocation()); bool setSeverityForGroup(diag::Flavor Flavor, diag::Group Group, diag::Severity Map, SourceLocation Loc = SourceLocation());
/// Set the warning-as-error flag for the given diagnostic group. /// /// This function always only operates on the current diagnostic state. /// /// \returns True if the given group is unknown, false otherwise. bool setDiagnosticGroupWarningAsError(StringRef Group, bool Enabled);
/// Set the error-as-fatal flag for the given diagnostic group. /// /// This function always only operates on the current diagnostic state. /// /// \returns True if the given group is unknown, false otherwise. bool setDiagnosticGroupErrorAsFatal(StringRef Group, bool Enabled);
/// Add the specified mapping to all diagnostics of the specified /// flavor. /// /// Mainly to be used by -Wno-everything to disable all warnings but allow /// subsequent -W options to enable specific warnings. void setSeverityForAll(diag::Flavor Flavor, diag::Severity Map, SourceLocation Loc = SourceLocation());
bool hasErrorOccurred() const { return ErrorOccurred; }
/// Errors that actually prevent compilation, not those that are /// upgraded from a warning by -Werror. bool hasUncompilableErrorOccurred() const { return UncompilableErrorOccurred; } bool hasFatalErrorOccurred() const { return FatalErrorOccurred; }
/// Determine whether any kind of unrecoverable error has occurred. bool hasUnrecoverableErrorOccurred() const { return FatalErrorOccurred || UnrecoverableErrorOccurred; }
unsigned getNumErrors() const { return NumErrors; } unsigned getNumWarnings() const { return NumWarnings; }
void setNumWarnings(unsigned NumWarnings) { this->NumWarnings = NumWarnings; }
/// Return an ID for a diagnostic with the specified format string and /// level. /// /// If this is the first request for this diagnostic, it is registered and /// created, otherwise the existing ID is returned. /// /// \param FormatString A fixed diagnostic format string that will be hashed /// and mapped to a unique DiagID. template <unsigned N> unsigned getCustomDiagID(Level L, const char (&FormatString)[N]) { return Diags->getCustomDiagID((DiagnosticIDs::Level)L, StringRef(FormatString, N - 1)); }
/// Converts a diagnostic argument (as an intptr_t) into the string /// that represents it. void ConvertArgToString(ArgumentKind Kind, intptr_t Val, StringRef Modifier, StringRef Argument, ArrayRef<ArgumentValue> PrevArgs, SmallVectorImpl<char> &Output, ArrayRef<intptr_t> QualTypeVals) const { ArgToStringFn(Kind, Val, Modifier, Argument, PrevArgs, Output, ArgToStringCookie, QualTypeVals); }
void SetArgToStringFn(ArgToStringFnTy Fn, void *Cookie) { ArgToStringFn = Fn; ArgToStringCookie = Cookie; }
/// Note that the prior diagnostic was emitted by some other /// \c DiagnosticsEngine, and we may be attaching a note to that diagnostic. void notePriorDiagnosticFrom(const DiagnosticsEngine &Other) { LastDiagLevel = Other.LastDiagLevel; }
/// Reset the state of the diagnostic object to its initial configuration. /// \param[in] soft - if true, doesn't reset the diagnostic mappings and state void Reset(bool soft = false);
//===--------------------------------------------------------------------===// // DiagnosticsEngine classification and reporting interfaces. //
/// Determine whether the diagnostic is known to be ignored. /// /// This can be used to opportunistically avoid expensive checks when it's /// known for certain that the diagnostic has been suppressed at the /// specified location \p Loc. /// /// \param Loc The source location we are interested in finding out the /// diagnostic state. Can be null in order to query the latest state. bool isIgnored(unsigned DiagID, SourceLocation Loc) const { return Diags->getDiagnosticSeverity(DiagID, Loc, *this) == diag::Severity::Ignored; }
/// Based on the way the client configured the DiagnosticsEngine /// object, classify the specified diagnostic ID into a Level, consumable by /// the DiagnosticConsumer. /// /// To preserve invariant assumptions, this function should not be used to /// influence parse or semantic analysis actions. Instead consider using /// \c isIgnored(). /// /// \param Loc The source location we are interested in finding out the /// diagnostic state. Can be null in order to query the latest state. Level getDiagnosticLevel(unsigned DiagID, SourceLocation Loc) const { return (Level)Diags->getDiagnosticLevel(DiagID, Loc, *this); }
