Viewing file: RecursiveASTVisitor.h (140.07 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===--- RecursiveASTVisitor.h - Recursive AST Visitor ----------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the RecursiveASTVisitor interface, which recursively // traverses the entire AST. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_AST_RECURSIVEASTVISITOR_H #define LLVM_CLANG_AST_RECURSIVEASTVISITOR_H
#include "clang/AST/ASTConcept.h" #include "clang/AST/Attr.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclBase.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclFriend.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclOpenMP.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/DeclarationName.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprConcepts.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/ExprOpenMP.h" #include "clang/AST/LambdaCapture.h" #include "clang/AST/NestedNameSpecifier.h" #include "clang/AST/OpenACCClause.h" #include "clang/AST/OpenMPClause.h" #include "clang/AST/Stmt.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/StmtObjC.h" #include "clang/AST/StmtOpenACC.h" #include "clang/AST/StmtOpenMP.h" #include "clang/AST/TemplateBase.h" #include "clang/AST/TemplateName.h" #include "clang/AST/Type.h" #include "clang/AST/TypeLoc.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/OpenMPKinds.h" #include "clang/Basic/Specifiers.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Casting.h" #include <algorithm> #include <cstddef> #include <type_traits>
namespace clang {
// A helper macro to implement short-circuiting when recursing. It // invokes CALL_EXPR, which must be a method call, on the derived // object (s.t. a user of RecursiveASTVisitor can override the method // in CALL_EXPR). #define TRY_TO(CALL_EXPR) \ do { \ if (!getDerived().CALL_EXPR) \ return false; \ } while (false)
namespace detail {
template <typename T, typename U> struct has_same_member_pointer_type : std::false_type {}; template <typename T, typename U, typename R, typename... P> struct has_same_member_pointer_type<R (T::*)(P...), R (U::*)(P...)> : std::true_type {};
/// Returns true if and only if \p FirstMethodPtr and \p SecondMethodPtr /// are pointers to the same non-static member function. template <typename FirstMethodPtrTy, typename SecondMethodPtrTy> LLVM_ATTRIBUTE_ALWAYS_INLINE LLVM_ATTRIBUTE_NODEBUG auto isSameMethod([[maybe_unused]] FirstMethodPtrTy FirstMethodPtr, [[maybe_unused]] SecondMethodPtrTy SecondMethodPtr) -> bool { if constexpr (has_same_member_pointer_type<FirstMethodPtrTy, SecondMethodPtrTy>::value) return FirstMethodPtr == SecondMethodPtr; return false; }
} // end namespace detail
/// A class that does preorder or postorder /// depth-first traversal on the entire Clang AST and visits each node. /// /// This class performs three distinct tasks: /// 1. traverse the AST (i.e. go to each node); /// 2. at a given node, walk up the class hierarchy, starting from /// the node's dynamic type, until the top-most class (e.g. Stmt, /// Decl, or Type) is reached. /// 3. given a (node, class) combination, where 'class' is some base /// class of the dynamic type of 'node', call a user-overridable /// function to actually visit the node. /// /// These tasks are done by three groups of methods, respectively: /// 1. TraverseDecl(Decl *x) does task #1. It is the entry point /// for traversing an AST rooted at x. This method simply /// dispatches (i.e. forwards) to TraverseFoo(Foo *x) where Foo /// is the dynamic type of *x, which calls WalkUpFromFoo(x) and /// then recursively visits the child nodes of x. /// TraverseStmt(Stmt *x) and TraverseType(QualType x) work /// similarly. /// 2. WalkUpFromFoo(Foo *x) does task #2. It does not try to visit /// any child node of x. Instead, it first calls WalkUpFromBar(x) /// where Bar is the direct parent class of Foo (unless Foo has /// no parent), and then calls VisitFoo(x) (see the next list item). /// 3. VisitFoo(Foo *x) does task #3. /// /// These three method groups are tiered (Traverse* > WalkUpFrom* > /// Visit*). A method (e.g. Traverse*) may call methods from the same /// tier (e.g. other Traverse*) or one tier lower (e.g. WalkUpFrom*). /// It may not call methods from a higher tier. /// /// Note that since WalkUpFromFoo() calls WalkUpFromBar() (where Bar /// is Foo's super class) before calling VisitFoo(), the result is /// that the Visit*() methods for a given node are called in the /// top-down order (e.g. for a node of type NamespaceDecl, the order will /// be VisitDecl(), VisitNamedDecl(), and then VisitNamespaceDecl()). /// /// This scheme guarantees that all Visit*() calls for the same AST /// node are grouped together. In other words, Visit*() methods for /// different nodes are never interleaved. /// /// Clients of this visitor should subclass the visitor (providing /// themselves as the template argument, using the curiously recurring /// template pattern) and override any of the Traverse*, WalkUpFrom*, /// and Visit* methods for declarations, types, statements, /// expressions, or other AST nodes where the visitor should customize /// behavior. Most users only need to override Visit*. Advanced /// users may override Traverse* and WalkUpFrom* to implement custom /// traversal strategies. Returning false from one of these overridden /// functions will abort the entire traversal. /// /// By default, this visitor tries to visit every part of the explicit /// source code exactly once. The default policy towards templates /// is to descend into the 'pattern' class or function body, not any /// explicit or implicit instantiations. Explicit specializations /// are still visited, and the patterns of partial specializations /// are visited separately. This behavior can be changed by /// overriding shouldVisitTemplateInstantiations() in the derived class /// to return true, in which case all known implicit and explicit /// instantiations will be visited at the same time as the pattern /// from which they were produced. /// /// By default, this visitor preorder traverses the AST. If postorder traversal /// is needed, the \c shouldTraversePostOrder method needs to be overridden /// to return \c true. template <typename Derived> class RecursiveASTVisitor { public: /// A queue used for performing data recursion over statements. /// Parameters involving this type are used to implement data /// recursion over Stmts and Exprs within this class, and should /// typically not be explicitly specified by derived classes. /// The bool bit indicates whether the statement has been traversed or not. typedef SmallVectorImpl<llvm::PointerIntPair<Stmt *, 1, bool>> DataRecursionQueue;
/// Return a reference to the derived class. Derived &getDerived() { return *static_cast<Derived *>(this); }
/// Return whether this visitor should recurse into /// template instantiations. bool shouldVisitTemplateInstantiations() const { return false; }
/// Return whether this visitor should recurse into the types of /// TypeLocs. bool shouldWalkTypesOfTypeLocs() const { return true; }
/// Return whether this visitor should recurse into implicit /// code, e.g., implicit constructors and destructors. bool shouldVisitImplicitCode() const { return false; }
/// Return whether this visitor should recurse into lambda body bool shouldVisitLambdaBody() const { return true; }
/// Return whether this visitor should traverse post-order. bool shouldTraversePostOrder() const { return false; }
/// Recursively visits an entire AST, starting from the TranslationUnitDecl. /// \returns false if visitation was terminated early. bool TraverseAST(ASTContext &AST) { // Currently just an alias for TraverseDecl(TUDecl), but kept in case // we change the implementation again. return getDerived().TraverseDecl(AST.getTranslationUnitDecl()); }
/// Recursively visit a statement or expression, by /// dispatching to Traverse*() based on the argument's dynamic type. /// /// \returns false if the visitation was terminated early, true /// otherwise (including when the argument is nullptr). bool TraverseStmt(Stmt *S, DataRecursionQueue *Queue = nullptr);
/// Invoked before visiting a statement or expression via data recursion. /// /// \returns false to skip visiting the node, true otherwise. bool dataTraverseStmtPre(Stmt *S) { return true; }
/// Invoked after visiting a statement or expression via data recursion. /// This is not invoked if the previously invoked \c dataTraverseStmtPre /// returned false. /// /// \returns false if the visitation was terminated early, true otherwise. bool dataTraverseStmtPost(Stmt *S) { return true; }
/// Recursively visit a type, by dispatching to /// Traverse*Type() based on the argument's getTypeClass() property. /// /// \returns false if the visitation was terminated early, true /// otherwise (including when the argument is a Null type). bool TraverseType(QualType T);
/// Recursively visit a type with location, by dispatching to /// Traverse*TypeLoc() based on the argument type's getTypeClass() property. /// /// \returns false if the visitation was terminated early, true /// otherwise (including when the argument is a Null type location). bool TraverseTypeLoc(TypeLoc TL);
/// Recursively visit an attribute, by dispatching to /// Traverse*Attr() based on the argument's dynamic type. /// /// \returns false if the visitation was terminated early, true /// otherwise (including when the argument is a Null type location). bool TraverseAttr(Attr *At);
/// Recursively visit a declaration, by dispatching to /// Traverse*Decl() based on the argument's dynamic type. /// /// \returns false if the visitation was terminated early, true /// otherwise (including when the argument is NULL). bool TraverseDecl(Decl *D);
/// Recursively visit a C++ nested-name-specifier. /// /// \returns false if the visitation was terminated early, true otherwise. bool TraverseNestedNameSpecifier(NestedNameSpecifier *NNS);
/// Recursively visit a C++ nested-name-specifier with location /// information. /// /// \returns false if the visitation was terminated early, true otherwise. bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS);
/// Recursively visit a name with its location information. /// /// \returns false if the visitation was terminated early, true otherwise. bool TraverseDeclarationNameInfo(DeclarationNameInfo NameInfo);
/// Recursively visit a template name and dispatch to the /// appropriate method. /// /// \returns false if the visitation was terminated early, true otherwise. bool TraverseTemplateName(TemplateName Template);
/// Recursively visit a template argument and dispatch to the /// appropriate method for the argument type. /// /// \returns false if the visitation was terminated early, true otherwise. // FIXME: migrate callers to TemplateArgumentLoc instead. bool TraverseTemplateArgument(const TemplateArgument &Arg);
/// Recursively visit a template argument location and dispatch to the /// appropriate method for the argument type. /// /// \returns false if the visitation was terminated early, true otherwise. bool TraverseTemplateArgumentLoc(const TemplateArgumentLoc &ArgLoc);
/// Recursively visit a set of template arguments. /// This can be overridden by a subclass, but it's not expected that /// will be needed -- this visitor always dispatches to another. /// /// \returns false if the visitation was terminated early, true otherwise. // FIXME: take a TemplateArgumentLoc* (or TemplateArgumentListInfo) instead. bool TraverseTemplateArguments(ArrayRef<TemplateArgument> Args);
/// Recursively visit a base specifier. This can be overridden by a /// subclass. /// /// \returns false if the visitation was terminated early, true otherwise. bool TraverseCXXBaseSpecifier(const CXXBaseSpecifier &Base);
/// Recursively visit a constructor initializer. This /// automatically dispatches to another visitor for the initializer /// expression, but not for the name of the initializer, so may /// be overridden for clients that need access to the name. /// /// \returns false if the visitation was terminated early, true otherwise. bool TraverseConstructorInitializer(CXXCtorInitializer *Init);
/// Recursively visit a lambda capture. \c Init is the expression that /// will be used to initialize the capture. /// /// \returns false if the visitation was terminated early, true otherwise. bool TraverseLambdaCapture(LambdaExpr *LE, const LambdaCapture *C, Expr *Init);
/// Recursively visit the syntactic or semantic form of an /// initialization list. /// /// \returns false if the visitation was terminated early, true otherwise. bool TraverseSynOrSemInitListExpr(InitListExpr *S, DataRecursionQueue *Queue = nullptr);
/// Recursively visit an Objective-C protocol reference with location /// information. /// /// \returns false if the visitation was terminated early, true otherwise. bool TraverseObjCProtocolLoc(ObjCProtocolLoc ProtocolLoc);
/// Recursively visit concept reference with location information. /// /// \returns false if the visitation was terminated early, true otherwise. bool TraverseConceptReference(ConceptReference *CR);
// Visit concept reference. bool VisitConceptReference(ConceptReference *CR) { return true; } // ---- Methods on Attrs ----
// Visit an attribute. bool VisitAttr(Attr *A) { return true; }
// Declare Traverse* and empty Visit* for all Attr classes. #define ATTR_VISITOR_DECLS_ONLY #include "clang/AST/AttrVisitor.inc" #undef ATTR_VISITOR_DECLS_ONLY
// ---- Methods on Stmts ----
Stmt::child_range getStmtChildren(Stmt *S) { return S->children(); }
private: // Traverse the given statement. If the most-derived traverse function takes a // data recursion queue, pass it on; otherwise, discard it. Note that the // first branch of this conditional must compile whether or not the derived // class can take a queue, so if we're taking the second arm, make the first // arm call our function rather than the derived class version. #define TRAVERSE_STMT_BASE(NAME, CLASS, VAR, QUEUE) \ (::clang::detail::has_same_member_pointer_type< \ decltype(&RecursiveASTVisitor::Traverse##NAME), \ decltype(&Derived::Traverse##NAME)>::value \ ? static_cast<std::conditional_t< \ ::clang::detail::has_same_member_pointer_type< \ decltype(&RecursiveASTVisitor::Traverse##NAME), \ decltype(&Derived::Traverse##NAME)>::value, \ Derived &, RecursiveASTVisitor &>>(*this) \ .Traverse##NAME(static_cast<CLASS *>(VAR), QUEUE) \ : getDerived().Traverse##NAME(static_cast<CLASS *>(VAR)))
// Try to traverse the given statement, or enqueue it if we're performing data // recursion in the middle of traversing another statement. Can only be called // from within a DEF_TRAVERSE_STMT body or similar context. #define TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S) \ do { \ if (!TRAVERSE_STMT_BASE(Stmt, Stmt, S, Queue)) \ return false; \ } while (false)
public: // Declare Traverse*() for all concrete Stmt classes. #define ABSTRACT_STMT(STMT) #define STMT(CLASS, PARENT) \ bool Traverse##CLASS(CLASS *S, DataRecursionQueue *Queue = nullptr); #include "clang/AST/StmtNodes.inc" // The above header #undefs ABSTRACT_STMT and STMT upon exit.
// Define WalkUpFrom*() and empty Visit*() for all Stmt classes. bool WalkUpFromStmt(Stmt *S) { return getDerived().VisitStmt(S); } bool VisitStmt(Stmt *S) { return true; } #define STMT(CLASS, PARENT) \ bool WalkUpFrom##CLASS(CLASS *S) { \ TRY_TO(WalkUpFrom##PARENT(S)); \ TRY_TO(Visit##CLASS(S)); \ return true; \ } \ bool Visit##CLASS(CLASS *S) { return true; } #include "clang/AST/StmtNodes.inc"
// ---- Methods on Types ---- // FIXME: revamp to take TypeLoc's rather than Types.
// Declare Traverse*() for all concrete Type classes. #define ABSTRACT_TYPE(CLASS, BASE) #define TYPE(CLASS, BASE) bool Traverse##CLASS##Type(CLASS##Type *T); #include "clang/AST/TypeNodes.inc" // The above header #undefs ABSTRACT_TYPE and TYPE upon exit.
// Define WalkUpFrom*() and empty Visit*() for all Type classes. bool WalkUpFromType(Type *T) { return getDerived().VisitType(T); } bool VisitType(Type *T) { return true; } #define TYPE(CLASS, BASE) \ bool WalkUpFrom##CLASS##Type(CLASS##Type *T) { \ TRY_TO(WalkUpFrom##BASE(T)); \ TRY_TO(Visit##CLASS##Type(T)); \ return true; \ } \ bool Visit##CLASS##Type(CLASS##Type *T) { return true; } #include "clang/AST/TypeNodes.inc"
// ---- Methods on TypeLocs ---- // FIXME: this currently just calls the matching Type methods
// Declare Traverse*() for all concrete TypeLoc classes. #define ABSTRACT_TYPELOC(CLASS, BASE) #define TYPELOC(CLASS, BASE) bool Traverse##CLASS##TypeLoc(CLASS##TypeLoc TL); #include "clang/AST/TypeLocNodes.def" // The above header #undefs ABSTRACT_TYPELOC and TYPELOC upon exit.
