Viewing file: VTableBuilder.h (21.29 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===--- VTableBuilder.h - C++ vtable layout builder --------------*- C++ -*-=// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This contains code dealing with generation of the layout of virtual tables. // //===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_VTABLEBUILDER_H #define LLVM_CLANG_AST_VTABLEBUILDER_H
#include "clang/AST/BaseSubobject.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/GlobalDecl.h" #include "clang/AST/RecordLayout.h" #include "clang/Basic/ABI.h" #include "clang/Basic/Thunk.h" #include "llvm/ADT/DenseMap.h" #include <memory> #include <utility>
namespace clang { class CXXRecordDecl;
/// Represents a single component in a vtable. class VTableComponent { public: enum Kind { CK_VCallOffset, CK_VBaseOffset, CK_OffsetToTop, CK_RTTI, CK_FunctionPointer,
/// A pointer to the complete destructor. CK_CompleteDtorPointer,
/// A pointer to the deleting destructor. CK_DeletingDtorPointer,
/// An entry that is never used. /// /// In some cases, a vtable function pointer will end up never being /// called. Such vtable function pointers are represented as a /// CK_UnusedFunctionPointer. CK_UnusedFunctionPointer };
VTableComponent() = default;
static VTableComponent MakeVCallOffset(CharUnits Offset) { return VTableComponent(CK_VCallOffset, Offset); }
static VTableComponent MakeVBaseOffset(CharUnits Offset) { return VTableComponent(CK_VBaseOffset, Offset); }
static VTableComponent MakeOffsetToTop(CharUnits Offset) { return VTableComponent(CK_OffsetToTop, Offset); }
static VTableComponent MakeRTTI(const CXXRecordDecl *RD) { return VTableComponent(CK_RTTI, reinterpret_cast<uintptr_t>(RD)); }
static VTableComponent MakeFunction(const CXXMethodDecl *MD) { assert(!isa<CXXDestructorDecl>(MD) && "Don't use MakeFunction with destructors!");
return VTableComponent(CK_FunctionPointer, reinterpret_cast<uintptr_t>(MD)); }
static VTableComponent MakeCompleteDtor(const CXXDestructorDecl *DD) { return VTableComponent(CK_CompleteDtorPointer, reinterpret_cast<uintptr_t>(DD)); }
static VTableComponent MakeDeletingDtor(const CXXDestructorDecl *DD) { return VTableComponent(CK_DeletingDtorPointer, reinterpret_cast<uintptr_t>(DD)); }
static VTableComponent MakeUnusedFunction(const CXXMethodDecl *MD) { assert(!isa<CXXDestructorDecl>(MD) && "Don't use MakeUnusedFunction with destructors!"); return VTableComponent(CK_UnusedFunctionPointer, reinterpret_cast<uintptr_t>(MD)); }
/// Get the kind of this vtable component. Kind getKind() const { return (Kind)(Value & 0x7); }
CharUnits getVCallOffset() const { assert(getKind() == CK_VCallOffset && "Invalid component kind!");
return getOffset(); }
CharUnits getVBaseOffset() const { assert(getKind() == CK_VBaseOffset && "Invalid component kind!");
return getOffset(); }
CharUnits getOffsetToTop() const { assert(getKind() == CK_OffsetToTop && "Invalid component kind!");
return getOffset(); }
const CXXRecordDecl *getRTTIDecl() const { assert(isRTTIKind() && "Invalid component kind!"); return reinterpret_cast<CXXRecordDecl *>(getPointer()); }
const CXXMethodDecl *getFunctionDecl() const { assert(isFunctionPointerKind() && "Invalid component kind!"); if (isDestructorKind()) return getDestructorDecl(); return reinterpret_cast<CXXMethodDecl *>(getPointer()); }
const CXXDestructorDecl *getDestructorDecl() const { assert(isDestructorKind() && "Invalid component kind!"); return reinterpret_cast<CXXDestructorDecl *>(getPointer()); }
const CXXMethodDecl *getUnusedFunctionDecl() const { assert(getKind() == CK_UnusedFunctionPointer && "Invalid component kind!"); return reinterpret_cast<CXXMethodDecl *>(getPointer()); }
bool isDestructorKind() const { return isDestructorKind(getKind()); }
bool isUsedFunctionPointerKind() const { return isUsedFunctionPointerKind(getKind()); }
bool isFunctionPointerKind() const { return isFunctionPointerKind(getKind()); }