/// Issue the message to the client. /// /// This actually returns an instance of DiagnosticBuilder which emits the /// diagnostics (through @c ProcessDiag) when it is destroyed. /// /// \param DiagID A member of the @c diag::kind enum. /// \param Loc Represents the source location associated with the diagnostic, /// which can be an invalid location if no position information is available. inline DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID); inline DiagnosticBuilder Report(unsigned DiagID);
void Report(const StoredDiagnostic &storedDiag);
/// Determine whethere there is already a diagnostic in flight. bool isDiagnosticInFlight() const { return CurDiagID != std::numeric_limits<unsigned>::max(); }
/// Set the "delayed" diagnostic that will be emitted once /// the current diagnostic completes. /// /// If a diagnostic is already in-flight but the front end must /// report a problem (e.g., with an inconsistent file system /// state), this routine sets a "delayed" diagnostic that will be /// emitted after the current diagnostic completes. This should /// only be used for fatal errors detected at inconvenient /// times. If emitting a delayed diagnostic causes a second delayed /// diagnostic to be introduced, that second delayed diagnostic /// will be ignored. /// /// \param DiagID The ID of the diagnostic being delayed. /// /// \param Arg1 A string argument that will be provided to the /// diagnostic. A copy of this string will be stored in the /// DiagnosticsEngine object itself. /// /// \param Arg2 A string argument that will be provided to the /// diagnostic. A copy of this string will be stored in the /// DiagnosticsEngine object itself. /// /// \param Arg3 A string argument that will be provided to the /// diagnostic. A copy of this string will be stored in the /// DiagnosticsEngine object itself. void SetDelayedDiagnostic(unsigned DiagID, StringRef Arg1 = "", StringRef Arg2 = "", StringRef Arg3 = "");
/// Clear out the current diagnostic. void Clear() { CurDiagID = std::numeric_limits<unsigned>::max(); }
/// Return the value associated with this diagnostic flag. StringRef getFlagValue() const { return FlagValue; }
private: // This is private state used by DiagnosticBuilder. We put it here instead of // in DiagnosticBuilder in order to keep DiagnosticBuilder a small lightweight // object. This implementation choice means that we can only have one // diagnostic "in flight" at a time, but this seems to be a reasonable // tradeoff to keep these objects small. Assertions verify that only one // diagnostic is in flight at a time. friend class Diagnostic; friend class DiagnosticBuilder; friend class DiagnosticErrorTrap; friend class DiagnosticIDs; friend class PartialDiagnostic;
/// Report the delayed diagnostic. void ReportDelayed();
/// The location of the current diagnostic that is in flight. SourceLocation CurDiagLoc;
/// The ID of the current diagnostic that is in flight. /// /// This is set to std::numeric_limits<unsigned>::max() when there is no /// diagnostic in flight. unsigned CurDiagID;
enum { /// The maximum number of arguments we can hold. /// /// We currently only support up to 10 arguments (%0-%9). A single /// diagnostic with more than that almost certainly has to be simplified /// anyway. MaxArguments = DiagnosticStorage::MaxArguments, };
DiagnosticStorage DiagStorage;
DiagnosticMapping makeUserMapping(diag::Severity Map, SourceLocation L) { bool isPragma = L.isValid(); DiagnosticMapping Mapping = DiagnosticMapping::Make(Map, /*IsUser=*/true, isPragma);
// If this is a pragma mapping, then set the diagnostic mapping flags so // that we override command line options. if (isPragma) { Mapping.setNoWarningAsError(true); Mapping.setNoErrorAsFatal(true); }
return Mapping; }
/// Used to report a diagnostic that is finally fully formed. /// /// \returns true if the diagnostic was emitted, false if it was suppressed. bool ProcessDiag() { return Diags->ProcessDiag(*this); }