// Define WalkUpFrom*() and empty Visit*() for all TypeLoc classes. bool WalkUpFromTypeLoc(TypeLoc TL) { return getDerived().VisitTypeLoc(TL); } bool VisitTypeLoc(TypeLoc TL) { return true; }
// QualifiedTypeLoc and UnqualTypeLoc are not declared in // TypeNodes.inc and thus need to be handled specially. bool WalkUpFromQualifiedTypeLoc(QualifiedTypeLoc TL) { return getDerived().VisitUnqualTypeLoc(TL.getUnqualifiedLoc()); } bool VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { return true; } bool WalkUpFromUnqualTypeLoc(UnqualTypeLoc TL) { return getDerived().VisitUnqualTypeLoc(TL.getUnqualifiedLoc()); } bool VisitUnqualTypeLoc(UnqualTypeLoc TL) { return true; }
// Note that BASE includes trailing 'Type' which CLASS doesn't. #define TYPE(CLASS, BASE) \ bool WalkUpFrom##CLASS##TypeLoc(CLASS##TypeLoc TL) { \ TRY_TO(WalkUpFrom##BASE##Loc(TL)); \ TRY_TO(Visit##CLASS##TypeLoc(TL)); \ return true; \ } \ bool Visit##CLASS##TypeLoc(CLASS##TypeLoc TL) { return true; } #include "clang/AST/TypeNodes.inc"
// ---- Methods on Decls ----
// Declare Traverse*() for all concrete Decl classes. #define ABSTRACT_DECL(DECL) #define DECL(CLASS, BASE) bool Traverse##CLASS##Decl(CLASS##Decl *D); #include "clang/AST/DeclNodes.inc" // The above header #undefs ABSTRACT_DECL and DECL upon exit.
// Define WalkUpFrom*() and empty Visit*() for all Decl classes. bool WalkUpFromDecl(Decl *D) { return getDerived().VisitDecl(D); } bool VisitDecl(Decl *D) { return true; } #define DECL(CLASS, BASE) \ bool WalkUpFrom##CLASS##Decl(CLASS##Decl *D) { \ TRY_TO(WalkUpFrom##BASE(D)); \ TRY_TO(Visit##CLASS##Decl(D)); \ return true; \ } \ bool Visit##CLASS##Decl(CLASS##Decl *D) { return true; } #include "clang/AST/DeclNodes.inc"
bool canIgnoreChildDeclWhileTraversingDeclContext(const Decl *Child);
#define DEF_TRAVERSE_TMPL_INST(TMPLDECLKIND) \ bool TraverseTemplateInstantiations(TMPLDECLKIND##TemplateDecl *D); DEF_TRAVERSE_TMPL_INST(Class) DEF_TRAVERSE_TMPL_INST(Var) DEF_TRAVERSE_TMPL_INST(Function) #undef DEF_TRAVERSE_TMPL_INST
bool TraverseTypeConstraint(const TypeConstraint *C);
bool TraverseConceptRequirement(concepts::Requirement *R); bool TraverseConceptTypeRequirement(concepts::TypeRequirement *R); bool TraverseConceptExprRequirement(concepts::ExprRequirement *R); bool TraverseConceptNestedRequirement(concepts::NestedRequirement *R);
bool dataTraverseNode(Stmt *S, DataRecursionQueue *Queue);
private: // These are helper methods used by more than one Traverse* method. bool TraverseTemplateParameterListHelper(TemplateParameterList *TPL);
// Traverses template parameter lists of either a DeclaratorDecl or TagDecl. template <typename T> bool TraverseDeclTemplateParameterLists(T *D);
bool TraverseTemplateTypeParamDeclConstraints(const TemplateTypeParmDecl *D);
bool TraverseTemplateArgumentLocsHelper(const TemplateArgumentLoc *TAL, unsigned Count); bool TraverseArrayTypeLocHelper(ArrayTypeLoc TL); bool TraverseRecordHelper(RecordDecl *D); bool TraverseCXXRecordHelper(CXXRecordDecl *D); bool TraverseDeclaratorHelper(DeclaratorDecl *D); bool TraverseDeclContextHelper(DeclContext *DC); bool TraverseFunctionHelper(FunctionDecl *D); bool TraverseVarHelper(VarDecl *D); bool TraverseOMPExecutableDirective(OMPExecutableDirective *S); bool TraverseOMPLoopDirective(OMPLoopDirective *S); bool TraverseOMPClause(OMPClause *C); #define GEN_CLANG_CLAUSE_CLASS #define CLAUSE_CLASS(Enum, Str, Class) bool Visit##Class(Class *C); #include "llvm/Frontend/OpenMP/OMP.inc" /// Process clauses with list of variables. template <typename T> bool VisitOMPClauseList(T *Node); /// Process clauses with pre-initis. bool VisitOMPClauseWithPreInit(OMPClauseWithPreInit *Node); bool VisitOMPClauseWithPostUpdate(OMPClauseWithPostUpdate *Node);
bool PostVisitStmt(Stmt *S); bool TraverseOpenACCConstructStmt(OpenACCConstructStmt *S); bool TraverseOpenACCAssociatedStmtConstruct(OpenACCAssociatedStmtConstruct *S); bool VisitOpenACCClauseList(ArrayRef<const OpenACCClause *>); bool VisitOpenACCClause(const OpenACCClause *); };
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseTypeConstraint( const TypeConstraint *C) { if (!getDerived().shouldVisitImplicitCode()) { TRY_TO(TraverseConceptReference(C->getConceptReference())); return true; } if (Expr *IDC = C->getImmediatelyDeclaredConstraint()) { TRY_TO(TraverseStmt(IDC)); } else { // Avoid traversing the ConceptReference in the TypeConstraint // if we have an immediately-declared-constraint, otherwise // we'll end up visiting the concept and the arguments in // the TC twice. TRY_TO(TraverseConceptReference(C->getConceptReference())); } return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseConceptRequirement( concepts::Requirement *R) { switch (R->getKind()) { case concepts::Requirement::RK_Type: return getDerived().TraverseConceptTypeRequirement( cast<concepts::TypeRequirement>(R)); case concepts::Requirement::RK_Simple: case concepts::Requirement::RK_Compound: return getDerived().TraverseConceptExprRequirement( cast<concepts::ExprRequirement>(R)); case concepts::Requirement::RK_Nested: return getDerived().TraverseConceptNestedRequirement( cast<concepts::NestedRequirement>(R)); } llvm_unreachable("unexpected case"); }
template <typename Derived> bool RecursiveASTVisitor<Derived>::dataTraverseNode(Stmt *S, DataRecursionQueue *Queue) { // Top switch stmt: dispatch to TraverseFooStmt for each concrete FooStmt. switch (S->getStmtClass()) { case Stmt::NoStmtClass: break; #define ABSTRACT_STMT(STMT) #define STMT(CLASS, PARENT) \ case Stmt::CLASS##Class: \ return TRAVERSE_STMT_BASE(CLASS, CLASS, S, Queue); #include "clang/AST/StmtNodes.inc" }
return true; }
#undef DISPATCH_STMT
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseConceptTypeRequirement( concepts::TypeRequirement *R) { if (R->isSubstitutionFailure()) return true; return getDerived().TraverseTypeLoc(R->getType()->getTypeLoc()); }
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseConceptExprRequirement( concepts::ExprRequirement *R) { if (!R->isExprSubstitutionFailure()) TRY_TO(TraverseStmt(R->getExpr())); auto &RetReq = R->getReturnTypeRequirement(); if (RetReq.isTypeConstraint()) { if (getDerived().shouldVisitImplicitCode()) { TRY_TO(TraverseTemplateParameterListHelper( RetReq.getTypeConstraintTemplateParameterList())); } else { // Template parameter list is implicit, visit constraint directly. TRY_TO(TraverseTypeConstraint(RetReq.getTypeConstraint())); } } return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseConceptNestedRequirement( concepts::NestedRequirement *R) { if (!R->hasInvalidConstraint()) return getDerived().TraverseStmt(R->getConstraintExpr()); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::PostVisitStmt(Stmt *S) { // In pre-order traversal mode, each Traverse##STMT method is responsible for // calling WalkUpFrom. Therefore, if the user overrides Traverse##STMT and // does not call the default implementation, the WalkUpFrom callback is not // called. Post-order traversal mode should provide the same behavior // regarding method overrides. // // In post-order traversal mode the Traverse##STMT method, when it receives a // DataRecursionQueue, can't call WalkUpFrom after traversing children because // it only enqueues the children and does not traverse them. TraverseStmt // traverses the enqueued children, and we call WalkUpFrom here. // // However, to make pre-order and post-order modes identical with regards to // whether they call WalkUpFrom at all, we call WalkUpFrom if and only if the // user did not override the Traverse##STMT method. We implement the override // check with isSameMethod calls below.
switch (S->getStmtClass()) { case Stmt::NoStmtClass: break; #define ABSTRACT_STMT(STMT) #define STMT(CLASS, PARENT) \ case Stmt::CLASS##Class: \ if (::clang::detail::isSameMethod(&RecursiveASTVisitor::Traverse##CLASS, \ &Derived::Traverse##CLASS)) { \ TRY_TO(WalkUpFrom##CLASS(static_cast<CLASS *>(S))); \ } \ break; #define INITLISTEXPR(CLASS, PARENT) \ case Stmt::CLASS##Class: \ if (::clang::detail::isSameMethod(&RecursiveASTVisitor::Traverse##CLASS, \ &Derived::Traverse##CLASS)) { \ auto ILE = static_cast<CLASS *>(S); \ if (auto Syn = ILE->isSemanticForm() ? ILE->getSyntacticForm() : ILE) \ TRY_TO(WalkUpFrom##CLASS(Syn)); \ if (auto Sem = ILE->isSemanticForm() ? ILE : ILE->getSemanticForm()) \ TRY_TO(WalkUpFrom##CLASS(Sem)); \ } \ break; #include "clang/AST/StmtNodes.inc" }
return true; }
#undef DISPATCH_STMT
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseStmt(Stmt *S, DataRecursionQueue *Queue) { if (!S) return true;
if (Queue) { Queue->push_back({S, false}); return true; }
SmallVector<llvm::PointerIntPair<Stmt *, 1, bool>, 8> LocalQueue; LocalQueue.push_back({S, false});
while (!LocalQueue.empty()) { auto &CurrSAndVisited = LocalQueue.back(); Stmt *CurrS = CurrSAndVisited.getPointer(); bool Visited = CurrSAndVisited.getInt(); if (Visited) { LocalQueue.pop_back(); TRY_TO(dataTraverseStmtPost(CurrS)); if (getDerived().shouldTraversePostOrder()) { TRY_TO(PostVisitStmt(CurrS)); } continue; }
if (getDerived().dataTraverseStmtPre(CurrS)) { CurrSAndVisited.setInt(true); size_t N = LocalQueue.size(); TRY_TO(dataTraverseNode(CurrS, &LocalQueue)); // Process new children in the order they were added. std::reverse(LocalQueue.begin() + N, LocalQueue.end()); } else { LocalQueue.pop_back(); } }
return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseType(QualType T) { if (T.isNull()) return true;
switch (T->getTypeClass()) { #define ABSTRACT_TYPE(CLASS, BASE) #define TYPE(CLASS, BASE) \ case Type::CLASS: \ return getDerived().Traverse##CLASS##Type( \ static_cast<CLASS##Type *>(const_cast<Type *>(T.getTypePtr()))); #include "clang/AST/TypeNodes.inc" }
return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseTypeLoc(TypeLoc TL) { if (TL.isNull()) return true;
switch (TL.getTypeLocClass()) { #define ABSTRACT_TYPELOC(CLASS, BASE) #define TYPELOC(CLASS, BASE) \ case TypeLoc::CLASS: \ return getDerived().Traverse##CLASS##TypeLoc(TL.castAs<CLASS##TypeLoc>()); #include "clang/AST/TypeLocNodes.def" }
return true; }
// Define the Traverse*Attr(Attr* A) methods #define VISITORCLASS RecursiveASTVisitor #include "clang/AST/AttrVisitor.inc" #undef VISITORCLASS
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseDecl(Decl *D) { if (!D) return true;
// As a syntax visitor, by default we want to ignore declarations for // implicit declarations (ones not typed explicitly by the user). if (!getDerived().shouldVisitImplicitCode()) { if (D->isImplicit()) { // For an implicit template type parameter, its type constraints are not // implicit and are not represented anywhere else. We still need to visit // them. if (auto *TTPD = dyn_cast<TemplateTypeParmDecl>(D)) return TraverseTemplateTypeParamDeclConstraints(TTPD); return true; }
// Deduction guides for alias templates are always synthesized, so they // should not be traversed unless shouldVisitImplicitCode() returns true. // // It's important to note that checking the implicit bit is not efficient // for the alias case. For deduction guides synthesized from explicit // user-defined deduction guides, we must maintain the explicit bit to // ensure correct overload resolution. if (auto *FTD = dyn_cast<FunctionTemplateDecl>(D)) if (llvm::isa_and_present<TypeAliasTemplateDecl>( FTD->getDeclName().getCXXDeductionGuideTemplate())) return true; }
switch (D->getKind()) { #define ABSTRACT_DECL(DECL) #define DECL(CLASS, BASE) \ case Decl::CLASS: \ if (!getDerived().Traverse##CLASS##Decl(static_cast<CLASS##Decl *>(D))) \ return false; \ break; #include "clang/AST/DeclNodes.inc" } return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseNestedNameSpecifier( NestedNameSpecifier *NNS) { if (!NNS) return true;
if (NNS->getPrefix()) TRY_TO(TraverseNestedNameSpecifier(NNS->getPrefix()));
switch (NNS->getKind()) { case NestedNameSpecifier::Identifier: case NestedNameSpecifier::Namespace: case NestedNameSpecifier::NamespaceAlias: case NestedNameSpecifier::Global: case NestedNameSpecifier::Super: return true;
case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: TRY_TO(TraverseType(QualType(NNS->getAsType(), 0))); }
return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseNestedNameSpecifierLoc( NestedNameSpecifierLoc NNS) { if (!NNS) return true;
