Viewing file: ThreadSafetyTraverse.h (26.37 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- ThreadSafetyTraverse.h -----------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines a framework for doing generic traversals and rewriting // operations over the Thread Safety TIL. // // UNDER CONSTRUCTION. USE AT YOUR OWN RISK. // //===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTRAVERSE_H #define LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTRAVERSE_H
#include "clang/AST/Decl.h" #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" #include "clang/Analysis/Analyses/ThreadSafetyUtil.h" #include "clang/Basic/LLVM.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/Casting.h" #include <cstdint> #include <ostream>
namespace clang { namespace threadSafety { namespace til {
// Defines an interface used to traverse SExprs. Traversals have been made as // generic as possible, and are intended to handle any kind of pass over the // AST, e.g. visitors, copying, non-destructive rewriting, destructive // (in-place) rewriting, hashing, typing, etc. // // Traversals implement the functional notion of a "fold" operation on SExprs. // Each SExpr class provides a traverse method, which does the following: // * e->traverse(v): // // compute a result r_i for each subexpression e_i // for (i = 1..n) r_i = v.traverse(e_i); // // combine results into a result for e, where X is the class of e // return v.reduceX(*e, r_1, .. r_n). // // A visitor can control the traversal by overriding the following methods: // * v.traverse(e): // return v.traverseByCase(e), which returns v.traverseX(e) // * v.traverseX(e): (X is the class of e) // return e->traverse(v). // * v.reduceX(*e, r_1, .. r_n): // compute a result for a node of type X // // The reduceX methods control the kind of traversal (visitor, copy, etc.). // They are defined in derived classes. // // Class R defines the basic interface types (R_SExpr). template <class Self, class R> class Traversal { public: Self *self() { return static_cast<Self *>(this); }
// Traverse an expression -- returning a result of type R_SExpr. // Override this method to do something for every expression, regardless // of which kind it is. // E is a reference, so this can be use for in-place updates. // The type T must be a subclass of SExpr. template <class T> typename R::R_SExpr traverse(T* &E, typename R::R_Ctx Ctx) { return traverseSExpr(E, Ctx); }
// Override this method to do something for every expression. // Does not allow in-place updates. typename R::R_SExpr traverseSExpr(SExpr *E, typename R::R_Ctx Ctx) { return traverseByCase(E, Ctx); }
// Helper method to call traverseX(e) on the appropriate type. typename R::R_SExpr traverseByCase(SExpr *E, typename R::R_Ctx Ctx) { switch (E->opcode()) { #define TIL_OPCODE_DEF(X) \ case COP_##X: \ return self()->traverse##X(cast<X>(E), Ctx); #include "ThreadSafetyOps.def" #undef TIL_OPCODE_DEF } return self()->reduceNull(); }
// Traverse e, by static dispatch on the type "X" of e. // Override these methods to do something for a particular kind of term. #define TIL_OPCODE_DEF(X) \ typename R::R_SExpr traverse##X(X *e, typename R::R_Ctx Ctx) { \ return e->traverse(*self(), Ctx); \ } #include "ThreadSafetyOps.def" #undef TIL_OPCODE_DEF };