/// @name Diagnostic Emission /// @{ protected: friend class ASTReader; friend class ASTWriter;
// Sema requires access to the following functions because the current design // of SFINAE requires it to use its own SemaDiagnosticBuilder, which needs to // access us directly to ensure we minimize the emitted code for the common // Sema::Diag() patterns. friend class Sema;
/// Emit the current diagnostic and clear the diagnostic state. /// /// \param Force Emit the diagnostic regardless of suppression settings. bool EmitCurrentDiagnostic(bool Force = false);
unsigned getCurrentDiagID() const { return CurDiagID; }
SourceLocation getCurrentDiagLoc() const { return CurDiagLoc; }
/// @} };
/// RAII class that determines when any errors have occurred /// between the time the instance was created and the time it was /// queried. /// /// Note that you almost certainly do not want to use this. It's usually /// meaningless to ask whether a particular scope triggered an error message, /// because error messages outside that scope can mark things invalid (or cause /// us to reach an error limit), which can suppress errors within that scope. class DiagnosticErrorTrap { DiagnosticsEngine &Diag; unsigned NumErrors; unsigned NumUnrecoverableErrors;
public: explicit DiagnosticErrorTrap(DiagnosticsEngine &Diag) : Diag(Diag) { reset(); }
/// Determine whether any errors have occurred since this /// object instance was created. bool hasErrorOccurred() const { return Diag.TrapNumErrorsOccurred > NumErrors; }
/// Determine whether any unrecoverable errors have occurred since this /// object instance was created. bool hasUnrecoverableErrorOccurred() const { return Diag.TrapNumUnrecoverableErrorsOccurred > NumUnrecoverableErrors; }
/// Set to initial state of "no errors occurred". void reset() { NumErrors = Diag.TrapNumErrorsOccurred; NumUnrecoverableErrors = Diag.TrapNumUnrecoverableErrorsOccurred; } };
/// The streaming interface shared between DiagnosticBuilder and /// PartialDiagnostic. This class is not intended to be constructed directly /// but only as base class of DiagnosticBuilder and PartialDiagnostic builder. /// /// Any new type of argument accepted by DiagnosticBuilder and PartialDiagnostic /// should be implemented as a '<<' operator of StreamingDiagnostic, e.g. /// /// const StreamingDiagnostic& /// operator<<(const StreamingDiagnostic&, NewArgType); /// class StreamingDiagnostic { public: /// An allocator for DiagnosticStorage objects, which uses a small cache to /// objects, used to reduce malloc()/free() traffic for partial diagnostics. class DiagStorageAllocator { static const unsigned NumCached = 16; DiagnosticStorage Cached[NumCached]; DiagnosticStorage *FreeList[NumCached]; unsigned NumFreeListEntries;
public: DiagStorageAllocator(); ~DiagStorageAllocator();
/// Allocate new storage. DiagnosticStorage *Allocate() { if (NumFreeListEntries == 0) return new DiagnosticStorage;
DiagnosticStorage *Result = FreeList[--NumFreeListEntries]; Result->NumDiagArgs = 0; Result->DiagRanges.clear(); Result->FixItHints.clear(); return Result; }
/// Free the given storage object. void Deallocate(DiagnosticStorage *S) { if (S >= Cached && S <= Cached + NumCached) { FreeList[NumFreeListEntries++] = S; return; }
delete S; } };
protected: mutable DiagnosticStorage *DiagStorage = nullptr;
/// Allocator used to allocate storage for this diagnostic. DiagStorageAllocator *Allocator = nullptr;
public: /// Retrieve storage for this particular diagnostic. DiagnosticStorage *getStorage() const { if (DiagStorage) return DiagStorage;
assert(Allocator); DiagStorage = Allocator->Allocate(); return DiagStorage; }
void freeStorage() { if (!DiagStorage) return;
// The hot path for PartialDiagnostic is when we just used it to wrap an ID // (typically so we have the flexibility of passing a more complex // diagnostic into the callee, but that does not commonly occur). // // Split this out into a slow function for silly compilers (*cough*) which // can't do decent partial inlining. freeStorageSlow(); }
void freeStorageSlow() { if (!Allocator) return; Allocator->Deallocate(DiagStorage); DiagStorage = nullptr; }
void AddTaggedVal(uint64_t V, DiagnosticsEngine::ArgumentKind Kind) const { if (!DiagStorage) DiagStorage = getStorage();