if (NestedNameSpecifierLoc Prefix = NNS.getPrefix()) TRY_TO(TraverseNestedNameSpecifierLoc(Prefix));
switch (NNS.getNestedNameSpecifier()->getKind()) { case NestedNameSpecifier::Identifier: case NestedNameSpecifier::Namespace: case NestedNameSpecifier::NamespaceAlias: case NestedNameSpecifier::Global: case NestedNameSpecifier::Super: return true;
case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: TRY_TO(TraverseTypeLoc(NNS.getTypeLoc())); break; }
return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseDeclarationNameInfo( DeclarationNameInfo NameInfo) { switch (NameInfo.getName().getNameKind()) { case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: if (TypeSourceInfo *TSInfo = NameInfo.getNamedTypeInfo()) TRY_TO(TraverseTypeLoc(TSInfo->getTypeLoc())); break;
case DeclarationName::CXXDeductionGuideName: TRY_TO(TraverseTemplateName( TemplateName(NameInfo.getName().getCXXDeductionGuideTemplate()))); break;
case DeclarationName::Identifier: case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: case DeclarationName::CXXOperatorName: case DeclarationName::CXXLiteralOperatorName: case DeclarationName::CXXUsingDirective: break; }
return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseTemplateName(TemplateName Template) { if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { TRY_TO(TraverseNestedNameSpecifier(DTN->getQualifier())); } else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) { if (QTN->getQualifier()) { TRY_TO(TraverseNestedNameSpecifier(QTN->getQualifier())); } }
return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseTemplateArgument( const TemplateArgument &Arg) { switch (Arg.getKind()) { case TemplateArgument::Null: case TemplateArgument::Declaration: case TemplateArgument::Integral: case TemplateArgument::NullPtr: case TemplateArgument::StructuralValue: return true;
case TemplateArgument::Type: return getDerived().TraverseType(Arg.getAsType());
case TemplateArgument::Template: case TemplateArgument::TemplateExpansion: return getDerived().TraverseTemplateName( Arg.getAsTemplateOrTemplatePattern());
case TemplateArgument::Expression: return getDerived().TraverseStmt(Arg.getAsExpr());
case TemplateArgument::Pack: return getDerived().TraverseTemplateArguments(Arg.pack_elements()); }
return true; }
// FIXME: no template name location? // FIXME: no source locations for a template argument pack? template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseTemplateArgumentLoc( const TemplateArgumentLoc &ArgLoc) { const TemplateArgument &Arg = ArgLoc.getArgument();
switch (Arg.getKind()) { case TemplateArgument::Null: case TemplateArgument::Declaration: case TemplateArgument::Integral: case TemplateArgument::NullPtr: case TemplateArgument::StructuralValue: return true;
case TemplateArgument::Type: { // FIXME: how can TSI ever be NULL? if (TypeSourceInfo *TSI = ArgLoc.getTypeSourceInfo()) return getDerived().TraverseTypeLoc(TSI->getTypeLoc()); else return getDerived().TraverseType(Arg.getAsType()); }
case TemplateArgument::Template: case TemplateArgument::TemplateExpansion: if (ArgLoc.getTemplateQualifierLoc()) TRY_TO(getDerived().TraverseNestedNameSpecifierLoc( ArgLoc.getTemplateQualifierLoc())); return getDerived().TraverseTemplateName( Arg.getAsTemplateOrTemplatePattern());
case TemplateArgument::Expression: return getDerived().TraverseStmt(ArgLoc.getSourceExpression());
case TemplateArgument::Pack: return getDerived().TraverseTemplateArguments(Arg.pack_elements()); }
return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseTemplateArguments( ArrayRef<TemplateArgument> Args) { for (const TemplateArgument &Arg : Args) TRY_TO(TraverseTemplateArgument(Arg));
return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseConstructorInitializer( CXXCtorInitializer *Init) { if (TypeSourceInfo *TInfo = Init->getTypeSourceInfo()) TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc()));
if (Init->isWritten() || getDerived().shouldVisitImplicitCode()) TRY_TO(TraverseStmt(Init->getInit()));
return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseLambdaCapture(LambdaExpr *LE, const LambdaCapture *C, Expr *Init) { if (LE->isInitCapture(C)) TRY_TO(TraverseDecl(C->getCapturedVar())); else TRY_TO(TraverseStmt(Init)); return true; }
// ----------------- Type traversal -----------------
// This macro makes available a variable T, the passed-in type. #define DEF_TRAVERSE_TYPE(TYPE, CODE) \ template <typename Derived> \ bool RecursiveASTVisitor<Derived>::Traverse##TYPE(TYPE *T) { \ if (!getDerived().shouldTraversePostOrder()) \ TRY_TO(WalkUpFrom##TYPE(T)); \ { CODE; } \ if (getDerived().shouldTraversePostOrder()) \ TRY_TO(WalkUpFrom##TYPE(T)); \ return true; \ }
DEF_TRAVERSE_TYPE(BuiltinType, {})
DEF_TRAVERSE_TYPE(ComplexType, { TRY_TO(TraverseType(T->getElementType())); })
DEF_TRAVERSE_TYPE(PointerType, { TRY_TO(TraverseType(T->getPointeeType())); })
DEF_TRAVERSE_TYPE(BlockPointerType, { TRY_TO(TraverseType(T->getPointeeType())); })
DEF_TRAVERSE_TYPE(LValueReferenceType, { TRY_TO(TraverseType(T->getPointeeType())); })
DEF_TRAVERSE_TYPE(RValueReferenceType, { TRY_TO(TraverseType(T->getPointeeType())); })
DEF_TRAVERSE_TYPE(MemberPointerType, { TRY_TO(TraverseType(QualType(T->getClass(), 0))); TRY_TO(TraverseType(T->getPointeeType())); })
DEF_TRAVERSE_TYPE(AdjustedType, { TRY_TO(TraverseType(T->getOriginalType())); })
DEF_TRAVERSE_TYPE(DecayedType, { TRY_TO(TraverseType(T->getOriginalType())); })
DEF_TRAVERSE_TYPE(ConstantArrayType, { TRY_TO(TraverseType(T->getElementType())); if (T->getSizeExpr()) TRY_TO(TraverseStmt(const_cast<Expr*>(T->getSizeExpr()))); })
DEF_TRAVERSE_TYPE(ArrayParameterType, { TRY_TO(TraverseType(T->getElementType())); if (T->getSizeExpr()) TRY_TO(TraverseStmt(const_cast<Expr *>(T->getSizeExpr()))); })
DEF_TRAVERSE_TYPE(IncompleteArrayType, { TRY_TO(TraverseType(T->getElementType())); })
DEF_TRAVERSE_TYPE(VariableArrayType, { TRY_TO(TraverseType(T->getElementType())); TRY_TO(TraverseStmt(T->getSizeExpr())); })
DEF_TRAVERSE_TYPE(DependentSizedArrayType, { TRY_TO(TraverseType(T->getElementType())); if (T->getSizeExpr()) TRY_TO(TraverseStmt(T->getSizeExpr())); })
DEF_TRAVERSE_TYPE(DependentAddressSpaceType, { TRY_TO(TraverseStmt(T->getAddrSpaceExpr())); TRY_TO(TraverseType(T->getPointeeType())); })
DEF_TRAVERSE_TYPE(DependentVectorType, { if (T->getSizeExpr()) TRY_TO(TraverseStmt(T->getSizeExpr())); TRY_TO(TraverseType(T->getElementType())); })
DEF_TRAVERSE_TYPE(DependentSizedExtVectorType, { if (T->getSizeExpr()) TRY_TO(TraverseStmt(T->getSizeExpr())); TRY_TO(TraverseType(T->getElementType())); })
DEF_TRAVERSE_TYPE(VectorType, { TRY_TO(TraverseType(T->getElementType())); })
DEF_TRAVERSE_TYPE(ExtVectorType, { TRY_TO(TraverseType(T->getElementType())); })
DEF_TRAVERSE_TYPE(ConstantMatrixType, { TRY_TO(TraverseType(T->getElementType())); })
DEF_TRAVERSE_TYPE(DependentSizedMatrixType, { if (T->getRowExpr()) TRY_TO(TraverseStmt(T->getRowExpr())); if (T->getColumnExpr()) TRY_TO(TraverseStmt(T->getColumnExpr())); TRY_TO(TraverseType(T->getElementType())); })
DEF_TRAVERSE_TYPE(FunctionNoProtoType, { TRY_TO(TraverseType(T->getReturnType())); })
DEF_TRAVERSE_TYPE(FunctionProtoType, { TRY_TO(TraverseType(T->getReturnType()));
for (const auto &A : T->param_types()) { TRY_TO(TraverseType(A)); }
for (const auto &E : T->exceptions()) { TRY_TO(TraverseType(E)); }
if (Expr *NE = T->getNoexceptExpr()) TRY_TO(TraverseStmt(NE)); })
DEF_TRAVERSE_TYPE(UsingType, {}) DEF_TRAVERSE_TYPE(UnresolvedUsingType, {}) DEF_TRAVERSE_TYPE(TypedefType, {})
DEF_TRAVERSE_TYPE(TypeOfExprType, { TRY_TO(TraverseStmt(T->getUnderlyingExpr())); })
DEF_TRAVERSE_TYPE(TypeOfType, { TRY_TO(TraverseType(T->getUnmodifiedType())); })
DEF_TRAVERSE_TYPE(DecltypeType, { TRY_TO(TraverseStmt(T->getUnderlyingExpr())); })
DEF_TRAVERSE_TYPE(PackIndexingType, { TRY_TO(TraverseType(T->getPattern())); TRY_TO(TraverseStmt(T->getIndexExpr())); })
DEF_TRAVERSE_TYPE(UnaryTransformType, { TRY_TO(TraverseType(T->getBaseType())); TRY_TO(TraverseType(T->getUnderlyingType())); })
DEF_TRAVERSE_TYPE(AutoType, { TRY_TO(TraverseType(T->getDeducedType())); if (T->isConstrained()) { TRY_TO(TraverseTemplateArguments(T->getTypeConstraintArguments())); } }) DEF_TRAVERSE_TYPE(DeducedTemplateSpecializationType, { TRY_TO(TraverseTemplateName(T->getTemplateName())); TRY_TO(TraverseType(T->getDeducedType())); })
DEF_TRAVERSE_TYPE(RecordType, {}) DEF_TRAVERSE_TYPE(EnumType, {}) DEF_TRAVERSE_TYPE(TemplateTypeParmType, {}) DEF_TRAVERSE_TYPE(SubstTemplateTypeParmType, { TRY_TO(TraverseType(T->getReplacementType())); }) DEF_TRAVERSE_TYPE(SubstTemplateTypeParmPackType, { TRY_TO(TraverseTemplateArgument(T->getArgumentPack())); })
DEF_TRAVERSE_TYPE(TemplateSpecializationType, { TRY_TO(TraverseTemplateName(T->getTemplateName())); TRY_TO(TraverseTemplateArguments(T->template_arguments())); })
DEF_TRAVERSE_TYPE(InjectedClassNameType, {})
DEF_TRAVERSE_TYPE(AttributedType, { TRY_TO(TraverseType(T->getModifiedType())); })
DEF_TRAVERSE_TYPE(CountAttributedType, { if (T->getCountExpr()) TRY_TO(TraverseStmt(T->getCountExpr())); TRY_TO(TraverseType(T->desugar())); })
DEF_TRAVERSE_TYPE(BTFTagAttributedType, { TRY_TO(TraverseType(T->getWrappedType())); })
DEF_TRAVERSE_TYPE(ParenType, { TRY_TO(TraverseType(T->getInnerType())); })
DEF_TRAVERSE_TYPE(MacroQualifiedType, { TRY_TO(TraverseType(T->getUnderlyingType())); })
DEF_TRAVERSE_TYPE(ElaboratedType, { if (T->getQualifier()) { TRY_TO(TraverseNestedNameSpecifier(T->getQualifier())); } TRY_TO(TraverseType(T->getNamedType())); })
DEF_TRAVERSE_TYPE(DependentNameType, { TRY_TO(TraverseNestedNameSpecifier(T->getQualifier())); })
DEF_TRAVERSE_TYPE(DependentTemplateSpecializationType, { TRY_TO(TraverseNestedNameSpecifier(T->getQualifier())); TRY_TO(TraverseTemplateArguments(T->template_arguments())); })
DEF_TRAVERSE_TYPE(PackExpansionType, { TRY_TO(TraverseType(T->getPattern())); })
DEF_TRAVERSE_TYPE(ObjCTypeParamType, {})
DEF_TRAVERSE_TYPE(ObjCInterfaceType, {})
DEF_TRAVERSE_TYPE(ObjCObjectType, { // We have to watch out here because an ObjCInterfaceType's base // type is itself. if (T->getBaseType().getTypePtr() != T) TRY_TO(TraverseType(T->getBaseType())); for (auto typeArg : T->getTypeArgsAsWritten()) { TRY_TO(TraverseType(typeArg)); } })
DEF_TRAVERSE_TYPE(ObjCObjectPointerType, { TRY_TO(TraverseType(T->getPointeeType())); })
DEF_TRAVERSE_TYPE(AtomicType, { TRY_TO(TraverseType(T->getValueType())); })
DEF_TRAVERSE_TYPE(PipeType, { TRY_TO(TraverseType(T->getElementType())); })
DEF_TRAVERSE_TYPE(BitIntType, {}) DEF_TRAVERSE_TYPE(DependentBitIntType, { TRY_TO(TraverseStmt(T->getNumBitsExpr())); })
#undef DEF_TRAVERSE_TYPE
// ----------------- TypeLoc traversal -----------------
// This macro makes available a variable TL, the passed-in TypeLoc. // If requested, it calls WalkUpFrom* for the Type in the given TypeLoc, // in addition to WalkUpFrom* for the TypeLoc itself, such that existing // clients that override the WalkUpFrom*Type() and/or Visit*Type() methods // continue to work. #define DEF_TRAVERSE_TYPELOC(TYPE, CODE) \ template <typename Derived> \ bool RecursiveASTVisitor<Derived>::Traverse##TYPE##Loc(TYPE##Loc TL) { \ if (!getDerived().shouldTraversePostOrder()) { \ TRY_TO(WalkUpFrom##TYPE##Loc(TL)); \ if (getDerived().shouldWalkTypesOfTypeLocs()) \ TRY_TO(WalkUpFrom##TYPE(const_cast<TYPE *>(TL.getTypePtr()))); \ } \ { CODE; } \ if (getDerived().shouldTraversePostOrder()) { \ TRY_TO(WalkUpFrom##TYPE##Loc(TL)); \ if (getDerived().shouldWalkTypesOfTypeLocs()) \ TRY_TO(WalkUpFrom##TYPE(const_cast<TYPE *>(TL.getTypePtr()))); \ } \ return true; \ }
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseQualifiedTypeLoc(QualifiedTypeLoc TL) { // Move this over to the 'main' typeloc tree. Note that this is a // move -- we pretend that we were really looking at the unqualified // typeloc all along -- rather than a recursion, so we don't follow // the normal CRTP plan of going through // getDerived().TraverseTypeLoc. If we did, we'd be traversing // twice for the same type (once as a QualifiedTypeLoc version of // the type, once as an UnqualifiedTypeLoc version of the type), // which in effect means we'd call VisitTypeLoc twice with the // 'same' type. This solves that problem, at the cost of never // seeing the qualified version of the type (unless the client // subclasses TraverseQualifiedTypeLoc themselves). It's not a // perfect solution. A perfect solution probably requires making // QualifiedTypeLoc a wrapper around TypeLoc -- like QualType is a // wrapper around Type* -- rather than being its own class in the // type hierarchy. return TraverseTypeLoc(TL.getUnqualifiedLoc()); }