// Base class for simple reducers that don't much care about the context. class SimpleReducerBase { public: enum TraversalKind { // Ordinary subexpressions. TRV_Normal,
// Declarations (e.g. function bodies). TRV_Decl,
// Expressions that require lazy evaluation. TRV_Lazy,
// Type expressions. TRV_Type };
// R_Ctx defines a "context" for the traversal, which encodes information // about where a term appears. This can be used to encoding the // "current continuation" for CPS transforms, or other information. using R_Ctx = TraversalKind;
// Create context for an ordinary subexpression. R_Ctx subExprCtx(R_Ctx Ctx) { return TRV_Normal; }
// Create context for a subexpression that occurs in a declaration position // (e.g. function body). R_Ctx declCtx(R_Ctx Ctx) { return TRV_Decl; }
// Create context for a subexpression that occurs in a position that // should be reduced lazily. (e.g. code body). R_Ctx lazyCtx(R_Ctx Ctx) { return TRV_Lazy; }
// Create context for a subexpression that occurs in a type position. R_Ctx typeCtx(R_Ctx Ctx) { return TRV_Type; } };
// Base class for traversals that rewrite an SExpr to another SExpr. class CopyReducerBase : public SimpleReducerBase { public: // R_SExpr is the result type for a traversal. // A copy or non-destructive rewrite returns a newly allocated term. using R_SExpr = SExpr *; using R_BasicBlock = BasicBlock *;
// Container is a minimal interface used to store results when traversing // SExprs of variable arity, such as Phi, Goto, and SCFG. template <class T> class Container { public: // Allocate a new container with a capacity for n elements. Container(CopyReducerBase &S, unsigned N) : Elems(S.Arena, N) {}
// Push a new element onto the container. void push_back(T E) { Elems.push_back(E); }
SimpleArray<T> Elems; };
CopyReducerBase(MemRegionRef A) : Arena(A) {}
protected: MemRegionRef Arena; };
// Base class for visit traversals. class VisitReducerBase : public SimpleReducerBase { public: // A visitor returns a bool, representing success or failure. using R_SExpr = bool; using R_BasicBlock = bool;
// A visitor "container" is a single bool, which accumulates success. template <class T> class Container { public: bool Success = true;
Container(VisitReducerBase &S, unsigned N) {}
void push_back(bool E) { Success = Success && E; } }; };
// Implements a traversal that visits each subexpression, and returns either // true or false. template <class Self> class VisitReducer : public Traversal<Self, VisitReducerBase>, public VisitReducerBase { public: VisitReducer() = default;
public: R_SExpr reduceNull() { return true; } R_SExpr reduceUndefined(Undefined &Orig) { return true; } R_SExpr reduceWildcard(Wildcard &Orig) { return true; }
R_SExpr reduceLiteral(Literal &Orig) { return true; } template<class T> R_SExpr reduceLiteralT(LiteralT<T> &Orig) { return true; } R_SExpr reduceLiteralPtr(Literal &Orig) { return true; }
R_SExpr reduceFunction(Function &Orig, Variable *Nvd, R_SExpr E0) { return Nvd && E0; }
R_SExpr reduceSFunction(SFunction &Orig, Variable *Nvd, R_SExpr E0) { return Nvd && E0; }
R_SExpr reduceCode(Code &Orig, R_SExpr E0, R_SExpr E1) { return E0 && E1; }
R_SExpr reduceField(Field &Orig, R_SExpr E0, R_SExpr E1) { return E0 && E1; }
R_SExpr reduceApply(Apply &Orig, R_SExpr E0, R_SExpr E1) { return E0 && E1; }
