Viewing file: Dominators.h (9.79 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//- Dominators.h - Implementation of dominators tree for Clang CFG -*- C++ -*-// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the dominators tree functionality for Clang CFGs. // //===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_ANALYSIS_ANALYSES_DOMINATORS_H #define LLVM_CLANG_ANALYSIS_ANALYSES_DOMINATORS_H
#include "clang/Analysis/AnalysisDeclContext.h" #include "clang/Analysis/CFG.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/iterator.h" #include "llvm/Support/GenericIteratedDominanceFrontier.h" #include "llvm/Support/GenericDomTree.h" #include "llvm/Support/GenericDomTreeConstruction.h" #include "llvm/Support/raw_ostream.h"
// FIXME: There is no good reason for the domtree to require a print method // which accepts an LLVM Module, so remove this (and the method's argument that // needs it) when that is fixed.
namespace llvm {
class Module;
} // namespace llvm
namespace clang {
using DomTreeNode = llvm::DomTreeNodeBase<CFGBlock>;
/// Dominator tree builder for Clang's CFG based on llvm::DominatorTreeBase. template <bool IsPostDom> class CFGDominatorTreeImpl : public ManagedAnalysis { virtual void anchor();
public: using DominatorTreeBase = llvm::DominatorTreeBase<CFGBlock, IsPostDom>;
CFGDominatorTreeImpl() = default;
CFGDominatorTreeImpl(CFG *cfg) { buildDominatorTree(cfg); }
~CFGDominatorTreeImpl() override = default;
DominatorTreeBase &getBase() { return DT; }
CFG *getCFG() { return cfg; }
/// \returns the root CFGBlock of the dominators tree. CFGBlock *getRoot() const { return DT.getRoot(); }
/// \returns the root DomTreeNode, which is the wrapper for CFGBlock. DomTreeNode *getRootNode() { return DT.getRootNode(); }
/// Compares two dominator trees. /// \returns false if the other dominator tree matches this dominator tree, /// false otherwise. bool compare(CFGDominatorTreeImpl &Other) const { DomTreeNode *R = getRootNode(); DomTreeNode *OtherR = Other.getRootNode();
if (!R || !OtherR || R->getBlock() != OtherR->getBlock()) return true;
if (DT.compare(Other.getBase())) return true;
return false; }
/// Builds the dominator tree for a given CFG. void buildDominatorTree(CFG *cfg) { assert(cfg); this->cfg = cfg; DT.recalculate(*cfg); }
/// Dumps immediate dominators for each block. void dump() { llvm::errs() << "Immediate " << (IsPostDom ? "post " : "") << "dominance tree (Node#,IDom#):\n"; for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
assert(*I && "LLVM's Dominator tree builder uses nullpointers to signify the " "virtual root!");
DomTreeNode *IDom = DT.getNode(*I)->getIDom(); if (IDom && IDom->getBlock()) llvm::errs() << "(" << (*I)->getBlockID() << "," << IDom->getBlock()->getBlockID() << ")\n"; else { bool IsEntryBlock = *I == &(*I)->getParent()->getEntry(); bool IsExitBlock = *I == &(*I)->getParent()->getExit();
bool IsDomTreeRoot = !IDom && !IsPostDom && IsEntryBlock; bool IsPostDomTreeRoot = IDom && !IDom->getBlock() && IsPostDom && IsExitBlock;
assert((IsDomTreeRoot || IsPostDomTreeRoot) && "If the immediate dominator node is nullptr, the CFG block " "should be the exit point (since it's the root of the dominator " "tree), or if the CFG block it refers to is a nullpointer, it " "must be the entry block (since it's the root of the post " "dominator tree)");
(void)IsDomTreeRoot; (void)IsPostDomTreeRoot;
llvm::errs() << "(" << (*I)->getBlockID() << "," << (*I)->getBlockID() << ")\n"; } } }
/// Tests whether \p A dominates \p B. /// Note a block always dominates itself. bool dominates(const CFGBlock *A, const CFGBlock *B) const { return DT.dominates(A, B); }
/// Tests whether \p A properly dominates \p B. /// \returns false if \p A is the same block as \p B, otherwise whether A /// dominates B. bool properlyDominates(const CFGBlock *A, const CFGBlock *B) const { return DT.properlyDominates(A, B); }
/// \returns the nearest common dominator CFG block for CFG block \p A and \p /// B. If there is no such block then return NULL. CFGBlock *findNearestCommonDominator(CFGBlock *A, CFGBlock *B) { return DT.findNearestCommonDominator(A, B); }
const CFGBlock *findNearestCommonDominator(const CFGBlock *A, const CFGBlock *B) { return DT.findNearestCommonDominator(A, B); }
/// Update the dominator tree information when a node's immediate dominator /// changes. void changeImmediateDominator(CFGBlock *N, CFGBlock *NewIDom) { DT.changeImmediateDominator(N, NewIDom); }