DEF_TRAVERSE_TYPELOC(BuiltinType, {})
// FIXME: ComplexTypeLoc is unfinished DEF_TRAVERSE_TYPELOC(ComplexType, { TRY_TO(TraverseType(TL.getTypePtr()->getElementType())); })
DEF_TRAVERSE_TYPELOC(PointerType, { TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); })
DEF_TRAVERSE_TYPELOC(BlockPointerType, { TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); })
DEF_TRAVERSE_TYPELOC(LValueReferenceType, { TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); })
DEF_TRAVERSE_TYPELOC(RValueReferenceType, { TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); })
// We traverse this in the type case as well, but how is it not reached through // the pointee type? DEF_TRAVERSE_TYPELOC(MemberPointerType, { if (auto *TSI = TL.getClassTInfo()) TRY_TO(TraverseTypeLoc(TSI->getTypeLoc())); else TRY_TO(TraverseType(QualType(TL.getTypePtr()->getClass(), 0))); TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); })
DEF_TRAVERSE_TYPELOC(AdjustedType, { TRY_TO(TraverseTypeLoc(TL.getOriginalLoc())); })
DEF_TRAVERSE_TYPELOC(DecayedType, { TRY_TO(TraverseTypeLoc(TL.getOriginalLoc())); })
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseArrayTypeLocHelper(ArrayTypeLoc TL) { // This isn't available for ArrayType, but is for the ArrayTypeLoc. TRY_TO(TraverseStmt(TL.getSizeExpr())); return true; }
DEF_TRAVERSE_TYPELOC(ConstantArrayType, { TRY_TO(TraverseTypeLoc(TL.getElementLoc())); TRY_TO(TraverseArrayTypeLocHelper(TL)); })
DEF_TRAVERSE_TYPELOC(ArrayParameterType, { TRY_TO(TraverseTypeLoc(TL.getElementLoc())); TRY_TO(TraverseArrayTypeLocHelper(TL)); })
DEF_TRAVERSE_TYPELOC(IncompleteArrayType, { TRY_TO(TraverseTypeLoc(TL.getElementLoc())); TRY_TO(TraverseArrayTypeLocHelper(TL)); })
DEF_TRAVERSE_TYPELOC(VariableArrayType, { TRY_TO(TraverseTypeLoc(TL.getElementLoc())); TRY_TO(TraverseArrayTypeLocHelper(TL)); })
DEF_TRAVERSE_TYPELOC(DependentSizedArrayType, { TRY_TO(TraverseTypeLoc(TL.getElementLoc())); TRY_TO(TraverseArrayTypeLocHelper(TL)); })
DEF_TRAVERSE_TYPELOC(DependentAddressSpaceType, { TRY_TO(TraverseStmt(TL.getTypePtr()->getAddrSpaceExpr())); TRY_TO(TraverseType(TL.getTypePtr()->getPointeeType())); })
// FIXME: order? why not size expr first? // FIXME: base VectorTypeLoc is unfinished DEF_TRAVERSE_TYPELOC(DependentSizedExtVectorType, { if (TL.getTypePtr()->getSizeExpr()) TRY_TO(TraverseStmt(TL.getTypePtr()->getSizeExpr())); TRY_TO(TraverseType(TL.getTypePtr()->getElementType())); })
// FIXME: VectorTypeLoc is unfinished DEF_TRAVERSE_TYPELOC(VectorType, { TRY_TO(TraverseType(TL.getTypePtr()->getElementType())); })
DEF_TRAVERSE_TYPELOC(DependentVectorType, { if (TL.getTypePtr()->getSizeExpr()) TRY_TO(TraverseStmt(TL.getTypePtr()->getSizeExpr())); TRY_TO(TraverseType(TL.getTypePtr()->getElementType())); })
// FIXME: size and attributes // FIXME: base VectorTypeLoc is unfinished DEF_TRAVERSE_TYPELOC(ExtVectorType, { TRY_TO(TraverseType(TL.getTypePtr()->getElementType())); })
DEF_TRAVERSE_TYPELOC(ConstantMatrixType, { TRY_TO(TraverseStmt(TL.getAttrRowOperand())); TRY_TO(TraverseStmt(TL.getAttrColumnOperand())); TRY_TO(TraverseType(TL.getTypePtr()->getElementType())); })
DEF_TRAVERSE_TYPELOC(DependentSizedMatrixType, { TRY_TO(TraverseStmt(TL.getAttrRowOperand())); TRY_TO(TraverseStmt(TL.getAttrColumnOperand())); TRY_TO(TraverseType(TL.getTypePtr()->getElementType())); })
DEF_TRAVERSE_TYPELOC(FunctionNoProtoType, { TRY_TO(TraverseTypeLoc(TL.getReturnLoc())); })
// FIXME: location of exception specifications (attributes?) DEF_TRAVERSE_TYPELOC(FunctionProtoType, { TRY_TO(TraverseTypeLoc(TL.getReturnLoc()));
const FunctionProtoType *T = TL.getTypePtr();
for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) { if (TL.getParam(I)) { TRY_TO(TraverseDecl(TL.getParam(I))); } else if (I < T->getNumParams()) { TRY_TO(TraverseType(T->getParamType(I))); } }
for (const auto &E : T->exceptions()) { TRY_TO(TraverseType(E)); }
if (Expr *NE = T->getNoexceptExpr()) TRY_TO(TraverseStmt(NE)); })
DEF_TRAVERSE_TYPELOC(UsingType, {}) DEF_TRAVERSE_TYPELOC(UnresolvedUsingType, {}) DEF_TRAVERSE_TYPELOC(TypedefType, {})
DEF_TRAVERSE_TYPELOC(TypeOfExprType, { TRY_TO(TraverseStmt(TL.getUnderlyingExpr())); })
DEF_TRAVERSE_TYPELOC(TypeOfType, { TRY_TO(TraverseTypeLoc(TL.getUnmodifiedTInfo()->getTypeLoc())); })
// FIXME: location of underlying expr DEF_TRAVERSE_TYPELOC(DecltypeType, { TRY_TO(TraverseStmt(TL.getTypePtr()->getUnderlyingExpr())); })
DEF_TRAVERSE_TYPELOC(PackIndexingType, { TRY_TO(TraverseType(TL.getPattern())); TRY_TO(TraverseStmt(TL.getTypePtr()->getIndexExpr())); })
DEF_TRAVERSE_TYPELOC(UnaryTransformType, { TRY_TO(TraverseTypeLoc(TL.getUnderlyingTInfo()->getTypeLoc())); })
DEF_TRAVERSE_TYPELOC(AutoType, { TRY_TO(TraverseType(TL.getTypePtr()->getDeducedType())); if (TL.isConstrained()) { TRY_TO(TraverseConceptReference(TL.getConceptReference())); } })
DEF_TRAVERSE_TYPELOC(DeducedTemplateSpecializationType, { TRY_TO(TraverseTemplateName(TL.getTypePtr()->getTemplateName())); TRY_TO(TraverseType(TL.getTypePtr()->getDeducedType())); })
DEF_TRAVERSE_TYPELOC(RecordType, {}) DEF_TRAVERSE_TYPELOC(EnumType, {}) DEF_TRAVERSE_TYPELOC(TemplateTypeParmType, {}) DEF_TRAVERSE_TYPELOC(SubstTemplateTypeParmType, { TRY_TO(TraverseType(TL.getTypePtr()->getReplacementType())); }) DEF_TRAVERSE_TYPELOC(SubstTemplateTypeParmPackType, { TRY_TO(TraverseTemplateArgument(TL.getTypePtr()->getArgumentPack())); })
// FIXME: use the loc for the template name? DEF_TRAVERSE_TYPELOC(TemplateSpecializationType, { TRY_TO(TraverseTemplateName(TL.getTypePtr()->getTemplateName())); for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { TRY_TO(TraverseTemplateArgumentLoc(TL.getArgLoc(I))); } })
DEF_TRAVERSE_TYPELOC(InjectedClassNameType, {})
DEF_TRAVERSE_TYPELOC(ParenType, { TRY_TO(TraverseTypeLoc(TL.getInnerLoc())); })
DEF_TRAVERSE_TYPELOC(MacroQualifiedType, { TRY_TO(TraverseTypeLoc(TL.getInnerLoc())); })
DEF_TRAVERSE_TYPELOC(AttributedType, { TRY_TO(TraverseTypeLoc(TL.getModifiedLoc())); })
DEF_TRAVERSE_TYPELOC(CountAttributedType, { TRY_TO(TraverseTypeLoc(TL.getInnerLoc())); })
DEF_TRAVERSE_TYPELOC(BTFTagAttributedType, { TRY_TO(TraverseTypeLoc(TL.getWrappedLoc())); })
DEF_TRAVERSE_TYPELOC(ElaboratedType, { if (TL.getQualifierLoc()) { TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc())); } TRY_TO(TraverseTypeLoc(TL.getNamedTypeLoc())); })
DEF_TRAVERSE_TYPELOC(DependentNameType, { TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc())); })
DEF_TRAVERSE_TYPELOC(DependentTemplateSpecializationType, { if (TL.getQualifierLoc()) { TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc())); }
for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { TRY_TO(TraverseTemplateArgumentLoc(TL.getArgLoc(I))); } })
DEF_TRAVERSE_TYPELOC(PackExpansionType, { TRY_TO(TraverseTypeLoc(TL.getPatternLoc())); })
DEF_TRAVERSE_TYPELOC(ObjCTypeParamType, { for (unsigned I = 0, N = TL.getNumProtocols(); I != N; ++I) { ObjCProtocolLoc ProtocolLoc(TL.getProtocol(I), TL.getProtocolLoc(I)); TRY_TO(TraverseObjCProtocolLoc(ProtocolLoc)); } })
DEF_TRAVERSE_TYPELOC(ObjCInterfaceType, {})
DEF_TRAVERSE_TYPELOC(ObjCObjectType, { // We have to watch out here because an ObjCInterfaceType's base // type is itself. if (TL.getTypePtr()->getBaseType().getTypePtr() != TL.getTypePtr()) TRY_TO(TraverseTypeLoc(TL.getBaseLoc())); for (unsigned i = 0, n = TL.getNumTypeArgs(); i != n; ++i) TRY_TO(TraverseTypeLoc(TL.getTypeArgTInfo(i)->getTypeLoc())); for (unsigned I = 0, N = TL.getNumProtocols(); I != N; ++I) { ObjCProtocolLoc ProtocolLoc(TL.getProtocol(I), TL.getProtocolLoc(I)); TRY_TO(TraverseObjCProtocolLoc(ProtocolLoc)); } })
DEF_TRAVERSE_TYPELOC(ObjCObjectPointerType, { TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); })
DEF_TRAVERSE_TYPELOC(AtomicType, { TRY_TO(TraverseTypeLoc(TL.getValueLoc())); })
DEF_TRAVERSE_TYPELOC(PipeType, { TRY_TO(TraverseTypeLoc(TL.getValueLoc())); })
DEF_TRAVERSE_TYPELOC(BitIntType, {}) DEF_TRAVERSE_TYPELOC(DependentBitIntType, { TRY_TO(TraverseStmt(TL.getTypePtr()->getNumBitsExpr())); })
#undef DEF_TRAVERSE_TYPELOC
// ----------------- Decl traversal ----------------- // // For a Decl, we automate (in the DEF_TRAVERSE_DECL macro) traversing // the children that come from the DeclContext associated with it. // Therefore each Traverse* only needs to worry about children other // than those.
template <typename Derived> bool RecursiveASTVisitor<Derived>::canIgnoreChildDeclWhileTraversingDeclContext( const Decl *Child) { // BlockDecls are traversed through BlockExprs, // CapturedDecls are traversed through CapturedStmts. if (isa<BlockDecl>(Child) || isa<CapturedDecl>(Child)) return true; // Lambda classes are traversed through LambdaExprs. if (const CXXRecordDecl* Cls = dyn_cast<CXXRecordDecl>(Child)) return Cls->isLambda(); return false; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseDeclContextHelper(DeclContext *DC) { if (!DC) return true;
for (auto *Child : DC->decls()) { if (!canIgnoreChildDeclWhileTraversingDeclContext(Child)) TRY_TO(TraverseDecl(Child)); }
return true; }
// This macro makes available a variable D, the passed-in decl. #define DEF_TRAVERSE_DECL(DECL, CODE) \ template <typename Derived> \ bool RecursiveASTVisitor<Derived>::Traverse##DECL(DECL *D) { \ bool ShouldVisitChildren = true; \ bool ReturnValue = true; \ if (!getDerived().shouldTraversePostOrder()) \ TRY_TO(WalkUpFrom##DECL(D)); \ { CODE; } \ if (ReturnValue && ShouldVisitChildren) \ TRY_TO(TraverseDeclContextHelper(dyn_cast<DeclContext>(D))); \ if (ReturnValue) { \ /* Visit any attributes attached to this declaration. */ \ for (auto *I : D->attrs()) \ TRY_TO(getDerived().TraverseAttr(I)); \ } \ if (ReturnValue && getDerived().shouldTraversePostOrder()) \ TRY_TO(WalkUpFrom##DECL(D)); \ return ReturnValue; \ }
DEF_TRAVERSE_DECL(AccessSpecDecl, {})
DEF_TRAVERSE_DECL(BlockDecl, { if (TypeSourceInfo *TInfo = D->getSignatureAsWritten()) TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc())); TRY_TO(TraverseStmt(D->getBody())); for (const auto &I : D->captures()) { if (I.hasCopyExpr()) { TRY_TO(TraverseStmt(I.getCopyExpr())); } } ShouldVisitChildren = false; })
DEF_TRAVERSE_DECL(CapturedDecl, { TRY_TO(TraverseStmt(D->getBody())); ShouldVisitChildren = false; })
DEF_TRAVERSE_DECL(EmptyDecl, {})
DEF_TRAVERSE_DECL(HLSLBufferDecl, {})
DEF_TRAVERSE_DECL(LifetimeExtendedTemporaryDecl, { TRY_TO(TraverseStmt(D->getTemporaryExpr())); })
DEF_TRAVERSE_DECL(FileScopeAsmDecl, { TRY_TO(TraverseStmt(D->getAsmString())); })
DEF_TRAVERSE_DECL(TopLevelStmtDecl, { TRY_TO(TraverseStmt(D->getStmt())); })
DEF_TRAVERSE_DECL(ImportDecl, {})
DEF_TRAVERSE_DECL(FriendDecl, { // Friend is either decl or a type. if (D->getFriendType()) { TRY_TO(TraverseTypeLoc(D->getFriendType()->getTypeLoc())); // Traverse any CXXRecordDecl owned by this type, since // it will not be in the parent context: if (auto *ET = D->getFriendType()->getType()->getAs<ElaboratedType>()) TRY_TO(TraverseDecl(ET->getOwnedTagDecl())); } else { TRY_TO(TraverseDecl(D->getFriendDecl())); } })
DEF_TRAVERSE_DECL(FriendTemplateDecl, { if (D->getFriendType()) TRY_TO(TraverseTypeLoc(D->getFriendType()->getTypeLoc())); else TRY_TO(TraverseDecl(D->getFriendDecl())); for (unsigned I = 0, E = D->getNumTemplateParameters(); I < E; ++I) { TemplateParameterList *TPL = D->getTemplateParameterList(I); for (TemplateParameterList::iterator ITPL = TPL->begin(), ETPL = TPL->end(); ITPL != ETPL; ++ITPL) { TRY_TO(TraverseDecl(*ITPL)); } } })
DEF_TRAVERSE_DECL(LinkageSpecDecl, {})
DEF_TRAVERSE_DECL(ExportDecl, {})
DEF_TRAVERSE_DECL(ObjCPropertyImplDecl, {// FIXME: implement this })
DEF_TRAVERSE_DECL(StaticAssertDecl, { TRY_TO(TraverseStmt(D->getAssertExpr())); TRY_TO(TraverseStmt(D->getMessage())); })
DEF_TRAVERSE_DECL(TranslationUnitDecl, { // Code in an unnamed namespace shows up automatically in // decls_begin()/decls_end(). Thus we don't need to recurse on // D->getAnonymousNamespace().