R_SExpr reduceSApply(SApply &Orig, R_SExpr E0, R_SExpr E1) { return E0 && E1; }
R_SExpr reduceProject(Project &Orig, R_SExpr E0) { return E0; } R_SExpr reduceCall(Call &Orig, R_SExpr E0) { return E0; } R_SExpr reduceAlloc(Alloc &Orig, R_SExpr E0) { return E0; } R_SExpr reduceLoad(Load &Orig, R_SExpr E0) { return E0; } R_SExpr reduceStore(Store &Orig, R_SExpr E0, R_SExpr E1) { return E0 && E1; }
R_SExpr reduceArrayIndex(Store &Orig, R_SExpr E0, R_SExpr E1) { return E0 && E1; }
R_SExpr reduceArrayAdd(Store &Orig, R_SExpr E0, R_SExpr E1) { return E0 && E1; }
R_SExpr reduceUnaryOp(UnaryOp &Orig, R_SExpr E0) { return E0; }
R_SExpr reduceBinaryOp(BinaryOp &Orig, R_SExpr E0, R_SExpr E1) { return E0 && E1; }
R_SExpr reduceCast(Cast &Orig, R_SExpr E0) { return E0; }
R_SExpr reduceSCFG(SCFG &Orig, Container<BasicBlock *> Bbs) { return Bbs.Success; }
R_BasicBlock reduceBasicBlock(BasicBlock &Orig, Container<R_SExpr> &As, Container<R_SExpr> &Is, R_SExpr T) { return (As.Success && Is.Success && T); }
R_SExpr reducePhi(Phi &Orig, Container<R_SExpr> &As) { return As.Success; }
R_SExpr reduceGoto(Goto &Orig, BasicBlock *B) { return true; }
R_SExpr reduceBranch(Branch &O, R_SExpr C, BasicBlock *B0, BasicBlock *B1) { return C; }
R_SExpr reduceReturn(Return &O, R_SExpr E) { return E; }
R_SExpr reduceIdentifier(Identifier &Orig) { return true; }
R_SExpr reduceIfThenElse(IfThenElse &Orig, R_SExpr C, R_SExpr T, R_SExpr E) { return C && T && E; }
R_SExpr reduceLet(Let &Orig, Variable *Nvd, R_SExpr B) { return Nvd && B; }
Variable *enterScope(Variable &Orig, R_SExpr E0) { return &Orig; } void exitScope(const Variable &Orig) {} void enterCFG(SCFG &Cfg) {} void exitCFG(SCFG &Cfg) {} void enterBasicBlock(BasicBlock &BB) {} void exitBasicBlock(BasicBlock &BB) {}
Variable *reduceVariableRef(Variable *Ovd) { return Ovd; } BasicBlock *reduceBasicBlockRef(BasicBlock *Obb) { return Obb; }
public: bool traverse(SExpr *E, TraversalKind K = TRV_Normal) { Success = Success && this->traverseByCase(E); return Success; }
static bool visit(SExpr *E) { Self Visitor; return Visitor.traverse(E, TRV_Normal); }
private: bool Success; };
// Basic class for comparison operations over expressions. template <typename Self> class Comparator { protected: Self *self() { return reinterpret_cast<Self *>(this); }
public: bool compareByCase(const SExpr *E1, const SExpr* E2) { switch (E1->opcode()) { #define TIL_OPCODE_DEF(X) \ case COP_##X: \ return cast<X>(E1)->compare(cast<X>(E2), *self()); #include "ThreadSafetyOps.def" #undef TIL_OPCODE_DEF } return false; } };
class EqualsComparator : public Comparator<EqualsComparator> { public: // Result type for the comparison, e.g. bool for simple equality, // or int for lexigraphic comparison (-1, 0, 1). Must have one value which // denotes "true". using CType = bool;
CType trueResult() { return true; } bool notTrue(CType ct) { return !ct; }
bool compareIntegers(unsigned i, unsigned j) { return i == j; } bool compareStrings (StringRef s, StringRef r) { return s == r; } bool comparePointers(const void* P, const void* Q) { return P == Q; }
bool compare(const SExpr *E1, const SExpr* E2) { if (E1->opcode() != E2->opcode()) return false; return compareByCase(E1, E2); }
// TODO -- handle alpha-renaming of variables void enterScope(const Variable *V1, const Variable *V2) {} void leaveScope() {}