assert(DiagStorage->NumDiagArgs < DiagnosticStorage::MaxArguments && "Too many arguments to diagnostic!"); DiagStorage->DiagArgumentsKind[DiagStorage->NumDiagArgs] = Kind; DiagStorage->DiagArgumentsVal[DiagStorage->NumDiagArgs++] = V; }
void AddString(StringRef V) const { if (!DiagStorage) DiagStorage = getStorage();
assert(DiagStorage->NumDiagArgs < DiagnosticStorage::MaxArguments && "Too many arguments to diagnostic!"); DiagStorage->DiagArgumentsKind[DiagStorage->NumDiagArgs] = DiagnosticsEngine::ak_std_string; DiagStorage->DiagArgumentsStr[DiagStorage->NumDiagArgs++] = std::string(V); }
void AddSourceRange(const CharSourceRange &R) const { if (!DiagStorage) DiagStorage = getStorage();
DiagStorage->DiagRanges.push_back(R); }
void AddFixItHint(const FixItHint &Hint) const { if (Hint.isNull()) return;
if (!DiagStorage) DiagStorage = getStorage();
DiagStorage->FixItHints.push_back(Hint); }
/// Conversion of StreamingDiagnostic to bool always returns \c true. /// /// This allows is to be used in boolean error contexts (where \c true is /// used to indicate that an error has occurred), like: /// \code /// return Diag(...); /// \endcode operator bool() const { return true; }
protected: StreamingDiagnostic() = default;
/// Construct with an external storage not owned by itself. The allocator /// is a null pointer in this case. explicit StreamingDiagnostic(DiagnosticStorage *Storage) : DiagStorage(Storage) {}
/// Construct with a storage allocator which will manage the storage. The /// allocator is not a null pointer in this case. explicit StreamingDiagnostic(DiagStorageAllocator &Alloc) : Allocator(&Alloc) {}
StreamingDiagnostic(const StreamingDiagnostic &Diag) = default; StreamingDiagnostic(StreamingDiagnostic &&Diag) = default;
~StreamingDiagnostic() { freeStorage(); } };
//===----------------------------------------------------------------------===// // DiagnosticBuilder //===----------------------------------------------------------------------===//
/// A little helper class used to produce diagnostics. /// /// This is constructed by the DiagnosticsEngine::Report method, and /// allows insertion of extra information (arguments and source ranges) into /// the currently "in flight" diagnostic. When the temporary for the builder /// is destroyed, the diagnostic is issued. /// /// Note that many of these will be created as temporary objects (many call /// sites), so we want them to be small and we never want their address taken. /// This ensures that compilers with somewhat reasonable optimizers will promote /// the common fields to registers, eliminating increments of the NumArgs field, /// for example. class DiagnosticBuilder : public StreamingDiagnostic { friend class DiagnosticsEngine; friend class PartialDiagnostic;
mutable DiagnosticsEngine *DiagObj = nullptr;
/// Status variable indicating if this diagnostic is still active. /// // NOTE: This field is redundant with DiagObj (IsActive iff (DiagObj == 0)), // but LLVM is not currently smart enough to eliminate the null check that // Emit() would end up with if we used that as our status variable. mutable bool IsActive = false;
/// Flag indicating that this diagnostic is being emitted via a /// call to ForceEmit. mutable bool IsForceEmit = false;
DiagnosticBuilder() = default;
explicit DiagnosticBuilder(DiagnosticsEngine *diagObj) : StreamingDiagnostic(&diagObj->DiagStorage), DiagObj(diagObj), IsActive(true) { assert(diagObj && "DiagnosticBuilder requires a valid DiagnosticsEngine!"); assert(DiagStorage && "DiagnosticBuilder requires a valid DiagnosticStorage!"); DiagStorage->NumDiagArgs = 0; DiagStorage->DiagRanges.clear(); DiagStorage->FixItHints.clear(); }
protected: /// Clear out the current diagnostic. void Clear() const { DiagObj = nullptr; IsActive = false; IsForceEmit = false; }
/// Determine whether this diagnostic is still active. bool isActive() const { return IsActive; }
/// Force the diagnostic builder to emit the diagnostic now. /// /// Once this function has been called, the DiagnosticBuilder object /// should not be used again before it is destroyed. /// /// \returns true if a diagnostic was emitted, false if the /// diagnostic was suppressed. bool Emit() { // If this diagnostic is inactive, then its soul was stolen by the copy ctor // (or by a subclass, as in SemaDiagnosticBuilder). if (!isActive()) return false;