// If the traversal scope is set, then consider them to be the children of // the TUDecl, rather than traversing (and loading?) all top-level decls. auto Scope = D->getASTContext().getTraversalScope(); bool HasLimitedScope = Scope.size() != 1 || !isa<TranslationUnitDecl>(Scope.front()); if (HasLimitedScope) { ShouldVisitChildren = false; // we'll do that here instead for (auto *Child : Scope) { if (!canIgnoreChildDeclWhileTraversingDeclContext(Child)) TRY_TO(TraverseDecl(Child)); } } })
DEF_TRAVERSE_DECL(PragmaCommentDecl, {})
DEF_TRAVERSE_DECL(PragmaDetectMismatchDecl, {})
DEF_TRAVERSE_DECL(ExternCContextDecl, {})
DEF_TRAVERSE_DECL(NamespaceAliasDecl, { TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
// We shouldn't traverse an aliased namespace, since it will be // defined (and, therefore, traversed) somewhere else. ShouldVisitChildren = false; })
DEF_TRAVERSE_DECL(LabelDecl, {// There is no code in a LabelDecl. })
DEF_TRAVERSE_DECL( NamespaceDecl, {// Code in an unnamed namespace shows up automatically in // decls_begin()/decls_end(). Thus we don't need to recurse on // D->getAnonymousNamespace(). })
DEF_TRAVERSE_DECL(ObjCCompatibleAliasDecl, {// FIXME: implement })
DEF_TRAVERSE_DECL(ObjCCategoryDecl, { if (ObjCTypeParamList *typeParamList = D->getTypeParamList()) { for (auto typeParam : *typeParamList) { TRY_TO(TraverseObjCTypeParamDecl(typeParam)); } } for (auto It : llvm::zip(D->protocols(), D->protocol_locs())) { ObjCProtocolLoc ProtocolLoc(std::get<0>(It), std::get<1>(It)); TRY_TO(TraverseObjCProtocolLoc(ProtocolLoc)); } })
DEF_TRAVERSE_DECL(ObjCCategoryImplDecl, {// FIXME: implement })
DEF_TRAVERSE_DECL(ObjCImplementationDecl, {// FIXME: implement })
DEF_TRAVERSE_DECL(ObjCInterfaceDecl, { if (ObjCTypeParamList *typeParamList = D->getTypeParamListAsWritten()) { for (auto typeParam : *typeParamList) { TRY_TO(TraverseObjCTypeParamDecl(typeParam)); } }
if (TypeSourceInfo *superTInfo = D->getSuperClassTInfo()) { TRY_TO(TraverseTypeLoc(superTInfo->getTypeLoc())); } if (D->isThisDeclarationADefinition()) { for (auto It : llvm::zip(D->protocols(), D->protocol_locs())) { ObjCProtocolLoc ProtocolLoc(std::get<0>(It), std::get<1>(It)); TRY_TO(TraverseObjCProtocolLoc(ProtocolLoc)); } } })
DEF_TRAVERSE_DECL(ObjCProtocolDecl, { if (D->isThisDeclarationADefinition()) { for (auto It : llvm::zip(D->protocols(), D->protocol_locs())) { ObjCProtocolLoc ProtocolLoc(std::get<0>(It), std::get<1>(It)); TRY_TO(TraverseObjCProtocolLoc(ProtocolLoc)); } } })
DEF_TRAVERSE_DECL(ObjCMethodDecl, { if (D->getReturnTypeSourceInfo()) { TRY_TO(TraverseTypeLoc(D->getReturnTypeSourceInfo()->getTypeLoc())); } for (ParmVarDecl *Parameter : D->parameters()) { TRY_TO(TraverseDecl(Parameter)); } if (D->isThisDeclarationADefinition()) { TRY_TO(TraverseStmt(D->getBody())); } ShouldVisitChildren = false; })
DEF_TRAVERSE_DECL(ObjCTypeParamDecl, { if (D->hasExplicitBound()) { TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc())); // We shouldn't traverse D->getTypeForDecl(); it's a result of // declaring the type alias, not something that was written in the // source. } })
DEF_TRAVERSE_DECL(ObjCPropertyDecl, { if (D->getTypeSourceInfo()) TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc())); else TRY_TO(TraverseType(D->getType())); ShouldVisitChildren = false; })
DEF_TRAVERSE_DECL(UsingDecl, { TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo())); })
DEF_TRAVERSE_DECL(UsingEnumDecl, { TRY_TO(TraverseTypeLoc(D->getEnumTypeLoc())); })
DEF_TRAVERSE_DECL(UsingPackDecl, {})
DEF_TRAVERSE_DECL(UsingDirectiveDecl, { TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); })
DEF_TRAVERSE_DECL(UsingShadowDecl, {})
DEF_TRAVERSE_DECL(ConstructorUsingShadowDecl, {})
DEF_TRAVERSE_DECL(OMPThreadPrivateDecl, { for (auto *I : D->varlists()) { TRY_TO(TraverseStmt(I)); } })
DEF_TRAVERSE_DECL(OMPRequiresDecl, { for (auto *C : D->clauselists()) { TRY_TO(TraverseOMPClause(C)); } })
DEF_TRAVERSE_DECL(OMPDeclareReductionDecl, { TRY_TO(TraverseStmt(D->getCombiner())); if (auto *Initializer = D->getInitializer()) TRY_TO(TraverseStmt(Initializer)); TRY_TO(TraverseType(D->getType())); return true; })
DEF_TRAVERSE_DECL(OMPDeclareMapperDecl, { for (auto *C : D->clauselists()) TRY_TO(TraverseOMPClause(C)); TRY_TO(TraverseType(D->getType())); return true; })
DEF_TRAVERSE_DECL(OMPCapturedExprDecl, { TRY_TO(TraverseVarHelper(D)); })
DEF_TRAVERSE_DECL(OMPAllocateDecl, { for (auto *I : D->varlists()) TRY_TO(TraverseStmt(I)); for (auto *C : D->clauselists()) TRY_TO(TraverseOMPClause(C)); })
// A helper method for TemplateDecl's children. template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseTemplateParameterListHelper( TemplateParameterList *TPL) { if (TPL) { for (NamedDecl *D : *TPL) { TRY_TO(TraverseDecl(D)); } if (Expr *RequiresClause = TPL->getRequiresClause()) { TRY_TO(TraverseStmt(RequiresClause)); } } return true; }
template <typename Derived> template <typename T> bool RecursiveASTVisitor<Derived>::TraverseDeclTemplateParameterLists(T *D) { for (unsigned i = 0; i < D->getNumTemplateParameterLists(); i++) { TemplateParameterList *TPL = D->getTemplateParameterList(i); TraverseTemplateParameterListHelper(TPL); } return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseTemplateInstantiations( ClassTemplateDecl *D) { for (auto *SD : D->specializations()) { for (auto *RD : SD->redecls()) { assert(!cast<CXXRecordDecl>(RD)->isInjectedClassName()); switch ( cast<ClassTemplateSpecializationDecl>(RD)->getSpecializationKind()) { // Visit the implicit instantiations with the requested pattern. case TSK_Undeclared: case TSK_ImplicitInstantiation: TRY_TO(TraverseDecl(RD)); break;
// We don't need to do anything on an explicit instantiation // or explicit specialization because there will be an explicit // node for it elsewhere. case TSK_ExplicitInstantiationDeclaration: case TSK_ExplicitInstantiationDefinition: case TSK_ExplicitSpecialization: break; } } }
return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseTemplateInstantiations( VarTemplateDecl *D) { for (auto *SD : D->specializations()) { for (auto *RD : SD->redecls()) { switch ( cast<VarTemplateSpecializationDecl>(RD)->getSpecializationKind()) { case TSK_Undeclared: case TSK_ImplicitInstantiation: TRY_TO(TraverseDecl(RD)); break;
case TSK_ExplicitInstantiationDeclaration: case TSK_ExplicitInstantiationDefinition: case TSK_ExplicitSpecialization: break; } } }
return true; }
// A helper method for traversing the instantiations of a // function while skipping its specializations. template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseTemplateInstantiations( FunctionTemplateDecl *D) { for (auto *FD : D->specializations()) { for (auto *RD : FD->redecls()) { switch (RD->getTemplateSpecializationKind()) { case TSK_Undeclared: case TSK_ImplicitInstantiation: // We don't know what kind of FunctionDecl this is. TRY_TO(TraverseDecl(RD)); break;
// FIXME: For now traverse explicit instantiations here. Change that // once they are represented as dedicated nodes in the AST. case TSK_ExplicitInstantiationDeclaration: case TSK_ExplicitInstantiationDefinition: TRY_TO(TraverseDecl(RD)); break;
case TSK_ExplicitSpecialization: break; } } }
return true; }
// This macro unifies the traversal of class, variable and function // template declarations. #define DEF_TRAVERSE_TMPL_DECL(TMPLDECLKIND) \ DEF_TRAVERSE_DECL(TMPLDECLKIND##TemplateDecl, { \ TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters())); \ TRY_TO(TraverseDecl(D->getTemplatedDecl())); \ \ /* By default, we do not traverse the instantiations of \ class templates since they do not appear in the user code. The \ following code optionally traverses them. \ \ We only traverse the class instantiations when we see the canonical \ declaration of the template, to ensure we only visit them once. */ \ if (getDerived().shouldVisitTemplateInstantiations() && \ D == D->getCanonicalDecl()) \ TRY_TO(TraverseTemplateInstantiations(D)); \ \ /* Note that getInstantiatedFromMemberTemplate() is just a link \ from a template instantiation back to the template from which \ it was instantiated, and thus should not be traversed. */ \ })
DEF_TRAVERSE_TMPL_DECL(Class) DEF_TRAVERSE_TMPL_DECL(Var) DEF_TRAVERSE_TMPL_DECL(Function)
DEF_TRAVERSE_DECL(TemplateTemplateParmDecl, { // D is the "T" in something like // template <template <typename> class T> class container { }; TRY_TO(TraverseDecl(D->getTemplatedDecl())); if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) TRY_TO(TraverseTemplateArgumentLoc(D->getDefaultArgument())); TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters())); })
DEF_TRAVERSE_DECL(BuiltinTemplateDecl, { TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters())); })
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseTemplateTypeParamDeclConstraints( const TemplateTypeParmDecl *D) { if (const auto *TC = D->getTypeConstraint()) TRY_TO(TraverseTypeConstraint(TC)); return true; }
DEF_TRAVERSE_DECL(TemplateTypeParmDecl, { // D is the "T" in something like "template<typename T> class vector;" if (D->getTypeForDecl()) TRY_TO(TraverseType(QualType(D->getTypeForDecl(), 0))); TRY_TO(TraverseTemplateTypeParamDeclConstraints(D)); if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) TRY_TO(TraverseTemplateArgumentLoc(D->getDefaultArgument())); })
DEF_TRAVERSE_DECL(TypedefDecl, { TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc())); // We shouldn't traverse D->getTypeForDecl(); it's a result of // declaring the typedef, not something that was written in the // source. })
DEF_TRAVERSE_DECL(TypeAliasDecl, { TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc())); // We shouldn't traverse D->getTypeForDecl(); it's a result of // declaring the type alias, not something that was written in the // source. })
DEF_TRAVERSE_DECL(TypeAliasTemplateDecl, { TRY_TO(TraverseDecl(D->getTemplatedDecl())); TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters())); })
DEF_TRAVERSE_DECL(ConceptDecl, { TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters())); TRY_TO(TraverseStmt(D->getConstraintExpr())); })
DEF_TRAVERSE_DECL(UnresolvedUsingTypenameDecl, { // A dependent using declaration which was marked with 'typename'. // template<class T> class A : public B<T> { using typename B<T>::foo; }; TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); // We shouldn't traverse D->getTypeForDecl(); it's a result of // declaring the type, not something that was written in the // source. })
DEF_TRAVERSE_DECL(UnresolvedUsingIfExistsDecl, {})
DEF_TRAVERSE_DECL(EnumDecl, { TRY_TO(TraverseDeclTemplateParameterLists(D));
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); if (auto *TSI = D->getIntegerTypeSourceInfo()) TRY_TO(TraverseTypeLoc(TSI->getTypeLoc())); // The enumerators are already traversed by // decls_begin()/decls_end(). })
// Helper methods for RecordDecl and its children. template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseRecordHelper(RecordDecl *D) { // We shouldn't traverse D->getTypeForDecl(); it's a result of // declaring the type, not something that was written in the source.
TRY_TO(TraverseDeclTemplateParameterLists(D)); TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseCXXBaseSpecifier( const CXXBaseSpecifier &Base) { TRY_TO(TraverseTypeLoc(Base.getTypeSourceInfo()->getTypeLoc())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseCXXRecordHelper(CXXRecordDecl *D) { if (!TraverseRecordHelper(D)) return false; if (D->isCompleteDefinition()) { for (const auto &I : D->bases()) { TRY_TO(TraverseCXXBaseSpecifier(I)); } // We don't traverse the friends or the conversions, as they are // already in decls_begin()/decls_end(). } return true; }
DEF_TRAVERSE_DECL(RecordDecl, { TRY_TO(TraverseRecordHelper(D)); })
DEF_TRAVERSE_DECL(CXXRecordDecl, { TRY_TO(TraverseCXXRecordHelper(D)); })
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseTemplateArgumentLocsHelper( const TemplateArgumentLoc *TAL, unsigned Count) { for (unsigned I = 0; I < Count; ++I) { TRY_TO(TraverseTemplateArgumentLoc(TAL[I])); } return true; }
#define DEF_TRAVERSE_TMPL_SPEC_DECL(TMPLDECLKIND, DECLKIND) \ DEF_TRAVERSE_DECL(TMPLDECLKIND##TemplateSpecializationDecl, { \ /* For implicit instantiations ("set<int> x;"), we don't want to \ recurse at all, since the instatiated template isn't written in \ the source code anywhere. (Note the instatiated *type* -- \ set<int> -- is written, and will still get a callback of \ TemplateSpecializationType). For explicit instantiations \ ("template set<int>;"), we do need a callback, since this \ is the only callback that's made for this instantiation. \ We use getTemplateArgsAsWritten() to distinguish. */ \ if (const auto *ArgsWritten = D->getTemplateArgsAsWritten()) { \ /* The args that remains unspecialized. */ \ TRY_TO(TraverseTemplateArgumentLocsHelper( \ ArgsWritten->getTemplateArgs(), ArgsWritten->NumTemplateArgs)); \ } \ \ if (getDerived().shouldVisitTemplateInstantiations() || \ D->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) { \ /* Traverse base definition for explicit specializations */ \ TRY_TO(Traverse##DECLKIND##Helper(D)); \ } else { \ TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); \ \ /* Returning from here skips traversing the \ declaration context of the *TemplateSpecializationDecl \ (embedded in the DEF_TRAVERSE_DECL() macro) \ which contains the instantiated members of the template. */ \ return true; \ } \ })
DEF_TRAVERSE_TMPL_SPEC_DECL(Class, CXXRecord) DEF_TRAVERSE_TMPL_SPEC_DECL(Var, Var)
#define DEF_TRAVERSE_TMPL_PART_SPEC_DECL(TMPLDECLKIND, DECLKIND) \ DEF_TRAVERSE_DECL(TMPLDECLKIND##TemplatePartialSpecializationDecl, { \ /* The partial specialization. */ \ TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters())); \ /* The args that remains unspecialized. */ \ TRY_TO(TraverseTemplateArgumentLocsHelper( \ D->getTemplateArgsAsWritten()->getTemplateArgs(), \ D->getTemplateArgsAsWritten()->NumTemplateArgs)); \ \ /* Don't need the *TemplatePartialSpecializationHelper, even \ though that's our parent class -- we already visit all the \ template args here. */ \ TRY_TO(Traverse##DECLKIND##Helper(D)); \ \ /* Instantiations will have been visited with the primary template. */ \ })
DEF_TRAVERSE_TMPL_PART_SPEC_DECL(Class, CXXRecord) DEF_TRAVERSE_TMPL_PART_SPEC_DECL(Var, Var)
DEF_TRAVERSE_DECL(EnumConstantDecl, { TRY_TO(TraverseStmt(D->getInitExpr())); })
DEF_TRAVERSE_DECL(UnresolvedUsingValueDecl, { // Like UnresolvedUsingTypenameDecl, but without the 'typename': // template <class T> Class A : public Base<T> { using Base<T>::foo; }; TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo())); })
DEF_TRAVERSE_DECL(IndirectFieldDecl, {})
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseDeclaratorHelper(DeclaratorDecl *D) { TRY_TO(TraverseDeclTemplateParameterLists(D)); TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); if (D->getTypeSourceInfo()) TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc())); else TRY_TO(TraverseType(D->getType())); return true; }
DEF_TRAVERSE_DECL(DecompositionDecl, { TRY_TO(TraverseVarHelper(D)); for (auto *Binding : D->bindings()) { TRY_TO(TraverseDecl(Binding)); } })
DEF_TRAVERSE_DECL(BindingDecl, { if (getDerived().shouldVisitImplicitCode()) TRY_TO(TraverseStmt(D->getBinding())); })
DEF_TRAVERSE_DECL(MSPropertyDecl, { TRY_TO(TraverseDeclaratorHelper(D)); })
DEF_TRAVERSE_DECL(MSGuidDecl, {}) DEF_TRAVERSE_DECL(UnnamedGlobalConstantDecl, {})
DEF_TRAVERSE_DECL(TemplateParamObjectDecl, {})
DEF_TRAVERSE_DECL(FieldDecl, { TRY_TO(TraverseDeclaratorHelper(D)); if (D->isBitField()) TRY_TO(TraverseStmt(D->getBitWidth())); if (D->hasInClassInitializer()) TRY_TO(TraverseStmt(D->getInClassInitializer())); })
DEF_TRAVERSE_DECL(ObjCAtDefsFieldDecl, { TRY_TO(TraverseDeclaratorHelper(D)); if (D->isBitField()) TRY_TO(TraverseStmt(D->getBitWidth())); // FIXME: implement the rest. })
DEF_TRAVERSE_DECL(ObjCIvarDecl, { TRY_TO(TraverseDeclaratorHelper(D)); if (D->isBitField()) TRY_TO(TraverseStmt(D->getBitWidth())); // FIXME: implement the rest. })
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseFunctionHelper(FunctionDecl *D) { TRY_TO(TraverseDeclTemplateParameterLists(D)); TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo()));