bool compareVariableRefs(const Variable *V1, const Variable *V2) { return V1 == V2; }
static bool compareExprs(const SExpr *E1, const SExpr* E2) { EqualsComparator Eq; return Eq.compare(E1, E2); } };
class MatchComparator : public Comparator<MatchComparator> { public: // Result type for the comparison, e.g. bool for simple equality, // or int for lexigraphic comparison (-1, 0, 1). Must have one value which // denotes "true". using CType = bool;
CType trueResult() { return true; } bool notTrue(CType ct) { return !ct; }
bool compareIntegers(unsigned i, unsigned j) { return i == j; } bool compareStrings (StringRef s, StringRef r) { return s == r; } bool comparePointers(const void *P, const void *Q) { return P == Q; }
bool compare(const SExpr *E1, const SExpr *E2) { // Wildcards match anything. if (E1->opcode() == COP_Wildcard || E2->opcode() == COP_Wildcard) return true; // otherwise normal equality. if (E1->opcode() != E2->opcode()) return false; return compareByCase(E1, E2); }
// TODO -- handle alpha-renaming of variables void enterScope(const Variable* V1, const Variable* V2) {} void leaveScope() {}
bool compareVariableRefs(const Variable* V1, const Variable* V2) { return V1 == V2; }
static bool compareExprs(const SExpr *E1, const SExpr* E2) { MatchComparator Matcher; return Matcher.compare(E1, E2); } };
// inline std::ostream& operator<<(std::ostream& SS, StringRef R) { // return SS.write(R.data(), R.size()); // }
// Pretty printer for TIL expressions template <typename Self, typename StreamType> class PrettyPrinter { private: // Print out additional information. bool Verbose;
// Omit redundant decls. bool Cleanup;
// Print exprs in C-like syntax. bool CStyle;
public: PrettyPrinter(bool V = false, bool C = true, bool CS = true) : Verbose(V), Cleanup(C), CStyle(CS) {}
static void print(const SExpr *E, StreamType &SS) { Self printer; printer.printSExpr(E, SS, Prec_MAX); }
protected: Self *self() { return reinterpret_cast<Self *>(this); }
void newline(StreamType &SS) { SS << "\n"; }
// TODO: further distinguish between binary operations. static const unsigned Prec_Atom = 0; static const unsigned Prec_Postfix = 1; static const unsigned Prec_Unary = 2; static const unsigned Prec_Binary = 3; static const unsigned Prec_Other = 4; static const unsigned Prec_Decl = 5; static const unsigned Prec_MAX = 6;
// Return the precedence of a given node, for use in pretty printing. unsigned precedence(const SExpr *E) { switch (E->opcode()) { case COP_Future: return Prec_Atom; case COP_Undefined: return Prec_Atom; case COP_Wildcard: return Prec_Atom;
case COP_Literal: return Prec_Atom; case COP_LiteralPtr: return Prec_Atom; case COP_Variable: return Prec_Atom; case COP_Function: return Prec_Decl; case COP_SFunction: return Prec_Decl; case COP_Code: return Prec_Decl; case COP_Field: return Prec_Decl;
case COP_Apply: return Prec_Postfix; case COP_SApply: return Prec_Postfix; case COP_Project: return Prec_Postfix;
case COP_Call: return Prec_Postfix; case COP_Alloc: return Prec_Other; case COP_Load: return Prec_Postfix; case COP_Store: return Prec_Other; case COP_ArrayIndex: return Prec_Postfix; case COP_ArrayAdd: return Prec_Postfix;
case COP_UnaryOp: return Prec_Unary; case COP_BinaryOp: return Prec_Binary; case COP_Cast: return Prec_Atom;