bool isRTTIKind() const { return isRTTIKind(getKind()); }
GlobalDecl getGlobalDecl() const { assert(isUsedFunctionPointerKind() && "GlobalDecl can be created only from virtual function");
auto *DtorDecl = dyn_cast<CXXDestructorDecl>(getFunctionDecl()); switch (getKind()) { case CK_FunctionPointer: return GlobalDecl(getFunctionDecl()); case CK_CompleteDtorPointer: return GlobalDecl(DtorDecl, CXXDtorType::Dtor_Complete); case CK_DeletingDtorPointer: return GlobalDecl(DtorDecl, CXXDtorType::Dtor_Deleting); case CK_VCallOffset: case CK_VBaseOffset: case CK_OffsetToTop: case CK_RTTI: case CK_UnusedFunctionPointer: llvm_unreachable("Only function pointers kinds"); } llvm_unreachable("Should already return"); }
private: static bool isFunctionPointerKind(Kind ComponentKind) { return isUsedFunctionPointerKind(ComponentKind) || ComponentKind == CK_UnusedFunctionPointer; } static bool isUsedFunctionPointerKind(Kind ComponentKind) { return ComponentKind == CK_FunctionPointer || isDestructorKind(ComponentKind); } static bool isDestructorKind(Kind ComponentKind) { return ComponentKind == CK_CompleteDtorPointer || ComponentKind == CK_DeletingDtorPointer; } static bool isRTTIKind(Kind ComponentKind) { return ComponentKind == CK_RTTI; }
VTableComponent(Kind ComponentKind, CharUnits Offset) { assert((ComponentKind == CK_VCallOffset || ComponentKind == CK_VBaseOffset || ComponentKind == CK_OffsetToTop) && "Invalid component kind!"); assert(Offset.getQuantity() < (1LL << 56) && "Offset is too big!"); assert(Offset.getQuantity() >= -(1LL << 56) && "Offset is too small!");
Value = (uint64_t(Offset.getQuantity()) << 3) | ComponentKind; }
VTableComponent(Kind ComponentKind, uintptr_t Ptr) { assert((isRTTIKind(ComponentKind) || isFunctionPointerKind(ComponentKind)) && "Invalid component kind!");
assert((Ptr & 7) == 0 && "Pointer not sufficiently aligned!");
Value = Ptr | ComponentKind; }
CharUnits getOffset() const { assert((getKind() == CK_VCallOffset || getKind() == CK_VBaseOffset || getKind() == CK_OffsetToTop) && "Invalid component kind!");
return CharUnits::fromQuantity(Value >> 3); }
uintptr_t getPointer() const { assert((getKind() == CK_RTTI || isFunctionPointerKind()) && "Invalid component kind!");
return static_cast<uintptr_t>(Value & ~7ULL); }
/// The kind is stored in the lower 3 bits of the value. For offsets, we /// make use of the facts that classes can't be larger than 2^55 bytes, /// so we store the offset in the lower part of the 61 bits that remain. /// (The reason that we're not simply using a PointerIntPair here is that we /// need the offsets to be 64-bit, even when on a 32-bit machine). int64_t Value; };
class VTableLayout { public: typedef std::pair<uint64_t, ThunkInfo> VTableThunkTy; struct AddressPointLocation { unsigned VTableIndex, AddressPointIndex; }; typedef llvm::DenseMap<BaseSubobject, AddressPointLocation> AddressPointsMapTy;
// Mapping between the VTable index and address point index. This is useful // when you don't care about the base subobjects and only want the address // point for a given vtable index. typedef llvm::SmallVector<unsigned, 4> AddressPointsIndexMapTy;
private: // Stores the component indices of the first component of each virtual table in // the virtual table group. To save a little memory in the common case where // the vtable group contains a single vtable, an empty vector here represents // the vector {0}. OwningArrayRef<size_t> VTableIndices;
OwningArrayRef<VTableComponent> VTableComponents;
/// Contains thunks needed by vtables, sorted by indices. OwningArrayRef<VTableThunkTy> VTableThunks;
/// Address points for all vtables. AddressPointsMapTy AddressPoints;
/// Address points for all vtable indices. AddressPointsIndexMapTy AddressPointIndices;
public: VTableLayout(ArrayRef<size_t> VTableIndices, ArrayRef<VTableComponent> VTableComponents, ArrayRef<VTableThunkTy> VTableThunks, const AddressPointsMapTy &AddressPoints); ~VTableLayout();