// If we're an explicit template specialization, iterate over the // template args that were explicitly specified. If we were doing // this in typing order, we'd do it between the return type and // the function args, but both are handled by the FunctionTypeLoc // above, so we have to choose one side. I've decided to do before. if (const FunctionTemplateSpecializationInfo *FTSI = D->getTemplateSpecializationInfo()) { if (FTSI->getTemplateSpecializationKind() != TSK_Undeclared && FTSI->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) { // A specialization might not have explicit template arguments if it has // a templated return type and concrete arguments. if (const ASTTemplateArgumentListInfo *TALI = FTSI->TemplateArgumentsAsWritten) { TRY_TO(TraverseTemplateArgumentLocsHelper(TALI->getTemplateArgs(), TALI->NumTemplateArgs)); } } } else if (const DependentFunctionTemplateSpecializationInfo *DFSI = D->getDependentSpecializationInfo()) { if (const ASTTemplateArgumentListInfo *TALI = DFSI->TemplateArgumentsAsWritten) { TRY_TO(TraverseTemplateArgumentLocsHelper(TALI->getTemplateArgs(), TALI->NumTemplateArgs)); } }
// Visit the function type itself, which can be either // FunctionNoProtoType or FunctionProtoType, or a typedef. This // also covers the return type and the function parameters, // including exception specifications. if (TypeSourceInfo *TSI = D->getTypeSourceInfo()) { TRY_TO(TraverseTypeLoc(TSI->getTypeLoc())); } else if (getDerived().shouldVisitImplicitCode()) { // Visit parameter variable declarations of the implicit function // if the traverser is visiting implicit code. Parameter variable // declarations do not have valid TypeSourceInfo, so to visit them // we need to traverse the declarations explicitly. for (ParmVarDecl *Parameter : D->parameters()) { TRY_TO(TraverseDecl(Parameter)); } }
// Visit the trailing requires clause, if any. if (Expr *TrailingRequiresClause = D->getTrailingRequiresClause()) { TRY_TO(TraverseStmt(TrailingRequiresClause)); }
if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(D)) { // Constructor initializers. for (auto *I : Ctor->inits()) { if (I->isWritten() || getDerived().shouldVisitImplicitCode()) TRY_TO(TraverseConstructorInitializer(I)); } }
bool VisitBody = D->isThisDeclarationADefinition() && // Don't visit the function body if the function definition is generated // by clang. (!D->isDefaulted() || getDerived().shouldVisitImplicitCode());
if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { if (const CXXRecordDecl *RD = MD->getParent()) { if (RD->isLambda() && declaresSameEntity(RD->getLambdaCallOperator(), MD)) { VisitBody = VisitBody && getDerived().shouldVisitLambdaBody(); } } }
if (VisitBody) { TRY_TO(TraverseStmt(D->getBody())); // Body may contain using declarations whose shadows are parented to the // FunctionDecl itself. for (auto *Child : D->decls()) { if (isa<UsingShadowDecl>(Child)) TRY_TO(TraverseDecl(Child)); } } return true; }
DEF_TRAVERSE_DECL(FunctionDecl, { // We skip decls_begin/decls_end, which are already covered by // TraverseFunctionHelper(). ShouldVisitChildren = false; ReturnValue = TraverseFunctionHelper(D); })
DEF_TRAVERSE_DECL(CXXDeductionGuideDecl, { // We skip decls_begin/decls_end, which are already covered by // TraverseFunctionHelper(). ShouldVisitChildren = false; ReturnValue = TraverseFunctionHelper(D); })
DEF_TRAVERSE_DECL(CXXMethodDecl, { // We skip decls_begin/decls_end, which are already covered by // TraverseFunctionHelper(). ShouldVisitChildren = false; ReturnValue = TraverseFunctionHelper(D); })
DEF_TRAVERSE_DECL(CXXConstructorDecl, { // We skip decls_begin/decls_end, which are already covered by // TraverseFunctionHelper(). ShouldVisitChildren = false; ReturnValue = TraverseFunctionHelper(D); })
// CXXConversionDecl is the declaration of a type conversion operator. // It's not a cast expression. DEF_TRAVERSE_DECL(CXXConversionDecl, { // We skip decls_begin/decls_end, which are already covered by // TraverseFunctionHelper(). ShouldVisitChildren = false; ReturnValue = TraverseFunctionHelper(D); })
DEF_TRAVERSE_DECL(CXXDestructorDecl, { // We skip decls_begin/decls_end, which are already covered by // TraverseFunctionHelper(). ShouldVisitChildren = false; ReturnValue = TraverseFunctionHelper(D); })
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseVarHelper(VarDecl *D) { TRY_TO(TraverseDeclaratorHelper(D)); // Default params are taken care of when we traverse the ParmVarDecl. if (!isa<ParmVarDecl>(D) && (!D->isCXXForRangeDecl() || getDerived().shouldVisitImplicitCode())) TRY_TO(TraverseStmt(D->getInit())); return true; }
DEF_TRAVERSE_DECL(VarDecl, { TRY_TO(TraverseVarHelper(D)); })
DEF_TRAVERSE_DECL(ImplicitParamDecl, { TRY_TO(TraverseVarHelper(D)); })
DEF_TRAVERSE_DECL(NonTypeTemplateParmDecl, { // A non-type template parameter, e.g. "S" in template<int S> class Foo ... TRY_TO(TraverseDeclaratorHelper(D)); if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) TRY_TO(TraverseTemplateArgumentLoc(D->getDefaultArgument())); })
DEF_TRAVERSE_DECL(ParmVarDecl, { TRY_TO(TraverseVarHelper(D));
if (D->hasDefaultArg() && D->hasUninstantiatedDefaultArg() && !D->hasUnparsedDefaultArg()) TRY_TO(TraverseStmt(D->getUninstantiatedDefaultArg()));
if (D->hasDefaultArg() && !D->hasUninstantiatedDefaultArg() && !D->hasUnparsedDefaultArg()) TRY_TO(TraverseStmt(D->getDefaultArg())); })
DEF_TRAVERSE_DECL(RequiresExprBodyDecl, {})
DEF_TRAVERSE_DECL(ImplicitConceptSpecializationDecl, { TRY_TO(TraverseTemplateArguments(D->getTemplateArguments())); })
#undef DEF_TRAVERSE_DECL
// ----------------- Stmt traversal ----------------- // // For stmts, we automate (in the DEF_TRAVERSE_STMT macro) iterating // over the children defined in children() (every stmt defines these, // though sometimes the range is empty). Each individual Traverse* // method only needs to worry about children other than those. To see // what children() does for a given class, see, e.g., // http://clang.llvm.org/doxygen/Stmt_8cpp_source.html
// This macro makes available a variable S, the passed-in stmt. #define DEF_TRAVERSE_STMT(STMT, CODE) \ template <typename Derived> \ bool RecursiveASTVisitor<Derived>::Traverse##STMT( \ STMT *S, DataRecursionQueue *Queue) { \ bool ShouldVisitChildren = true; \ bool ReturnValue = true; \ if (!getDerived().shouldTraversePostOrder()) \ TRY_TO(WalkUpFrom##STMT(S)); \ { CODE; } \ if (ShouldVisitChildren) { \ for (Stmt * SubStmt : getDerived().getStmtChildren(S)) { \ TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(SubStmt); \ } \ } \ /* Call WalkUpFrom if TRY_TO_TRAVERSE_OR_ENQUEUE_STMT has traversed the \ * children already. If TRY_TO_TRAVERSE_OR_ENQUEUE_STMT only enqueued the \ * children, PostVisitStmt will call WalkUpFrom after we are done visiting \ * children. */ \ if (!Queue && ReturnValue && getDerived().shouldTraversePostOrder()) { \ TRY_TO(WalkUpFrom##STMT(S)); \ } \ return ReturnValue; \ }
DEF_TRAVERSE_STMT(GCCAsmStmt, { TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getAsmString()); for (unsigned I = 0, E = S->getNumInputs(); I < E; ++I) { TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getInputConstraintLiteral(I)); } for (unsigned I = 0, E = S->getNumOutputs(); I < E; ++I) { TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getOutputConstraintLiteral(I)); } for (unsigned I = 0, E = S->getNumClobbers(); I < E; ++I) { TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getClobberStringLiteral(I)); } // children() iterates over inputExpr and outputExpr. })
DEF_TRAVERSE_STMT( MSAsmStmt, {// FIXME: MS Asm doesn't currently parse Constraints, Clobbers, etc. Once // added this needs to be implemented. })
DEF_TRAVERSE_STMT(CXXCatchStmt, { TRY_TO(TraverseDecl(S->getExceptionDecl())); // children() iterates over the handler block. })
DEF_TRAVERSE_STMT(DeclStmt, { for (auto *I : S->decls()) { TRY_TO(TraverseDecl(I)); } // Suppress the default iteration over children() by // returning. Here's why: A DeclStmt looks like 'type var [= // initializer]'. The decls above already traverse over the // initializers, so we don't have to do it again (which // children() would do). ShouldVisitChildren = false; })
// These non-expr stmts (most of them), do not need any action except // iterating over the children. DEF_TRAVERSE_STMT(BreakStmt, {}) DEF_TRAVERSE_STMT(CXXTryStmt, {}) DEF_TRAVERSE_STMT(CaseStmt, {}) DEF_TRAVERSE_STMT(CompoundStmt, {}) DEF_TRAVERSE_STMT(ContinueStmt, {}) DEF_TRAVERSE_STMT(DefaultStmt, {}) DEF_TRAVERSE_STMT(DoStmt, {}) DEF_TRAVERSE_STMT(ForStmt, {}) DEF_TRAVERSE_STMT(GotoStmt, {}) DEF_TRAVERSE_STMT(IfStmt, {}) DEF_TRAVERSE_STMT(IndirectGotoStmt, {}) DEF_TRAVERSE_STMT(LabelStmt, {}) DEF_TRAVERSE_STMT(AttributedStmt, {}) DEF_TRAVERSE_STMT(NullStmt, {}) DEF_TRAVERSE_STMT(ObjCAtCatchStmt, {}) DEF_TRAVERSE_STMT(ObjCAtFinallyStmt, {}) DEF_TRAVERSE_STMT(ObjCAtSynchronizedStmt, {}) DEF_TRAVERSE_STMT(ObjCAtThrowStmt, {}) DEF_TRAVERSE_STMT(ObjCAtTryStmt, {}) DEF_TRAVERSE_STMT(ObjCForCollectionStmt, {}) DEF_TRAVERSE_STMT(ObjCAutoreleasePoolStmt, {})
DEF_TRAVERSE_STMT(CXXForRangeStmt, { if (!getDerived().shouldVisitImplicitCode()) { if (S->getInit()) TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getInit()); TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getLoopVarStmt()); TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getRangeInit()); TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getBody()); // Visit everything else only if shouldVisitImplicitCode(). ShouldVisitChildren = false; } })
DEF_TRAVERSE_STMT(MSDependentExistsStmt, { TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo())); })
DEF_TRAVERSE_STMT(ReturnStmt, {}) DEF_TRAVERSE_STMT(SwitchStmt, {}) DEF_TRAVERSE_STMT(WhileStmt, {})
DEF_TRAVERSE_STMT(ConstantExpr, {})
DEF_TRAVERSE_STMT(CXXDependentScopeMemberExpr, { TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); TRY_TO(TraverseDeclarationNameInfo(S->getMemberNameInfo())); if (S->hasExplicitTemplateArgs()) { TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(), S->getNumTemplateArgs())); } })
DEF_TRAVERSE_STMT(DeclRefExpr, { TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo())); TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(), S->getNumTemplateArgs())); })
DEF_TRAVERSE_STMT(DependentScopeDeclRefExpr, { TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo())); if (S->hasExplicitTemplateArgs()) { TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(), S->getNumTemplateArgs())); } })
DEF_TRAVERSE_STMT(MemberExpr, { TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); TRY_TO(TraverseDeclarationNameInfo(S->getMemberNameInfo())); TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(), S->getNumTemplateArgs())); })
DEF_TRAVERSE_STMT( ImplicitCastExpr, {// We don't traverse the cast type, as it's not written in the // source code. })
DEF_TRAVERSE_STMT(CStyleCastExpr, { TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); })
DEF_TRAVERSE_STMT(CXXFunctionalCastExpr, { TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); })
DEF_TRAVERSE_STMT(CXXAddrspaceCastExpr, { TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); })
DEF_TRAVERSE_STMT(CXXConstCastExpr, { TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); })
DEF_TRAVERSE_STMT(CXXDynamicCastExpr, { TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); })
DEF_TRAVERSE_STMT(CXXReinterpretCastExpr, { TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); })
DEF_TRAVERSE_STMT(CXXStaticCastExpr, { TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); })
DEF_TRAVERSE_STMT(BuiltinBitCastExpr, { TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); })
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseSynOrSemInitListExpr( InitListExpr *S, DataRecursionQueue *Queue) { if (S) { // Skip this if we traverse postorder. We will visit it later // in PostVisitStmt. if (!getDerived().shouldTraversePostOrder()) TRY_TO(WalkUpFromInitListExpr(S));
// All we need are the default actions. FIXME: use a helper function. for (Stmt *SubStmt : S->children()) { TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(SubStmt); }
if (!Queue && getDerived().shouldTraversePostOrder()) TRY_TO(WalkUpFromInitListExpr(S)); } return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseObjCProtocolLoc( ObjCProtocolLoc ProtocolLoc) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseConceptReference( ConceptReference *CR) { if (!getDerived().shouldTraversePostOrder()) TRY_TO(VisitConceptReference(CR)); TRY_TO(TraverseNestedNameSpecifierLoc(CR->getNestedNameSpecifierLoc())); TRY_TO(TraverseDeclarationNameInfo(CR->getConceptNameInfo())); if (CR->hasExplicitTemplateArgs()) TRY_TO(TraverseTemplateArgumentLocsHelper( CR->getTemplateArgsAsWritten()->getTemplateArgs(), CR->getTemplateArgsAsWritten()->NumTemplateArgs)); if (getDerived().shouldTraversePostOrder()) TRY_TO(VisitConceptReference(CR)); return true; }
// If shouldVisitImplicitCode() returns false, this method traverses only the // syntactic form of InitListExpr. // If shouldVisitImplicitCode() return true, this method is called once for // each pair of syntactic and semantic InitListExpr, and it traverses the // subtrees defined by the two forms. This may cause some of the children to be // visited twice, if they appear both in the syntactic and the semantic form. // // There is no guarantee about which form \p S takes when this method is called. template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseInitListExpr( InitListExpr *S, DataRecursionQueue *Queue) { if (S->isSemanticForm() && S->isSyntacticForm()) { // `S` does not have alternative forms, traverse only once. TRY_TO(TraverseSynOrSemInitListExpr(S, Queue)); return true; } TRY_TO(TraverseSynOrSemInitListExpr( S->isSemanticForm() ? S->getSyntacticForm() : S, Queue)); if (getDerived().shouldVisitImplicitCode()) { // Only visit the semantic form if the clients are interested in implicit // compiler-generated. TRY_TO(TraverseSynOrSemInitListExpr( S->isSemanticForm() ? S : S->getSemanticForm(), Queue)); } return true; }
// GenericSelectionExpr is a special case because the types and expressions // are interleaved. We also need to watch out for null types (default // generic associations). DEF_TRAVERSE_STMT(GenericSelectionExpr, { if (S->isExprPredicate()) TRY_TO(TraverseStmt(S->getControllingExpr())); else TRY_TO(TraverseTypeLoc(S->getControllingType()->getTypeLoc()));
for (const GenericSelectionExpr::Association Assoc : S->associations()) { if (TypeSourceInfo *TSI = Assoc.getTypeSourceInfo()) TRY_TO(TraverseTypeLoc(TSI->getTypeLoc())); TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(Assoc.getAssociationExpr()); } ShouldVisitChildren = false; })
// PseudoObjectExpr is a special case because of the weirdness with // syntactic expressions and opaque values. DEF_TRAVERSE_STMT(PseudoObjectExpr, { TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getSyntacticForm()); for (PseudoObjectExpr::semantics_iterator i = S->semantics_begin(), e = S->semantics_end(); i != e; ++i) { Expr *sub = *i; if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(sub)) sub = OVE->getSourceExpr(); TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(sub); } ShouldVisitChildren = false; })
DEF_TRAVERSE_STMT(CXXScalarValueInitExpr, { // This is called for code like 'return T()' where T is a built-in // (i.e. non-class) type. TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc())); })
DEF_TRAVERSE_STMT(CXXNewExpr, { // The child-iterator will pick up the other arguments. TRY_TO(TraverseTypeLoc(S->getAllocatedTypeSourceInfo()->getTypeLoc())); })
DEF_TRAVERSE_STMT(OffsetOfExpr, { // The child-iterator will pick up the expression representing // the field. // FIMXE: for code like offsetof(Foo, a.b.c), should we get // making a MemberExpr callbacks for Foo.a, Foo.a.b, and Foo.a.b.c? TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc())); })
DEF_TRAVERSE_STMT(UnaryExprOrTypeTraitExpr, { // The child-iterator will pick up the arg if it's an expression, // but not if it's a type. if (S->isArgumentType()) TRY_TO(TraverseTypeLoc(S->getArgumentTypeInfo()->getTypeLoc())); })
DEF_TRAVERSE_STMT(CXXTypeidExpr, { // The child-iterator will pick up the arg if it's an expression, // but not if it's a type. if (S->isTypeOperand()) TRY_TO(TraverseTypeLoc(S->getTypeOperandSourceInfo()->getTypeLoc())); })
DEF_TRAVERSE_STMT(MSPropertyRefExpr, { TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); })
DEF_TRAVERSE_STMT(MSPropertySubscriptExpr, {})
DEF_TRAVERSE_STMT(CXXUuidofExpr, { // The child-iterator will pick up the arg if it's an expression, // but not if it's a type. if (S->isTypeOperand()) TRY_TO(TraverseTypeLoc(S->getTypeOperandSourceInfo()->getTypeLoc())); })
DEF_TRAVERSE_STMT(TypeTraitExpr, { for (unsigned I = 0, N = S->getNumArgs(); I != N; ++I) TRY_TO(TraverseTypeLoc(S->getArg(I)->getTypeLoc())); })