case COP_SCFG: return Prec_Decl; case COP_BasicBlock: return Prec_MAX; case COP_Phi: return Prec_Atom; case COP_Goto: return Prec_Atom; case COP_Branch: return Prec_Atom; case COP_Return: return Prec_Other;
case COP_Identifier: return Prec_Atom; case COP_IfThenElse: return Prec_Other; case COP_Let: return Prec_Decl; } return Prec_MAX; }
void printBlockLabel(StreamType & SS, const BasicBlock *BB, int index) { if (!BB) { SS << "BB_null"; return; } SS << "BB_"; SS << BB->blockID(); if (index >= 0) { SS << ":"; SS << index; } }
void printSExpr(const SExpr *E, StreamType &SS, unsigned P, bool Sub=true) { if (!E) { self()->printNull(SS); return; } if (Sub && E->block() && E->opcode() != COP_Variable) { SS << "_x" << E->id(); return; } if (self()->precedence(E) > P) { // Wrap expr in () if necessary. SS << "("; self()->printSExpr(E, SS, Prec_MAX); SS << ")"; return; }
switch (E->opcode()) { #define TIL_OPCODE_DEF(X) \ case COP_##X: \ self()->print##X(cast<X>(E), SS); \ return; #include "ThreadSafetyOps.def" #undef TIL_OPCODE_DEF } }
void printNull(StreamType &SS) { SS << "#null"; }
void printFuture(const Future *E, StreamType &SS) { self()->printSExpr(E->maybeGetResult(), SS, Prec_Atom); }
void printUndefined(const Undefined *E, StreamType &SS) { SS << "#undefined"; }
void printWildcard(const Wildcard *E, StreamType &SS) { SS << "*"; }
template<class T> void printLiteralT(const LiteralT<T> *E, StreamType &SS) { SS << E->value(); }
void printLiteralT(const LiteralT<uint8_t> *E, StreamType &SS) { SS << "'" << E->value() << "'"; }
void printLiteral(const Literal *E, StreamType &SS) { if (E->clangExpr()) { SS << getSourceLiteralString(E->clangExpr()); return; } else { ValueType VT = E->valueType(); switch (VT.Base) { case ValueType::BT_Void: SS << "void"; return; case ValueType::BT_Bool: if (E->as<bool>().value()) SS << "true"; else SS << "false"; return; case ValueType::BT_Int: switch (VT.Size) { case ValueType::ST_8: if (VT.Signed) printLiteralT(&E->as<int8_t>(), SS); else printLiteralT(&E->as<uint8_t>(), SS); return; case ValueType::ST_16: if (VT.Signed) printLiteralT(&E->as<int16_t>(), SS); else printLiteralT(&E->as<uint16_t>(), SS); return; case ValueType::ST_32: if (VT.Signed) printLiteralT(&E->as<int32_t>(), SS); else printLiteralT(&E->as<uint32_t>(), SS); return; case ValueType::ST_64: if (VT.Signed) printLiteralT(&E->as<int64_t>(), SS); else printLiteralT(&E->as<uint64_t>(), SS); return; default: break; } break; case ValueType::BT_Float: switch (VT.Size) { case ValueType::ST_32: printLiteralT(&E->as<float>(), SS); return; case ValueType::ST_64: printLiteralT(&E->as<double>(), SS); return; default: break; } break; case ValueType::BT_String: SS << "\""; printLiteralT(&E->as<StringRef>(), SS); SS << "\""; return; case ValueType::BT_Pointer: SS << "#ptr"; return; case ValueType::BT_ValueRef: SS << "#vref"; return; } } SS << "#lit"; }
void printLiteralPtr(const LiteralPtr *E, StreamType &SS) { if (const NamedDecl *D = E->clangDecl()) SS << D->getNameAsString(); else SS << "<temporary>"; }
void printVariable(const Variable *V, StreamType &SS, bool IsVarDecl=false) { if (CStyle && V->kind() == Variable::VK_SFun) SS << "this"; else SS << V->name() << V->id(); }