// Process the diagnostic. bool Result = DiagObj->EmitCurrentDiagnostic(IsForceEmit);
// This diagnostic is dead. Clear();
return Result; }
public: /// Copy constructor. When copied, this "takes" the diagnostic info from the /// input and neuters it. DiagnosticBuilder(const DiagnosticBuilder &D) : StreamingDiagnostic() { DiagObj = D.DiagObj; DiagStorage = D.DiagStorage; IsActive = D.IsActive; IsForceEmit = D.IsForceEmit; D.Clear(); }
template <typename T> const DiagnosticBuilder &operator<<(const T &V) const { assert(isActive() && "Clients must not add to cleared diagnostic!"); const StreamingDiagnostic &DB = *this; DB << V; return *this; }
// It is necessary to limit this to rvalue reference to avoid calling this // function with a bitfield lvalue argument since non-const reference to // bitfield is not allowed. template <typename T, typename = std::enable_if_t<!std::is_lvalue_reference<T>::value>> const DiagnosticBuilder &operator<<(T &&V) const { assert(isActive() && "Clients must not add to cleared diagnostic!"); const StreamingDiagnostic &DB = *this; DB << std::move(V); return *this; }
DiagnosticBuilder &operator=(const DiagnosticBuilder &) = delete;
/// Emits the diagnostic. ~DiagnosticBuilder() { Emit(); }
/// Forces the diagnostic to be emitted. const DiagnosticBuilder &setForceEmit() const { IsForceEmit = true; return *this; }
void addFlagValue(StringRef V) const { DiagObj->FlagValue = std::string(V); } };
struct AddFlagValue { StringRef Val;
explicit AddFlagValue(StringRef V) : Val(V) {} };
/// Register a value for the flag in the current diagnostic. This /// value will be shown as the suffix "=value" after the flag name. It is /// useful in cases where the diagnostic flag accepts values (e.g., /// -Rpass or -Wframe-larger-than). inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, const AddFlagValue V) { DB.addFlagValue(V.Val); return DB; }
inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB, StringRef S) { DB.AddString(S); return DB; }
inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB, const char *Str) { DB.AddTaggedVal(reinterpret_cast<intptr_t>(Str), DiagnosticsEngine::ak_c_string); return DB; }
inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB, int I) { DB.AddTaggedVal(I, DiagnosticsEngine::ak_sint); return DB; }
inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB, long I) { DB.AddTaggedVal(I, DiagnosticsEngine::ak_sint); return DB; }
inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB, long long I) { DB.AddTaggedVal(I, DiagnosticsEngine::ak_sint); return DB; }
// We use enable_if here to prevent that this overload is selected for // pointers or other arguments that are implicitly convertible to bool. template <typename T> inline std::enable_if_t<std::is_same<T, bool>::value, const StreamingDiagnostic &> operator<<(const StreamingDiagnostic &DB, T I) { DB.AddTaggedVal(I, DiagnosticsEngine::ak_sint); return DB; }
inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB, unsigned I) { DB.AddTaggedVal(I, DiagnosticsEngine::ak_uint); return DB; }
inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB, unsigned long I) { DB.AddTaggedVal(I, DiagnosticsEngine::ak_uint); return DB; }
inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB, unsigned long long I) { DB.AddTaggedVal(I, DiagnosticsEngine::ak_uint); return DB; }
inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB, tok::TokenKind I) { DB.AddTaggedVal(static_cast<unsigned>(I), DiagnosticsEngine::ak_tokenkind); return DB; }
inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB, const IdentifierInfo *II) { DB.AddTaggedVal(reinterpret_cast<intptr_t>(II), DiagnosticsEngine::ak_identifierinfo); return DB; }
// Adds a DeclContext to the diagnostic. The enable_if template magic is here // so that we only match those arguments that are (statically) DeclContexts; // other arguments that derive from DeclContext (e.g., RecordDecls) will not // match. template <typename T> inline std::enable_if_t< std::is_same<std::remove_const_t<T>, DeclContext>::value, const StreamingDiagnostic &> operator<<(const StreamingDiagnostic &DB, T *DC) { DB.AddTaggedVal(reinterpret_cast<intptr_t>(DC), DiagnosticsEngine::ak_declcontext); return DB; }
inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB, SourceLocation L) { DB.AddSourceRange(CharSourceRange::getTokenRange(L)); return DB; }
inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB, SourceRange R) { DB.AddSourceRange(CharSourceRange::getTokenRange(R)); return DB; }
inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB, ArrayRef<SourceRange> Ranges) { for (SourceRange R : Ranges) DB.AddSourceRange(CharSourceRange::getTokenRange(R)); return DB; }
inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB, const CharSourceRange &R) { DB.AddSourceRange(R); return DB; }
inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB, const FixItHint &Hint) { DB.AddFixItHint(Hint); return DB; }
inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB, ArrayRef<FixItHint> Hints) { for (const FixItHint &Hint : Hints) DB.AddFixItHint(Hint); return DB; }
inline const StreamingDiagnostic & operator<<(const StreamingDiagnostic &DB, const std::optional<SourceRange> &Opt) { if (Opt) DB << *Opt; return DB; }
inline const StreamingDiagnostic & operator<<(const StreamingDiagnostic &DB, const std::optional<CharSourceRange> &Opt) { if (Opt) DB << *Opt; return DB; }
inline const StreamingDiagnostic & operator<<(const StreamingDiagnostic &DB, const std::optional<FixItHint> &Opt) { if (Opt) DB << *Opt; return DB; }
/// A nullability kind paired with a bit indicating whether it used a /// context-sensitive keyword. using DiagNullabilityKind = std::pair<NullabilityKind, bool>;
const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB, DiagNullabilityKind nullability);
inline DiagnosticBuilder DiagnosticsEngine::Report(SourceLocation Loc, unsigned DiagID) { assert(CurDiagID == std::numeric_limits<unsigned>::max() && "Multiple diagnostics in flight at once!"); CurDiagLoc = Loc; CurDiagID = DiagID; FlagValue.clear(); return DiagnosticBuilder(this); }
const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB, llvm::Error &&E);
inline DiagnosticBuilder DiagnosticsEngine::Report(unsigned DiagID) { return Report(SourceLocation(), DiagID); }
//===----------------------------------------------------------------------===// // Diagnostic //===----------------------------------------------------------------------===//
/// A little helper class (which is basically a smart pointer that forwards /// info from DiagnosticsEngine) that allows clients to enquire about the /// currently in-flight diagnostic. class Diagnostic { const DiagnosticsEngine *DiagObj; std::optional<StringRef> StoredDiagMessage;
public: explicit Diagnostic(const DiagnosticsEngine *DO) : DiagObj(DO) {} Diagnostic(const DiagnosticsEngine *DO, StringRef storedDiagMessage) : DiagObj(DO), StoredDiagMessage(storedDiagMessage) {}
const DiagnosticsEngine *getDiags() const { return DiagObj; } unsigned getID() const { return DiagObj->CurDiagID; } const SourceLocation &getLocation() const { return DiagObj->CurDiagLoc; } bool hasSourceManager() const { return DiagObj->hasSourceManager(); } SourceManager &getSourceManager() const { return DiagObj->getSourceManager();}
unsigned getNumArgs() const { return DiagObj->DiagStorage.NumDiagArgs; }
/// Return the kind of the specified index. /// /// Based on the kind of argument, the accessors below can be used to get /// the value. /// /// \pre Idx < getNumArgs() DiagnosticsEngine::ArgumentKind getArgKind(unsigned Idx) const { assert(Idx < getNumArgs() && "Argument index out of range!"); return (DiagnosticsEngine::ArgumentKind) DiagObj->DiagStorage.DiagArgumentsKind[Idx]; }
/// Return the provided argument string specified by \p Idx. /// \pre getArgKind(Idx) == DiagnosticsEngine::ak_std_string const std::string &getArgStdStr(unsigned Idx) const { assert(getArgKind(Idx) == DiagnosticsEngine::ak_std_string && "invalid argument accessor!"); return DiagObj->DiagStorage.DiagArgumentsStr[Idx]; }