ArrayRef<VTableComponent> vtable_components() const { return VTableComponents; }
ArrayRef<VTableThunkTy> vtable_thunks() const { return VTableThunks; }
AddressPointLocation getAddressPoint(BaseSubobject Base) const { assert(AddressPoints.count(Base) && "Did not find address point!"); return AddressPoints.lookup(Base); }
const AddressPointsMapTy &getAddressPoints() const { return AddressPoints; }
const AddressPointsIndexMapTy &getAddressPointIndices() const { return AddressPointIndices; }
size_t getNumVTables() const { if (VTableIndices.empty()) return 1; return VTableIndices.size(); }
size_t getVTableOffset(size_t i) const { if (VTableIndices.empty()) { assert(i == 0); return 0; } return VTableIndices[i]; }
size_t getVTableSize(size_t i) const { if (VTableIndices.empty()) { assert(i == 0); return vtable_components().size(); }
size_t thisIndex = VTableIndices[i]; size_t nextIndex = (i + 1 == VTableIndices.size()) ? vtable_components().size() : VTableIndices[i + 1]; return nextIndex - thisIndex; } };
class VTableContextBase { public: typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
bool isMicrosoft() const { return IsMicrosoftABI; }
virtual ~VTableContextBase() {}
protected: typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
/// Contains all thunks that a given method decl will need. ThunksMapTy Thunks;
/// Compute and store all vtable related information (vtable layout, vbase /// offset offsets, thunks etc) for the given record decl. virtual void computeVTableRelatedInformation(const CXXRecordDecl *RD) = 0;
VTableContextBase(bool MS) : IsMicrosoftABI(MS) {}
public: virtual const ThunkInfoVectorTy *getThunkInfo(GlobalDecl GD) { const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()->getCanonicalDecl()); computeVTableRelatedInformation(MD->getParent());
// This assumes that all the destructors present in the vtable // use exactly the same set of thunks. ThunksMapTy::const_iterator I = Thunks.find(MD); if (I == Thunks.end()) { // We did not find a thunk for this method. return nullptr; }
return &I->second; }
bool IsMicrosoftABI;
/// Determine whether this function should be assigned a vtable slot. static bool hasVtableSlot(const CXXMethodDecl *MD); };
class ItaniumVTableContext : public VTableContextBase { public: typedef llvm::DenseMap<const CXXMethodDecl *, const CXXMethodDecl *> OriginalMethodMapTy;
private:
/// Contains the index (relative to the vtable address point) /// where the function pointer for a virtual function is stored. typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy; MethodVTableIndicesTy MethodVTableIndices;
typedef llvm::DenseMap<const CXXRecordDecl *, std::unique_ptr<const VTableLayout>> VTableLayoutMapTy; VTableLayoutMapTy VTableLayouts;
typedef std::pair<const CXXRecordDecl *, const CXXRecordDecl *> ClassPairTy;
/// vtable offsets for offsets of virtual bases of a class. /// /// Contains the vtable offset (relative to the address point) in chars /// where the offsets for virtual bases of a class are stored. typedef llvm::DenseMap<ClassPairTy, CharUnits> VirtualBaseClassOffsetOffsetsMapTy; VirtualBaseClassOffsetOffsetsMapTy VirtualBaseClassOffsetOffsets;
/// Map from a virtual method to the nearest method in the primary base class /// chain that it overrides. OriginalMethodMapTy OriginalMethodMap;
void computeVTableRelatedInformation(const CXXRecordDecl *RD) override;
public: enum VTableComponentLayout { /// Components in the vtable are pointers to other structs/functions. Pointer,
/// Components in the vtable are relative offsets between the vtable and the /// other structs/functions. Relative, };
ItaniumVTableContext(ASTContext &Context, VTableComponentLayout ComponentLayout = Pointer); ~ItaniumVTableContext() override;
const VTableLayout &getVTableLayout(const CXXRecordDecl *RD) { computeVTableRelatedInformation(RD); assert(VTableLayouts.count(RD) && "No layout for this record decl!");