void printFunction(const Function *E, StreamType &SS, unsigned sugared = 0) { switch (sugared) { default: SS << "\\("; // Lambda break; case 1: SS << "("; // Slot declarations break; case 2: SS << ", "; // Curried functions break; } self()->printVariable(E->variableDecl(), SS, true); SS << ": "; self()->printSExpr(E->variableDecl()->definition(), SS, Prec_MAX);
const SExpr *B = E->body(); if (B && B->opcode() == COP_Function) self()->printFunction(cast<Function>(B), SS, 2); else { SS << ")"; self()->printSExpr(B, SS, Prec_Decl); } }
void printSFunction(const SFunction *E, StreamType &SS) { SS << "@"; self()->printVariable(E->variableDecl(), SS, true); SS << " "; self()->printSExpr(E->body(), SS, Prec_Decl); }
void printCode(const Code *E, StreamType &SS) { SS << ": "; self()->printSExpr(E->returnType(), SS, Prec_Decl-1); SS << " -> "; self()->printSExpr(E->body(), SS, Prec_Decl); }
void printField(const Field *E, StreamType &SS) { SS << ": "; self()->printSExpr(E->range(), SS, Prec_Decl-1); SS << " = "; self()->printSExpr(E->body(), SS, Prec_Decl); }
void printApply(const Apply *E, StreamType &SS, bool sugared = false) { const SExpr *F = E->fun(); if (F->opcode() == COP_Apply) { printApply(cast<Apply>(F), SS, true); SS << ", "; } else { self()->printSExpr(F, SS, Prec_Postfix); SS << "("; } self()->printSExpr(E->arg(), SS, Prec_MAX); if (!sugared) SS << ")$"; }
void printSApply(const SApply *E, StreamType &SS) { self()->printSExpr(E->sfun(), SS, Prec_Postfix); if (E->isDelegation()) { SS << "@("; self()->printSExpr(E->arg(), SS, Prec_MAX); SS << ")"; } }
void printProject(const Project *E, StreamType &SS) { if (CStyle) { // Omit the this-> if (const auto *SAP = dyn_cast<SApply>(E->record())) { if (const auto *V = dyn_cast<Variable>(SAP->sfun())) { if (!SAP->isDelegation() && V->kind() == Variable::VK_SFun) { SS << E->slotName(); return; } } } if (isa<Wildcard>(E->record())) { // handle existentials SS << "&"; SS << E->clangDecl()->getQualifiedNameAsString(); return; } } self()->printSExpr(E->record(), SS, Prec_Postfix); if (CStyle && E->isArrow()) SS << "->"; else SS << "."; SS << E->slotName(); }
void printCall(const Call *E, StreamType &SS) { const SExpr *T = E->target(); if (T->opcode() == COP_Apply) { self()->printApply(cast<Apply>(T), SS, true); SS << ")"; } else { self()->printSExpr(T, SS, Prec_Postfix); SS << "()"; } }
void printAlloc(const Alloc *E, StreamType &SS) { SS << "new "; self()->printSExpr(E->dataType(), SS, Prec_Other-1); }
void printLoad(const Load *E, StreamType &SS) { self()->printSExpr(E->pointer(), SS, Prec_Postfix); if (!CStyle) SS << "^"; }
void printStore(const Store *E, StreamType &SS) { self()->printSExpr(E->destination(), SS, Prec_Other-1); SS << " := "; self()->printSExpr(E->source(), SS, Prec_Other-1); }
void printArrayIndex(const ArrayIndex *E, StreamType &SS) { self()->printSExpr(E->array(), SS, Prec_Postfix); SS << "["; self()->printSExpr(E->index(), SS, Prec_MAX); SS << "]"; }
void printArrayAdd(const ArrayAdd *E, StreamType &SS) { self()->printSExpr(E->array(), SS, Prec_Postfix); SS << " + "; self()->printSExpr(E->index(), SS, Prec_Atom); }
void printUnaryOp(const UnaryOp *E, StreamType &SS) { SS << getUnaryOpcodeString(E->unaryOpcode()); self()->printSExpr(E->expr(), SS, Prec_Unary); }