DEF_TRAVERSE_STMT(ArrayTypeTraitExpr, { TRY_TO(TraverseTypeLoc(S->getQueriedTypeSourceInfo()->getTypeLoc())); })
DEF_TRAVERSE_STMT(ExpressionTraitExpr, { TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getQueriedExpression()); })
DEF_TRAVERSE_STMT(VAArgExpr, { // The child-iterator will pick up the expression argument. TRY_TO(TraverseTypeLoc(S->getWrittenTypeInfo()->getTypeLoc())); })
DEF_TRAVERSE_STMT(CXXTemporaryObjectExpr, { // This is called for code like 'return T()' where T is a class type. TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc())); })
// Walk only the visible parts of lambda expressions. DEF_TRAVERSE_STMT(LambdaExpr, { // Visit the capture list. for (unsigned I = 0, N = S->capture_size(); I != N; ++I) { const LambdaCapture *C = S->capture_begin() + I; if (C->isExplicit() || getDerived().shouldVisitImplicitCode()) { TRY_TO(TraverseLambdaCapture(S, C, S->capture_init_begin()[I])); } }
if (getDerived().shouldVisitImplicitCode()) { // The implicit model is simple: everything else is in the lambda class. TRY_TO(TraverseDecl(S->getLambdaClass())); } else { // We need to poke around to find the bits that might be explicitly written. TypeLoc TL = S->getCallOperator()->getTypeSourceInfo()->getTypeLoc(); FunctionProtoTypeLoc Proto = TL.getAsAdjusted<FunctionProtoTypeLoc>();
TRY_TO(TraverseTemplateParameterListHelper(S->getTemplateParameterList())); if (S->hasExplicitParameters()) { // Visit parameters. for (unsigned I = 0, N = Proto.getNumParams(); I != N; ++I) TRY_TO(TraverseDecl(Proto.getParam(I))); }
auto *T = Proto.getTypePtr(); for (const auto &E : T->exceptions()) TRY_TO(TraverseType(E));
if (Expr *NE = T->getNoexceptExpr()) TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(NE);
if (S->hasExplicitResultType()) TRY_TO(TraverseTypeLoc(Proto.getReturnLoc())); TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getTrailingRequiresClause());
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getBody()); } ShouldVisitChildren = false; })
DEF_TRAVERSE_STMT(CXXUnresolvedConstructExpr, { // This is called for code like 'T()', where T is a template argument. TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc())); })
// These expressions all might take explicit template arguments. // We traverse those if so. FIXME: implement these. DEF_TRAVERSE_STMT(CXXConstructExpr, {}) DEF_TRAVERSE_STMT(CallExpr, {}) DEF_TRAVERSE_STMT(CXXMemberCallExpr, {})
// These exprs (most of them), do not need any action except iterating // over the children. DEF_TRAVERSE_STMT(AddrLabelExpr, {}) DEF_TRAVERSE_STMT(ArraySubscriptExpr, {}) DEF_TRAVERSE_STMT(MatrixSubscriptExpr, {}) DEF_TRAVERSE_STMT(ArraySectionExpr, {}) DEF_TRAVERSE_STMT(OMPArrayShapingExpr, {}) DEF_TRAVERSE_STMT(OMPIteratorExpr, {})
DEF_TRAVERSE_STMT(BlockExpr, { TRY_TO(TraverseDecl(S->getBlockDecl())); return true; // no child statements to loop through. })
DEF_TRAVERSE_STMT(ChooseExpr, {}) DEF_TRAVERSE_STMT(CompoundLiteralExpr, { TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc())); }) DEF_TRAVERSE_STMT(CXXBindTemporaryExpr, {}) DEF_TRAVERSE_STMT(CXXBoolLiteralExpr, {})
DEF_TRAVERSE_STMT(CXXDefaultArgExpr, { if (getDerived().shouldVisitImplicitCode()) TRY_TO(TraverseStmt(S->getExpr())); })
DEF_TRAVERSE_STMT(CXXDefaultInitExpr, { if (getDerived().shouldVisitImplicitCode()) TRY_TO(TraverseStmt(S->getExpr())); })
DEF_TRAVERSE_STMT(CXXDeleteExpr, {}) DEF_TRAVERSE_STMT(ExprWithCleanups, {}) DEF_TRAVERSE_STMT(CXXInheritedCtorInitExpr, {}) DEF_TRAVERSE_STMT(CXXNullPtrLiteralExpr, {}) DEF_TRAVERSE_STMT(CXXStdInitializerListExpr, {})
DEF_TRAVERSE_STMT(CXXPseudoDestructorExpr, { TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); if (TypeSourceInfo *ScopeInfo = S->getScopeTypeInfo()) TRY_TO(TraverseTypeLoc(ScopeInfo->getTypeLoc())); if (TypeSourceInfo *DestroyedTypeInfo = S->getDestroyedTypeInfo()) TRY_TO(TraverseTypeLoc(DestroyedTypeInfo->getTypeLoc())); })
DEF_TRAVERSE_STMT(CXXThisExpr, {}) DEF_TRAVERSE_STMT(CXXThrowExpr, {}) DEF_TRAVERSE_STMT(UserDefinedLiteral, {}) DEF_TRAVERSE_STMT(DesignatedInitExpr, {}) DEF_TRAVERSE_STMT(DesignatedInitUpdateExpr, {}) DEF_TRAVERSE_STMT(ExtVectorElementExpr, {}) DEF_TRAVERSE_STMT(GNUNullExpr, {}) DEF_TRAVERSE_STMT(ImplicitValueInitExpr, {}) DEF_TRAVERSE_STMT(NoInitExpr, {}) DEF_TRAVERSE_STMT(ArrayInitLoopExpr, { // FIXME: The source expression of the OVE should be listed as // a child of the ArrayInitLoopExpr. if (OpaqueValueExpr *OVE = S->getCommonExpr()) TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(OVE->getSourceExpr()); }) DEF_TRAVERSE_STMT(ArrayInitIndexExpr, {}) DEF_TRAVERSE_STMT(ObjCBoolLiteralExpr, {})
DEF_TRAVERSE_STMT(ObjCEncodeExpr, { if (TypeSourceInfo *TInfo = S->getEncodedTypeSourceInfo()) TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc())); })
DEF_TRAVERSE_STMT(ObjCIsaExpr, {}) DEF_TRAVERSE_STMT(ObjCIvarRefExpr, {})
DEF_TRAVERSE_STMT(ObjCMessageExpr, { if (TypeSourceInfo *TInfo = S->getClassReceiverTypeInfo()) TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc())); })
DEF_TRAVERSE_STMT(ObjCPropertyRefExpr, { if (S->isClassReceiver()) { ObjCInterfaceDecl *IDecl = S->getClassReceiver(); QualType Type = IDecl->getASTContext().getObjCInterfaceType(IDecl); ObjCInterfaceLocInfo Data; Data.NameLoc = S->getReceiverLocation(); Data.NameEndLoc = Data.NameLoc; TRY_TO(TraverseTypeLoc(TypeLoc(Type, &Data))); } }) DEF_TRAVERSE_STMT(ObjCSubscriptRefExpr, {}) DEF_TRAVERSE_STMT(ObjCProtocolExpr, {}) DEF_TRAVERSE_STMT(ObjCSelectorExpr, {}) DEF_TRAVERSE_STMT(ObjCIndirectCopyRestoreExpr, {})
DEF_TRAVERSE_STMT(ObjCBridgedCastExpr, { TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); })
DEF_TRAVERSE_STMT(ObjCAvailabilityCheckExpr, {}) DEF_TRAVERSE_STMT(ParenExpr, {}) DEF_TRAVERSE_STMT(ParenListExpr, {}) DEF_TRAVERSE_STMT(SYCLUniqueStableNameExpr, { TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc())); }) DEF_TRAVERSE_STMT(PredefinedExpr, {}) DEF_TRAVERSE_STMT(ShuffleVectorExpr, {}) DEF_TRAVERSE_STMT(ConvertVectorExpr, {}) DEF_TRAVERSE_STMT(StmtExpr, {}) DEF_TRAVERSE_STMT(SourceLocExpr, {}) DEF_TRAVERSE_STMT(EmbedExpr, { for (IntegerLiteral *IL : S->underlying_data_elements()) { TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(IL); } })
DEF_TRAVERSE_STMT(UnresolvedLookupExpr, { TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); if (S->hasExplicitTemplateArgs()) { TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(), S->getNumTemplateArgs())); } })
DEF_TRAVERSE_STMT(UnresolvedMemberExpr, { TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); if (S->hasExplicitTemplateArgs()) { TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(), S->getNumTemplateArgs())); } })
DEF_TRAVERSE_STMT(SEHTryStmt, {}) DEF_TRAVERSE_STMT(SEHExceptStmt, {}) DEF_TRAVERSE_STMT(SEHFinallyStmt, {}) DEF_TRAVERSE_STMT(SEHLeaveStmt, {}) DEF_TRAVERSE_STMT(CapturedStmt, { TRY_TO(TraverseDecl(S->getCapturedDecl())); })
DEF_TRAVERSE_STMT(CXXOperatorCallExpr, {}) DEF_TRAVERSE_STMT(CXXRewrittenBinaryOperator, { if (!getDerived().shouldVisitImplicitCode()) { CXXRewrittenBinaryOperator::DecomposedForm Decomposed = S->getDecomposedForm(); TRY_TO(TraverseStmt(const_cast<Expr*>(Decomposed.LHS))); TRY_TO(TraverseStmt(const_cast<Expr*>(Decomposed.RHS))); ShouldVisitChildren = false; } }) DEF_TRAVERSE_STMT(OpaqueValueExpr, {}) DEF_TRAVERSE_STMT(TypoExpr, {}) DEF_TRAVERSE_STMT(RecoveryExpr, {}) DEF_TRAVERSE_STMT(CUDAKernelCallExpr, {})
// These operators (all of them) do not need any action except // iterating over the children. DEF_TRAVERSE_STMT(BinaryConditionalOperator, {}) DEF_TRAVERSE_STMT(ConditionalOperator, {}) DEF_TRAVERSE_STMT(UnaryOperator, {}) DEF_TRAVERSE_STMT(BinaryOperator, {}) DEF_TRAVERSE_STMT(CompoundAssignOperator, {}) DEF_TRAVERSE_STMT(CXXNoexceptExpr, {}) DEF_TRAVERSE_STMT(PackExpansionExpr, {}) DEF_TRAVERSE_STMT(SizeOfPackExpr, {}) DEF_TRAVERSE_STMT(PackIndexingExpr, {}) DEF_TRAVERSE_STMT(SubstNonTypeTemplateParmPackExpr, {}) DEF_TRAVERSE_STMT(SubstNonTypeTemplateParmExpr, {}) DEF_TRAVERSE_STMT(FunctionParmPackExpr, {}) DEF_TRAVERSE_STMT(CXXFoldExpr, {}) DEF_TRAVERSE_STMT(AtomicExpr, {}) DEF_TRAVERSE_STMT(CXXParenListInitExpr, {})
DEF_TRAVERSE_STMT(MaterializeTemporaryExpr, { if (S->getLifetimeExtendedTemporaryDecl()) { TRY_TO(TraverseLifetimeExtendedTemporaryDecl( S->getLifetimeExtendedTemporaryDecl())); ShouldVisitChildren = false; } }) // For coroutines expressions, traverse either the operand // as written or the implied calls, depending on what the // derived class requests. DEF_TRAVERSE_STMT(CoroutineBodyStmt, { if (!getDerived().shouldVisitImplicitCode()) { TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getBody()); ShouldVisitChildren = false; } }) DEF_TRAVERSE_STMT(CoreturnStmt, { if (!getDerived().shouldVisitImplicitCode()) { TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getOperand()); ShouldVisitChildren = false; } }) DEF_TRAVERSE_STMT(CoawaitExpr, { if (!getDerived().shouldVisitImplicitCode()) { TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getOperand()); ShouldVisitChildren = false; } }) DEF_TRAVERSE_STMT(DependentCoawaitExpr, { if (!getDerived().shouldVisitImplicitCode()) { TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getOperand()); ShouldVisitChildren = false; } }) DEF_TRAVERSE_STMT(CoyieldExpr, { if (!getDerived().shouldVisitImplicitCode()) { TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getOperand()); ShouldVisitChildren = false; } })
DEF_TRAVERSE_STMT(ConceptSpecializationExpr, { TRY_TO(TraverseConceptReference(S->getConceptReference())); })
DEF_TRAVERSE_STMT(RequiresExpr, { TRY_TO(TraverseDecl(S->getBody())); for (ParmVarDecl *Parm : S->getLocalParameters()) TRY_TO(TraverseDecl(Parm)); for (concepts::Requirement *Req : S->getRequirements()) TRY_TO(TraverseConceptRequirement(Req)); })
// These literals (all of them) do not need any action. DEF_TRAVERSE_STMT(IntegerLiteral, {}) DEF_TRAVERSE_STMT(FixedPointLiteral, {}) DEF_TRAVERSE_STMT(CharacterLiteral, {}) DEF_TRAVERSE_STMT(FloatingLiteral, {}) DEF_TRAVERSE_STMT(ImaginaryLiteral, {}) DEF_TRAVERSE_STMT(StringLiteral, {}) DEF_TRAVERSE_STMT(ObjCStringLiteral, {}) DEF_TRAVERSE_STMT(ObjCBoxedExpr, {}) DEF_TRAVERSE_STMT(ObjCArrayLiteral, {}) DEF_TRAVERSE_STMT(ObjCDictionaryLiteral, {})
// Traverse OpenCL: AsType, Convert. DEF_TRAVERSE_STMT(AsTypeExpr, {})
// OpenMP directives. template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseOMPExecutableDirective( OMPExecutableDirective *S) { for (auto *C : S->clauses()) { TRY_TO(TraverseOMPClause(C)); } return true; }
DEF_TRAVERSE_STMT(OMPCanonicalLoop, { if (!getDerived().shouldVisitImplicitCode()) { // Visit only the syntactical loop. TRY_TO(TraverseStmt(S->getLoopStmt())); ShouldVisitChildren = false; } })
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseOMPLoopDirective(OMPLoopDirective *S) { return TraverseOMPExecutableDirective(S); }
DEF_TRAVERSE_STMT(OMPMetaDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPParallelDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPSimdDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTileDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPUnrollDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPReverseDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPInterchangeDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPForDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPForSimdDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPSectionsDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPSectionDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPScopeDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPSingleDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPMasterDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPCriticalDirective, { TRY_TO(TraverseDeclarationNameInfo(S->getDirectiveName())); TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPParallelForDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPParallelForSimdDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPParallelMasterDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPParallelMaskedDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPParallelSectionsDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTaskDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTaskyieldDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPBarrierDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTaskwaitDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTaskgroupDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPCancellationPointDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPCancelDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPFlushDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPDepobjDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPScanDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPOrderedDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPAtomicDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetDataDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetEnterDataDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetExitDataDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetParallelDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetParallelForDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTeamsDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetUpdateDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTaskLoopDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTaskLoopSimdDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPMasterTaskLoopDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPMasterTaskLoopSimdDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPParallelMasterTaskLoopDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPParallelMasterTaskLoopSimdDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPMaskedTaskLoopDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPMaskedTaskLoopSimdDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPParallelMaskedTaskLoopDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPParallelMaskedTaskLoopSimdDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPDistributeDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPDistributeParallelForDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPDistributeParallelForSimdDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPDistributeSimdDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetParallelForSimdDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetSimdDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTeamsDistributeDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTeamsDistributeSimdDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTeamsDistributeParallelForSimdDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTeamsDistributeParallelForDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetTeamsDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetTeamsDistributeDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetTeamsDistributeParallelForDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetTeamsDistributeParallelForSimdDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetTeamsDistributeSimdDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPInteropDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPDispatchDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPMaskedDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPGenericLoopDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTeamsGenericLoopDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetTeamsGenericLoopDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPParallelGenericLoopDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetParallelGenericLoopDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPErrorDirective, { TRY_TO(TraverseOMPExecutableDirective(S)); })