return *VTableLayouts[RD]; }
std::unique_ptr<VTableLayout> createConstructionVTableLayout( const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset, bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass);
/// Locate a virtual function in the vtable. /// /// Return the index (relative to the vtable address point) where the /// function pointer for the given virtual function is stored. uint64_t getMethodVTableIndex(GlobalDecl GD);
/// Return the offset in chars (relative to the vtable address point) where /// the offset of the virtual base that contains the given base is stored, /// otherwise, if no virtual base contains the given class, return 0. /// /// Base must be a virtual base class or an unambiguous base. CharUnits getVirtualBaseOffsetOffset(const CXXRecordDecl *RD, const CXXRecordDecl *VBase);
/// Return the method that added the v-table slot that will be used to call /// the given method. /// /// In the Itanium ABI, where overrides always cause methods to be added to /// the primary v-table if they're not already there, this will be the first /// declaration in the primary base class chain for which the return type /// adjustment is trivial. GlobalDecl findOriginalMethod(GlobalDecl GD);
const CXXMethodDecl *findOriginalMethodInMap(const CXXMethodDecl *MD) const;
void setOriginalMethod(const CXXMethodDecl *Key, const CXXMethodDecl *Val) { OriginalMethodMap[Key] = Val; }
/// This method is reserved for the implementation and shouldn't be used /// directly. const OriginalMethodMapTy &getOriginalMethodMap() { return OriginalMethodMap; }
static bool classof(const VTableContextBase *VT) { return !VT->isMicrosoft(); }
VTableComponentLayout getVTableComponentLayout() const { return ComponentLayout; }
bool isPointerLayout() const { return ComponentLayout == Pointer; } bool isRelativeLayout() const { return ComponentLayout == Relative; }
private: VTableComponentLayout ComponentLayout; };
/// Holds information about the inheritance path to a virtual base or function /// table pointer. A record may contain as many vfptrs or vbptrs as there are /// base subobjects. struct VPtrInfo { typedef SmallVector<const CXXRecordDecl *, 1> BasePath;
VPtrInfo(const CXXRecordDecl *RD) : ObjectWithVPtr(RD), IntroducingObject(RD), NextBaseToMangle(RD) {}
/// This is the most derived class that has this vptr at offset zero. When /// single inheritance is used, this is always the most derived class. If /// multiple inheritance is used, it may be any direct or indirect base. const CXXRecordDecl *ObjectWithVPtr;
/// This is the class that introduced the vptr by declaring new virtual /// methods or virtual bases. const CXXRecordDecl *IntroducingObject;
/// IntroducingObject is at this offset from its containing complete object or /// virtual base. CharUnits NonVirtualOffset;
/// The bases from the inheritance path that got used to mangle the vbtable /// name. This is not really a full path like a CXXBasePath. It holds the /// subset of records that need to be mangled into the vbtable symbol name in /// order to get a unique name. BasePath MangledPath;
/// The next base to push onto the mangled path if this path is ambiguous in a /// derived class. If it's null, then it's already been pushed onto the path. const CXXRecordDecl *NextBaseToMangle;
/// The set of possibly indirect vbases that contain this vbtable. When a /// derived class indirectly inherits from the same vbase twice, we only keep /// vtables and their paths from the first instance. BasePath ContainingVBases;
/// This holds the base classes path from the complete type to the first base /// with the given vfptr offset, in the base-to-derived order. Only used for /// vftables. BasePath PathToIntroducingObject;
/// Static offset from the top of the most derived class to this vfptr, /// including any virtual base offset. Only used for vftables. CharUnits FullOffsetInMDC;