void printBinaryOp(const BinaryOp *E, StreamType &SS) { self()->printSExpr(E->expr0(), SS, Prec_Binary-1); SS << " " << getBinaryOpcodeString(E->binaryOpcode()) << " "; self()->printSExpr(E->expr1(), SS, Prec_Binary-1); }
void printCast(const Cast *E, StreamType &SS) { if (!CStyle) { SS << "cast["; switch (E->castOpcode()) { case CAST_none: SS << "none"; break; case CAST_extendNum: SS << "extendNum"; break; case CAST_truncNum: SS << "truncNum"; break; case CAST_toFloat: SS << "toFloat"; break; case CAST_toInt: SS << "toInt"; break; case CAST_objToPtr: SS << "objToPtr"; break; } SS << "]("; self()->printSExpr(E->expr(), SS, Prec_Unary); SS << ")"; return; } self()->printSExpr(E->expr(), SS, Prec_Unary); }
void printSCFG(const SCFG *E, StreamType &SS) { SS << "CFG {\n"; for (const auto *BBI : *E) printBasicBlock(BBI, SS); SS << "}"; newline(SS); }
void printBBInstr(const SExpr *E, StreamType &SS) { bool Sub = false; if (E->opcode() == COP_Variable) { const auto *V = cast<Variable>(E); SS << "let " << V->name() << V->id() << " = "; E = V->definition(); Sub = true; } else if (E->opcode() != COP_Store) { SS << "let _x" << E->id() << " = "; } self()->printSExpr(E, SS, Prec_MAX, Sub); SS << ";"; newline(SS); }
void printBasicBlock(const BasicBlock *E, StreamType &SS) { SS << "BB_" << E->blockID() << ":"; if (E->parent()) SS << " BB_" << E->parent()->blockID(); newline(SS);
for (const auto *A : E->arguments()) printBBInstr(A, SS);
for (const auto *I : E->instructions()) printBBInstr(I, SS);
const SExpr *T = E->terminator(); if (T) { self()->printSExpr(T, SS, Prec_MAX, false); SS << ";"; newline(SS); } newline(SS); }
void printPhi(const Phi *E, StreamType &SS) { SS << "phi("; if (E->status() == Phi::PH_SingleVal) self()->printSExpr(E->values()[0], SS, Prec_MAX); else { unsigned i = 0; for (const auto *V : E->values()) { if (i++ > 0) SS << ", "; self()->printSExpr(V, SS, Prec_MAX); } } SS << ")"; }
void printGoto(const Goto *E, StreamType &SS) { SS << "goto "; printBlockLabel(SS, E->targetBlock(), E->index()); }
void printBranch(const Branch *E, StreamType &SS) { SS << "branch ("; self()->printSExpr(E->condition(), SS, Prec_MAX); SS << ") "; printBlockLabel(SS, E->thenBlock(), -1); SS << " "; printBlockLabel(SS, E->elseBlock(), -1); }
void printReturn(const Return *E, StreamType &SS) { SS << "return "; self()->printSExpr(E->returnValue(), SS, Prec_Other); }
void printIdentifier(const Identifier *E, StreamType &SS) { SS << E->name(); }
void printIfThenElse(const IfThenElse *E, StreamType &SS) { if (CStyle) { printSExpr(E->condition(), SS, Prec_Unary); SS << " ? "; printSExpr(E->thenExpr(), SS, Prec_Unary); SS << " : "; printSExpr(E->elseExpr(), SS, Prec_Unary); return; } SS << "if ("; printSExpr(E->condition(), SS, Prec_MAX); SS << ") then "; printSExpr(E->thenExpr(), SS, Prec_Other); SS << " else "; printSExpr(E->elseExpr(), SS, Prec_Other); }
void printLet(const Let *E, StreamType &SS) { SS << "let "; printVariable(E->variableDecl(), SS, true); SS << " = "; printSExpr(E->variableDecl()->definition(), SS, Prec_Decl-1); SS << "; "; printSExpr(E->body(), SS, Prec_Decl-1); } };
class StdPrinter : public PrettyPrinter<StdPrinter, std::ostream> {};
} // namespace til } // namespace threadSafety } // namespace clang
#endif // LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTRAVERSE_H
|