/// Return the specified C string argument. /// \pre getArgKind(Idx) == DiagnosticsEngine::ak_c_string const char *getArgCStr(unsigned Idx) const { assert(getArgKind(Idx) == DiagnosticsEngine::ak_c_string && "invalid argument accessor!"); return reinterpret_cast<const char *>( DiagObj->DiagStorage.DiagArgumentsVal[Idx]); }
/// Return the specified signed integer argument. /// \pre getArgKind(Idx) == DiagnosticsEngine::ak_sint int64_t getArgSInt(unsigned Idx) const { assert(getArgKind(Idx) == DiagnosticsEngine::ak_sint && "invalid argument accessor!"); return (int64_t)DiagObj->DiagStorage.DiagArgumentsVal[Idx]; }
/// Return the specified unsigned integer argument. /// \pre getArgKind(Idx) == DiagnosticsEngine::ak_uint uint64_t getArgUInt(unsigned Idx) const { assert(getArgKind(Idx) == DiagnosticsEngine::ak_uint && "invalid argument accessor!"); return DiagObj->DiagStorage.DiagArgumentsVal[Idx]; }
/// Return the specified IdentifierInfo argument. /// \pre getArgKind(Idx) == DiagnosticsEngine::ak_identifierinfo const IdentifierInfo *getArgIdentifier(unsigned Idx) const { assert(getArgKind(Idx) == DiagnosticsEngine::ak_identifierinfo && "invalid argument accessor!"); return reinterpret_cast<IdentifierInfo *>( DiagObj->DiagStorage.DiagArgumentsVal[Idx]); }
/// Return the specified non-string argument in an opaque form. /// \pre getArgKind(Idx) != DiagnosticsEngine::ak_std_string uint64_t getRawArg(unsigned Idx) const { assert(getArgKind(Idx) != DiagnosticsEngine::ak_std_string && "invalid argument accessor!"); return DiagObj->DiagStorage.DiagArgumentsVal[Idx]; }
/// Return the number of source ranges associated with this diagnostic. unsigned getNumRanges() const { return DiagObj->DiagStorage.DiagRanges.size(); }
/// \pre Idx < getNumRanges() const CharSourceRange &getRange(unsigned Idx) const { assert(Idx < getNumRanges() && "Invalid diagnostic range index!"); return DiagObj->DiagStorage.DiagRanges[Idx]; }
/// Return an array reference for this diagnostic's ranges. ArrayRef<CharSourceRange> getRanges() const { return DiagObj->DiagStorage.DiagRanges; }
unsigned getNumFixItHints() const { return DiagObj->DiagStorage.FixItHints.size(); }
const FixItHint &getFixItHint(unsigned Idx) const { assert(Idx < getNumFixItHints() && "Invalid index!"); return DiagObj->DiagStorage.FixItHints[Idx]; }
ArrayRef<FixItHint> getFixItHints() const { return DiagObj->DiagStorage.FixItHints; }
/// Format this diagnostic into a string, substituting the /// formal arguments into the %0 slots. /// /// The result is appended onto the \p OutStr array. void FormatDiagnostic(SmallVectorImpl<char> &OutStr) const;
/// Format the given format-string into the output buffer using the /// arguments stored in this diagnostic. void FormatDiagnostic(const char *DiagStr, const char *DiagEnd, SmallVectorImpl<char> &OutStr) const; };
/** * Represents a diagnostic in a form that can be retained until its * corresponding source manager is destroyed. */ class StoredDiagnostic { unsigned ID; DiagnosticsEngine::Level Level; FullSourceLoc Loc; std::string Message; std::vector<CharSourceRange> Ranges; std::vector<FixItHint> FixIts;
public: StoredDiagnostic() = default; StoredDiagnostic(DiagnosticsEngine::Level Level, const Diagnostic &Info); StoredDiagnostic(DiagnosticsEngine::Level Level, unsigned ID, StringRef Message); StoredDiagnostic(DiagnosticsEngine::Level Level, unsigned ID, StringRef Message, FullSourceLoc Loc, ArrayRef<CharSourceRange> Ranges, ArrayRef<FixItHint> Fixits);
/// Evaluates true when this object stores a diagnostic. explicit operator bool() const { return !Message.empty(); }
unsigned getID() const { return ID; } DiagnosticsEngine::Level getLevel() const { return Level; } const FullSourceLoc &getLocation() const { return Loc; } StringRef getMessage() const { return Message; }
void setLocation(FullSourceLoc Loc) { this->Loc = Loc; }
using range_iterator = std::vector<CharSourceRange>::const_iterator;
range_iterator range_begin() const { return Ranges.begin(); } range_iterator range_end() const { return Ranges.end(); } unsigned range_size() const { return Ranges.size(); }
ArrayRef<CharSourceRange> getRanges() const { return llvm::ArrayRef(Ranges); }
using fixit_iterator = std::vector<FixItHint>::const_iterator;
fixit_iterator fixit_begin() const { return FixIts.begin(); } fixit_iterator fixit_end() const { return FixIts.end(); } unsigned fixit_size() const { return FixIts.size(); }