/// Tests whether \p A is reachable from the entry block. bool isReachableFromEntry(const CFGBlock *A) { return DT.isReachableFromEntry(A); }
/// Releases the memory held by the dominator tree. virtual void releaseMemory() { DT.reset(); }
/// Converts the dominator tree to human readable form. virtual void print(raw_ostream &OS, const llvm::Module* M= nullptr) const { DT.print(OS); }
private: CFG *cfg; DominatorTreeBase DT; };
using CFGDomTree = CFGDominatorTreeImpl</*IsPostDom*/ false>; using CFGPostDomTree = CFGDominatorTreeImpl</*IsPostDom*/ true>;
template<> void CFGDominatorTreeImpl<true>::anchor(); template<> void CFGDominatorTreeImpl<false>::anchor();
} // end of namespace clang
namespace llvm { namespace IDFCalculatorDetail {
/// Specialize ChildrenGetterTy to skip nullpointer successors. template <bool IsPostDom> struct ChildrenGetterTy<clang::CFGBlock, IsPostDom> { using NodeRef = typename GraphTraits<clang::CFGBlock *>::NodeRef; using ChildrenTy = SmallVector<NodeRef, 8>;
ChildrenTy get(const NodeRef &N) { using OrderedNodeTy = typename IDFCalculatorBase<clang::CFGBlock, IsPostDom>::OrderedNodeTy;
auto Children = children<OrderedNodeTy>(N); ChildrenTy Ret{Children.begin(), Children.end()}; llvm::erase(Ret, nullptr); return Ret; } };
} // end of namespace IDFCalculatorDetail } // end of namespace llvm
namespace clang {
class ControlDependencyCalculator : public ManagedAnalysis { using IDFCalculator = llvm::IDFCalculatorBase<CFGBlock, /*IsPostDom=*/true>; using CFGBlockVector = llvm::SmallVector<CFGBlock *, 4>; using CFGBlockSet = llvm::SmallPtrSet<CFGBlock *, 4>;
CFGPostDomTree PostDomTree; IDFCalculator IDFCalc;
llvm::DenseMap<CFGBlock *, CFGBlockVector> ControlDepenencyMap;
public: ControlDependencyCalculator(CFG *cfg) : PostDomTree(cfg), IDFCalc(PostDomTree.getBase()) {}
const CFGPostDomTree &getCFGPostDomTree() const { return PostDomTree; }
// Lazily retrieves the set of control dependencies to \p A. const CFGBlockVector &getControlDependencies(CFGBlock *A) { auto It = ControlDepenencyMap.find(A); if (It == ControlDepenencyMap.end()) { CFGBlockSet DefiningBlock = {A}; IDFCalc.setDefiningBlocks(DefiningBlock);
CFGBlockVector ControlDependencies; IDFCalc.calculate(ControlDependencies);
It = ControlDepenencyMap.insert({A, ControlDependencies}).first; }
assert(It != ControlDepenencyMap.end()); return It->second; }
/// Whether \p A is control dependent on \p B. bool isControlDependent(CFGBlock *A, CFGBlock *B) { return llvm::is_contained(getControlDependencies(A), B); }
// Dumps immediate control dependencies for each block. LLVM_DUMP_METHOD void dump() { CFG *cfg = PostDomTree.getCFG(); llvm::errs() << "Control dependencies (Node#,Dependency#):\n"; for (CFGBlock *BB : *cfg) {
assert(BB && "LLVM's Dominator tree builder uses nullpointers to signify the " "virtual root!");
for (CFGBlock *isControlDependency : getControlDependencies(BB)) llvm::errs() << "(" << BB->getBlockID() << "," << isControlDependency->getBlockID() << ")\n"; } } };
} // namespace clang
namespace llvm {
//===------------------------------------- /// DominatorTree GraphTraits specialization so the DominatorTree can be /// iterable by generic graph iterators. /// template <> struct GraphTraits<clang::DomTreeNode *> { using NodeRef = ::clang::DomTreeNode *; using ChildIteratorType = ::clang::DomTreeNode::const_iterator;
static NodeRef getEntryNode(NodeRef N) { return N; } static ChildIteratorType child_begin(NodeRef N) { return N->begin(); } static ChildIteratorType child_end(NodeRef N) { return N->end(); }
using nodes_iterator = llvm::pointer_iterator<df_iterator<::clang::DomTreeNode *>>;
static nodes_iterator nodes_begin(::clang::DomTreeNode *N) { return nodes_iterator(df_begin(getEntryNode(N))); }
static nodes_iterator nodes_end(::clang::DomTreeNode *N) { return nodes_iterator(df_end(getEntryNode(N))); } };
template <> struct GraphTraits<clang::CFGDomTree *> : public GraphTraits<clang::DomTreeNode *> { static NodeRef getEntryNode(clang::CFGDomTree *DT) { return DT->getRootNode(); }
static nodes_iterator nodes_begin(clang::CFGDomTree *N) { return nodes_iterator(df_begin(getEntryNode(N))); }
static nodes_iterator nodes_end(clang::CFGDomTree *N) { return nodes_iterator(df_end(getEntryNode(N))); } };
} // namespace llvm
#endif // LLVM_CLANG_ANALYSIS_ANALYSES_DOMINATORS_H
|