// OpenMP clauses. template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseOMPClause(OMPClause *C) { if (!C) return true; switch (C->getClauseKind()) { #define GEN_CLANG_CLAUSE_CLASS #define CLAUSE_CLASS(Enum, Str, Class) \ case llvm::omp::Clause::Enum: \ TRY_TO(Visit##Class(static_cast<Class *>(C))); \ break; #define CLAUSE_NO_CLASS(Enum, Str) \ case llvm::omp::Clause::Enum: \ break; #include "llvm/Frontend/OpenMP/OMP.inc" } return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPClauseWithPreInit( OMPClauseWithPreInit *Node) { TRY_TO(TraverseStmt(Node->getPreInitStmt())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPClauseWithPostUpdate( OMPClauseWithPostUpdate *Node) { TRY_TO(VisitOMPClauseWithPreInit(Node)); TRY_TO(TraverseStmt(Node->getPostUpdateExpr())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPAllocatorClause( OMPAllocatorClause *C) { TRY_TO(TraverseStmt(C->getAllocator())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPAllocateClause(OMPAllocateClause *C) { TRY_TO(TraverseStmt(C->getAllocator())); TRY_TO(VisitOMPClauseList(C)); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPIfClause(OMPIfClause *C) { TRY_TO(VisitOMPClauseWithPreInit(C)); TRY_TO(TraverseStmt(C->getCondition())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPFinalClause(OMPFinalClause *C) { TRY_TO(VisitOMPClauseWithPreInit(C)); TRY_TO(TraverseStmt(C->getCondition())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPNumThreadsClause(OMPNumThreadsClause *C) { TRY_TO(VisitOMPClauseWithPreInit(C)); TRY_TO(TraverseStmt(C->getNumThreads())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPAlignClause(OMPAlignClause *C) { TRY_TO(TraverseStmt(C->getAlignment())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPSafelenClause(OMPSafelenClause *C) { TRY_TO(TraverseStmt(C->getSafelen())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPSimdlenClause(OMPSimdlenClause *C) { TRY_TO(TraverseStmt(C->getSimdlen())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPSizesClause(OMPSizesClause *C) { for (Expr *E : C->getSizesRefs()) TRY_TO(TraverseStmt(E)); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPFullClause(OMPFullClause *C) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPPartialClause(OMPPartialClause *C) { TRY_TO(TraverseStmt(C->getFactor())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPCollapseClause(OMPCollapseClause *C) { TRY_TO(TraverseStmt(C->getNumForLoops())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPDefaultClause(OMPDefaultClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPProcBindClause(OMPProcBindClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPUnifiedAddressClause( OMPUnifiedAddressClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPUnifiedSharedMemoryClause( OMPUnifiedSharedMemoryClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPReverseOffloadClause( OMPReverseOffloadClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPDynamicAllocatorsClause( OMPDynamicAllocatorsClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPAtomicDefaultMemOrderClause( OMPAtomicDefaultMemOrderClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPAtClause(OMPAtClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPSeverityClause(OMPSeverityClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPMessageClause(OMPMessageClause *C) { TRY_TO(TraverseStmt(C->getMessageString())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPScheduleClause(OMPScheduleClause *C) { TRY_TO(VisitOMPClauseWithPreInit(C)); TRY_TO(TraverseStmt(C->getChunkSize())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPOrderedClause(OMPOrderedClause *C) { TRY_TO(TraverseStmt(C->getNumForLoops())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPNowaitClause(OMPNowaitClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPUntiedClause(OMPUntiedClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPMergeableClause(OMPMergeableClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPReadClause(OMPReadClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPWriteClause(OMPWriteClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPUpdateClause(OMPUpdateClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPCaptureClause(OMPCaptureClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPCompareClause(OMPCompareClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPFailClause(OMPFailClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPSeqCstClause(OMPSeqCstClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPAcqRelClause(OMPAcqRelClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPAcquireClause(OMPAcquireClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPReleaseClause(OMPReleaseClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPRelaxedClause(OMPRelaxedClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPWeakClause(OMPWeakClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPThreadsClause(OMPThreadsClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPSIMDClause(OMPSIMDClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPNogroupClause(OMPNogroupClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPInitClause(OMPInitClause *C) { TRY_TO(VisitOMPClauseList(C)); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPUseClause(OMPUseClause *C) { TRY_TO(TraverseStmt(C->getInteropVar())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPDestroyClause(OMPDestroyClause *C) { TRY_TO(TraverseStmt(C->getInteropVar())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPNovariantsClause( OMPNovariantsClause *C) { TRY_TO(VisitOMPClauseWithPreInit(C)); TRY_TO(TraverseStmt(C->getCondition())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPNocontextClause( OMPNocontextClause *C) { TRY_TO(VisitOMPClauseWithPreInit(C)); TRY_TO(TraverseStmt(C->getCondition())); return true; }
template <typename Derived> template <typename T> bool RecursiveASTVisitor<Derived>::VisitOMPClauseList(T *Node) { for (auto *E : Node->varlists()) { TRY_TO(TraverseStmt(E)); } return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPInclusiveClause( OMPInclusiveClause *C) { TRY_TO(VisitOMPClauseList(C)); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPExclusiveClause( OMPExclusiveClause *C) { TRY_TO(VisitOMPClauseList(C)); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPPrivateClause(OMPPrivateClause *C) { TRY_TO(VisitOMPClauseList(C)); for (auto *E : C->private_copies()) { TRY_TO(TraverseStmt(E)); } return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPFirstprivateClause( OMPFirstprivateClause *C) { TRY_TO(VisitOMPClauseList(C)); TRY_TO(VisitOMPClauseWithPreInit(C)); for (auto *E : C->private_copies()) { TRY_TO(TraverseStmt(E)); } for (auto *E : C->inits()) { TRY_TO(TraverseStmt(E)); } return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPLastprivateClause( OMPLastprivateClause *C) { TRY_TO(VisitOMPClauseList(C)); TRY_TO(VisitOMPClauseWithPostUpdate(C)); for (auto *E : C->private_copies()) { TRY_TO(TraverseStmt(E)); } for (auto *E : C->source_exprs()) { TRY_TO(TraverseStmt(E)); } for (auto *E : C->destination_exprs()) { TRY_TO(TraverseStmt(E)); } for (auto *E : C->assignment_ops()) { TRY_TO(TraverseStmt(E)); } return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPSharedClause(OMPSharedClause *C) { TRY_TO(VisitOMPClauseList(C)); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPLinearClause(OMPLinearClause *C) { TRY_TO(TraverseStmt(C->getStep())); TRY_TO(TraverseStmt(C->getCalcStep())); TRY_TO(VisitOMPClauseList(C)); TRY_TO(VisitOMPClauseWithPostUpdate(C)); for (auto *E : C->privates()) { TRY_TO(TraverseStmt(E)); } for (auto *E : C->inits()) { TRY_TO(TraverseStmt(E)); } for (auto *E : C->updates()) { TRY_TO(TraverseStmt(E)); } for (auto *E : C->finals()) { TRY_TO(TraverseStmt(E)); } return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPAlignedClause(OMPAlignedClause *C) { TRY_TO(TraverseStmt(C->getAlignment())); TRY_TO(VisitOMPClauseList(C)); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPCopyinClause(OMPCopyinClause *C) { TRY_TO(VisitOMPClauseList(C)); for (auto *E : C->source_exprs()) { TRY_TO(TraverseStmt(E)); } for (auto *E : C->destination_exprs()) { TRY_TO(TraverseStmt(E)); } for (auto *E : C->assignment_ops()) { TRY_TO(TraverseStmt(E)); } return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPCopyprivateClause( OMPCopyprivateClause *C) { TRY_TO(VisitOMPClauseList(C)); for (auto *E : C->source_exprs()) { TRY_TO(TraverseStmt(E)); } for (auto *E : C->destination_exprs()) { TRY_TO(TraverseStmt(E)); } for (auto *E : C->assignment_ops()) { TRY_TO(TraverseStmt(E)); } return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPReductionClause(OMPReductionClause *C) { TRY_TO(TraverseNestedNameSpecifierLoc(C->getQualifierLoc())); TRY_TO(TraverseDeclarationNameInfo(C->getNameInfo())); TRY_TO(VisitOMPClauseList(C)); TRY_TO(VisitOMPClauseWithPostUpdate(C)); for (auto *E : C->privates()) { TRY_TO(TraverseStmt(E)); } for (auto *E : C->lhs_exprs()) { TRY_TO(TraverseStmt(E)); } for (auto *E : C->rhs_exprs()) { TRY_TO(TraverseStmt(E)); } for (auto *E : C->reduction_ops()) { TRY_TO(TraverseStmt(E)); } if (C->getModifier() == OMPC_REDUCTION_inscan) { for (auto *E : C->copy_ops()) { TRY_TO(TraverseStmt(E)); } for (auto *E : C->copy_array_temps()) { TRY_TO(TraverseStmt(E)); } for (auto *E : C->copy_array_elems()) { TRY_TO(TraverseStmt(E)); } } return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPTaskReductionClause( OMPTaskReductionClause *C) { TRY_TO(TraverseNestedNameSpecifierLoc(C->getQualifierLoc())); TRY_TO(TraverseDeclarationNameInfo(C->getNameInfo())); TRY_TO(VisitOMPClauseList(C)); TRY_TO(VisitOMPClauseWithPostUpdate(C)); for (auto *E : C->privates()) { TRY_TO(TraverseStmt(E)); } for (auto *E : C->lhs_exprs()) { TRY_TO(TraverseStmt(E)); } for (auto *E : C->rhs_exprs()) { TRY_TO(TraverseStmt(E)); } for (auto *E : C->reduction_ops()) { TRY_TO(TraverseStmt(E)); } return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPInReductionClause( OMPInReductionClause *C) { TRY_TO(TraverseNestedNameSpecifierLoc(C->getQualifierLoc())); TRY_TO(TraverseDeclarationNameInfo(C->getNameInfo())); TRY_TO(VisitOMPClauseList(C)); TRY_TO(VisitOMPClauseWithPostUpdate(C)); for (auto *E : C->privates()) { TRY_TO(TraverseStmt(E)); } for (auto *E : C->lhs_exprs()) { TRY_TO(TraverseStmt(E)); } for (auto *E : C->rhs_exprs()) { TRY_TO(TraverseStmt(E)); } for (auto *E : C->reduction_ops()) { TRY_TO(TraverseStmt(E)); } for (auto *E : C->taskgroup_descriptors()) TRY_TO(TraverseStmt(E)); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPFlushClause(OMPFlushClause *C) { TRY_TO(VisitOMPClauseList(C)); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPDepobjClause(OMPDepobjClause *C) { TRY_TO(TraverseStmt(C->getDepobj())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPDependClause(OMPDependClause *C) { TRY_TO(VisitOMPClauseList(C)); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPDeviceClause(OMPDeviceClause *C) { TRY_TO(VisitOMPClauseWithPreInit(C)); TRY_TO(TraverseStmt(C->getDevice())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPMapClause(OMPMapClause *C) { TRY_TO(VisitOMPClauseList(C)); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPNumTeamsClause( OMPNumTeamsClause *C) { TRY_TO(VisitOMPClauseWithPreInit(C)); TRY_TO(TraverseStmt(C->getNumTeams())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPThreadLimitClause( OMPThreadLimitClause *C) { TRY_TO(VisitOMPClauseWithPreInit(C)); TRY_TO(TraverseStmt(C->getThreadLimit())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPPriorityClause( OMPPriorityClause *C) { TRY_TO(VisitOMPClauseWithPreInit(C)); TRY_TO(TraverseStmt(C->getPriority())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPGrainsizeClause( OMPGrainsizeClause *C) { TRY_TO(VisitOMPClauseWithPreInit(C)); TRY_TO(TraverseStmt(C->getGrainsize())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPNumTasksClause( OMPNumTasksClause *C) { TRY_TO(VisitOMPClauseWithPreInit(C)); TRY_TO(TraverseStmt(C->getNumTasks())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPHintClause(OMPHintClause *C) { TRY_TO(TraverseStmt(C->getHint())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPDistScheduleClause( OMPDistScheduleClause *C) { TRY_TO(VisitOMPClauseWithPreInit(C)); TRY_TO(TraverseStmt(C->getChunkSize())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPDefaultmapClause(OMPDefaultmapClause *C) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPToClause(OMPToClause *C) { TRY_TO(VisitOMPClauseList(C)); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPFromClause(OMPFromClause *C) { TRY_TO(VisitOMPClauseList(C)); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPUseDevicePtrClause( OMPUseDevicePtrClause *C) { TRY_TO(VisitOMPClauseList(C)); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPUseDeviceAddrClause( OMPUseDeviceAddrClause *C) { TRY_TO(VisitOMPClauseList(C)); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPIsDevicePtrClause( OMPIsDevicePtrClause *C) { TRY_TO(VisitOMPClauseList(C)); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPHasDeviceAddrClause( OMPHasDeviceAddrClause *C) { TRY_TO(VisitOMPClauseList(C)); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPNontemporalClause( OMPNontemporalClause *C) { TRY_TO(VisitOMPClauseList(C)); for (auto *E : C->private_refs()) { TRY_TO(TraverseStmt(E)); } return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPOrderClause(OMPOrderClause *) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPDetachClause(OMPDetachClause *C) { TRY_TO(TraverseStmt(C->getEventHandler())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPUsesAllocatorsClause( OMPUsesAllocatorsClause *C) { for (unsigned I = 0, E = C->getNumberOfAllocators(); I < E; ++I) { const OMPUsesAllocatorsClause::Data Data = C->getAllocatorData(I); TRY_TO(TraverseStmt(Data.Allocator)); TRY_TO(TraverseStmt(Data.AllocatorTraits)); } return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPAffinityClause( OMPAffinityClause *C) { TRY_TO(TraverseStmt(C->getModifier())); for (Expr *E : C->varlists()) TRY_TO(TraverseStmt(E)); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPFilterClause(OMPFilterClause *C) { TRY_TO(VisitOMPClauseWithPreInit(C)); TRY_TO(TraverseStmt(C->getThreadID())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPBindClause(OMPBindClause *C) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPXDynCGroupMemClause( OMPXDynCGroupMemClause *C) { TRY_TO(VisitOMPClauseWithPreInit(C)); TRY_TO(TraverseStmt(C->getSize())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPDoacrossClause( OMPDoacrossClause *C) { TRY_TO(VisitOMPClauseList(C)); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPXAttributeClause( OMPXAttributeClause *C) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOMPXBareClause(OMPXBareClause *C) { return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseOpenACCConstructStmt( OpenACCConstructStmt *C) { TRY_TO(VisitOpenACCClauseList(C->clauses())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::TraverseOpenACCAssociatedStmtConstruct( OpenACCAssociatedStmtConstruct *S) { TRY_TO(TraverseOpenACCConstructStmt(S)); TRY_TO(TraverseStmt(S->getAssociatedStmt())); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOpenACCClause(const OpenACCClause *C) { for (const Stmt *Child : C->children()) TRY_TO(TraverseStmt(const_cast<Stmt *>(Child))); return true; }
template <typename Derived> bool RecursiveASTVisitor<Derived>::VisitOpenACCClauseList( ArrayRef<const OpenACCClause *> Clauses) {
for (const auto *C : Clauses) TRY_TO(VisitOpenACCClause(C)); // if (const auto *WithCond = dyn_cast<OopenACCClauseWithCondition>(C); // WithCond && WIthCond->hasConditionExpr()) { // TRY_TO(TraverseStmt(WithCond->getConditionExpr()); // } else if (const auto * // } // OpenACCClauseWithCondition::getConditionExpr/hasConditionExpr //OpenACCClauseWithExprs::children (might be null?) // TODO OpenACC: When we have Clauses with expressions, we should visit them // here. return true; }
DEF_TRAVERSE_STMT(OpenACCComputeConstruct, { TRY_TO(TraverseOpenACCAssociatedStmtConstruct(S)); }) DEF_TRAVERSE_STMT(OpenACCLoopConstruct, { TRY_TO(TraverseOpenACCAssociatedStmtConstruct(S)); })
// FIXME: look at the following tricky-seeming exprs to see if we // need to recurse on anything. These are ones that have methods // returning decls or qualtypes or nestednamespecifier -- though I'm // not sure if they own them -- or just seemed very complicated, or // had lots of sub-types to explore. // // VisitOverloadExpr and its children: recurse on template args? etc?
// FIXME: go through all the stmts and exprs again, and see which of them // create new types, and recurse on the types (TypeLocs?) of those. // Candidates: // // http://clang.llvm.org/doxygen/classclang_1_1CXXTypeidExpr.html // http://clang.llvm.org/doxygen/classclang_1_1UnaryExprOrTypeTraitExpr.html // http://clang.llvm.org/doxygen/classclang_1_1TypesCompatibleExpr.html // Every class that has getQualifier.
#undef DEF_TRAVERSE_STMT #undef TRAVERSE_STMT #undef TRAVERSE_STMT_BASE
#undef TRY_TO
} // end namespace clang
#endif // LLVM_CLANG_AST_RECURSIVEASTVISITOR_H
|