ArrayRef<FixItHint> getFixIts() const { return llvm::ArrayRef(FixIts); } };
// Simple debug printing of StoredDiagnostic. llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, const StoredDiagnostic &);
/// Abstract interface, implemented by clients of the front-end, which /// formats and prints fully processed diagnostics. class DiagnosticConsumer { protected: unsigned NumWarnings = 0; ///< Number of warnings reported unsigned NumErrors = 0; ///< Number of errors reported
public: DiagnosticConsumer() = default; virtual ~DiagnosticConsumer();
unsigned getNumErrors() const { return NumErrors; } unsigned getNumWarnings() const { return NumWarnings; } virtual void clear() { NumWarnings = NumErrors = 0; }
/// Callback to inform the diagnostic client that processing /// of a source file is beginning. /// /// Note that diagnostics may be emitted outside the processing of a source /// file, for example during the parsing of command line options. However, /// diagnostics with source range information are required to only be emitted /// in between BeginSourceFile() and EndSourceFile(). /// /// \param LangOpts The language options for the source file being processed. /// \param PP The preprocessor object being used for the source; this is /// optional, e.g., it may not be present when processing AST source files. virtual void BeginSourceFile(const LangOptions &LangOpts, const Preprocessor *PP = nullptr) {}
/// Callback to inform the diagnostic client that processing /// of a source file has ended. /// /// The diagnostic client should assume that any objects made available via /// BeginSourceFile() are inaccessible. virtual void EndSourceFile() {}
/// Callback to inform the diagnostic client that processing of all /// source files has ended. virtual void finish() {}
/// Indicates whether the diagnostics handled by this /// DiagnosticConsumer should be included in the number of diagnostics /// reported by DiagnosticsEngine. /// /// The default implementation returns true. virtual bool IncludeInDiagnosticCounts() const;
/// Handle this diagnostic, reporting it to the user or /// capturing it to a log as needed. /// /// The default implementation just keeps track of the total number of /// warnings and errors. virtual void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, const Diagnostic &Info); };
/// A diagnostic client that ignores all diagnostics. class IgnoringDiagConsumer : public DiagnosticConsumer { virtual void anchor();
void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, const Diagnostic &Info) override { // Just ignore it. } };
/// Diagnostic consumer that forwards diagnostics along to an /// existing, already-initialized diagnostic consumer. /// class ForwardingDiagnosticConsumer : public DiagnosticConsumer { DiagnosticConsumer &Target;
public: ForwardingDiagnosticConsumer(DiagnosticConsumer &Target) : Target(Target) {} ~ForwardingDiagnosticConsumer() override;
void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, const Diagnostic &Info) override; void clear() override;
bool IncludeInDiagnosticCounts() const override; };
// Struct used for sending info about how a type should be printed. struct TemplateDiffTypes { intptr_t FromType; intptr_t ToType; LLVM_PREFERRED_TYPE(bool) unsigned PrintTree : 1; LLVM_PREFERRED_TYPE(bool) unsigned PrintFromType : 1; LLVM_PREFERRED_TYPE(bool) unsigned ElideType : 1; LLVM_PREFERRED_TYPE(bool) unsigned ShowColors : 1;
// The printer sets this variable to true if the template diff was used. LLVM_PREFERRED_TYPE(bool) unsigned TemplateDiffUsed : 1; };
/// Special character that the diagnostic printer will use to toggle the bold /// attribute. The character itself will be not be printed. const char ToggleHighlight = 127;
/// ProcessWarningOptions - Initialize the diagnostic client and process the /// warning options specified on the command line. void ProcessWarningOptions(DiagnosticsEngine &Diags, const DiagnosticOptions &Opts, bool ReportDiags = true); void EscapeStringForDiagnostic(StringRef Str, SmallVectorImpl<char> &OutStr); } // namespace clang
#endif // LLVM_CLANG_BASIC_DIAGNOSTIC_H
|