/// The vptr is stored inside the non-virtual component of this virtual base. const CXXRecordDecl *getVBaseWithVPtr() const { return ContainingVBases.empty() ? nullptr : ContainingVBases.front(); } };
typedef SmallVector<std::unique_ptr<VPtrInfo>, 2> VPtrInfoVector;
/// All virtual base related information about a given record decl. Includes /// information on all virtual base tables and the path components that are used /// to mangle them. struct VirtualBaseInfo { /// A map from virtual base to vbtable index for doing a conversion from the /// the derived class to the a base. llvm::DenseMap<const CXXRecordDecl *, unsigned> VBTableIndices;
/// Information on all virtual base tables used when this record is the most /// derived class. VPtrInfoVector VBPtrPaths; };
struct MethodVFTableLocation { /// If nonzero, holds the vbtable index of the virtual base with the vfptr. uint64_t VBTableIndex;
/// If nonnull, holds the last vbase which contains the vfptr that the /// method definition is adjusted to. const CXXRecordDecl *VBase;
/// This is the offset of the vfptr from the start of the last vbase, or the /// complete type if there are no virtual bases. CharUnits VFPtrOffset;
/// Method's index in the vftable. uint64_t Index;
MethodVFTableLocation() : VBTableIndex(0), VBase(nullptr), VFPtrOffset(CharUnits::Zero()), Index(0) {}
MethodVFTableLocation(uint64_t VBTableIndex, const CXXRecordDecl *VBase, CharUnits VFPtrOffset, uint64_t Index) : VBTableIndex(VBTableIndex), VBase(VBase), VFPtrOffset(VFPtrOffset), Index(Index) {}
bool operator<(const MethodVFTableLocation &other) const { if (VBTableIndex != other.VBTableIndex) { assert(VBase != other.VBase); return VBTableIndex < other.VBTableIndex; } return std::tie(VFPtrOffset, Index) < std::tie(other.VFPtrOffset, other.Index); } };
class MicrosoftVTableContext : public VTableContextBase { public:
private: ASTContext &Context;
typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation> MethodVFTableLocationsTy; MethodVFTableLocationsTy MethodVFTableLocations;
typedef llvm::DenseMap<const CXXRecordDecl *, std::unique_ptr<VPtrInfoVector>> VFPtrLocationsMapTy; VFPtrLocationsMapTy VFPtrLocations;
typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy; typedef llvm::DenseMap<VFTableIdTy, std::unique_ptr<const VTableLayout>> VFTableLayoutMapTy; VFTableLayoutMapTy VFTableLayouts;
llvm::DenseMap<const CXXRecordDecl *, std::unique_ptr<VirtualBaseInfo>> VBaseInfo;
void computeVTableRelatedInformation(const CXXRecordDecl *RD) override;
void dumpMethodLocations(const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods, raw_ostream &);
const VirtualBaseInfo & computeVBTableRelatedInformation(const CXXRecordDecl *RD);
void computeVTablePaths(bool ForVBTables, const CXXRecordDecl *RD, VPtrInfoVector &Paths);
public: MicrosoftVTableContext(ASTContext &Context) : VTableContextBase(/*MS=*/true), Context(Context) {}
~MicrosoftVTableContext() override;
const VPtrInfoVector &getVFPtrOffsets(const CXXRecordDecl *RD);
const VTableLayout &getVFTableLayout(const CXXRecordDecl *RD, CharUnits VFPtrOffset);
MethodVFTableLocation getMethodVFTableLocation(GlobalDecl GD);
const ThunkInfoVectorTy *getThunkInfo(GlobalDecl GD) override { // Complete destructors don't have a slot in a vftable, so no thunks needed. if (isa<CXXDestructorDecl>(GD.getDecl()) && GD.getDtorType() == Dtor_Complete) return nullptr; return VTableContextBase::getThunkInfo(GD); }
/// Returns the index of VBase in the vbtable of Derived. /// VBase must be a morally virtual base of Derived. /// The vbtable is an array of i32 offsets. The first entry is a self entry, /// and the rest are offsets from the vbptr to virtual bases. unsigned getVBTableIndex(const CXXRecordDecl *Derived, const CXXRecordDecl *VBase);
const VPtrInfoVector &enumerateVBTables(const CXXRecordDecl *RD);
static bool classof(const VTableContextBase *VT) { return VT->isMicrosoft(); } };
} // namespace clang
#endif
|