Viewing file: ExprCXX.h (187.95 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
//===- ExprCXX.h - Classes for representing expressions ---------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// Defines the clang::Expr interface and subclasses for C++ expressions. // //===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_EXPRCXX_H #define LLVM_CLANG_AST_EXPRCXX_H
#include "clang/AST/ASTConcept.h" #include "clang/AST/ComputeDependence.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclBase.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/DeclarationName.h" #include "clang/AST/DependenceFlags.h" #include "clang/AST/Expr.h" #include "clang/AST/NestedNameSpecifier.h" #include "clang/AST/OperationKinds.h" #include "clang/AST/Stmt.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/TemplateBase.h" #include "clang/AST/Type.h" #include "clang/AST/UnresolvedSet.h" #include "clang/Basic/ExceptionSpecificationType.h" #include "clang/Basic/ExpressionTraits.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/Lambda.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/OperatorKinds.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/Specifiers.h" #include "clang/Basic/TypeTraits.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/TrailingObjects.h" #include <cassert> #include <cstddef> #include <cstdint> #include <memory> #include <optional>
namespace clang {
class ASTContext; class DeclAccessPair; class IdentifierInfo; class LambdaCapture; class NonTypeTemplateParmDecl; class TemplateParameterList;
//===--------------------------------------------------------------------===// // C++ Expressions. //===--------------------------------------------------------------------===//
/// A call to an overloaded operator written using operator /// syntax. /// /// Represents a call to an overloaded operator written using operator /// syntax, e.g., "x + y" or "*p". While semantically equivalent to a /// normal call, this AST node provides better information about the /// syntactic representation of the call. /// /// In a C++ template, this expression node kind will be used whenever /// any of the arguments are type-dependent. In this case, the /// function itself will be a (possibly empty) set of functions and /// function templates that were found by name lookup at template /// definition time. class CXXOperatorCallExpr final : public CallExpr { friend class ASTStmtReader; friend class ASTStmtWriter;
SourceRange Range;
// CXXOperatorCallExpr has some trailing objects belonging // to CallExpr. See CallExpr for the details.
SourceRange getSourceRangeImpl() const LLVM_READONLY;
CXXOperatorCallExpr(OverloadedOperatorKind OpKind, Expr *Fn, ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, SourceLocation OperatorLoc, FPOptionsOverride FPFeatures, ADLCallKind UsesADL);
CXXOperatorCallExpr(unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty);
public: static CXXOperatorCallExpr * Create(const ASTContext &Ctx, OverloadedOperatorKind OpKind, Expr *Fn, ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, SourceLocation OperatorLoc, FPOptionsOverride FPFeatures, ADLCallKind UsesADL = NotADL);
static CXXOperatorCallExpr *CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty);
/// Returns the kind of overloaded operator that this expression refers to. OverloadedOperatorKind getOperator() const { return static_cast<OverloadedOperatorKind>( CXXOperatorCallExprBits.OperatorKind); }
static bool isAssignmentOp(OverloadedOperatorKind Opc) { return Opc == OO_Equal || Opc == OO_StarEqual || Opc == OO_SlashEqual || Opc == OO_PercentEqual || Opc == OO_PlusEqual || Opc == OO_MinusEqual || Opc == OO_LessLessEqual || Opc == OO_GreaterGreaterEqual || Opc == OO_AmpEqual || Opc == OO_CaretEqual || Opc == OO_PipeEqual; } bool isAssignmentOp() const { return isAssignmentOp(getOperator()); }
static bool isComparisonOp(OverloadedOperatorKind Opc) { switch (Opc) { case OO_EqualEqual: case OO_ExclaimEqual: case OO_Greater: case OO_GreaterEqual: case OO_Less: case OO_LessEqual: case OO_Spaceship: return true; default: return false; } } bool isComparisonOp() const { return isComparisonOp(getOperator()); }
/// Is this written as an infix binary operator? bool isInfixBinaryOp() const;
/// Returns the location of the operator symbol in the expression. /// /// When \c getOperator()==OO_Call, this is the location of the right /// parentheses; when \c getOperator()==OO_Subscript, this is the location /// of the right bracket. SourceLocation getOperatorLoc() const { return getRParenLoc(); }
SourceLocation getExprLoc() const LLVM_READONLY { OverloadedOperatorKind Operator = getOperator(); return (Operator < OO_Plus || Operator >= OO_Arrow || Operator == OO_PlusPlus || Operator == OO_MinusMinus) ? getBeginLoc() : getOperatorLoc(); }
SourceLocation getBeginLoc() const { return Range.getBegin(); } SourceLocation getEndLoc() const { return Range.getEnd(); } SourceRange getSourceRange() const { return Range; }
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXOperatorCallExprClass; } };
/// Represents a call to a member function that /// may be written either with member call syntax (e.g., "obj.func()" /// or "objptr->func()") or with normal function-call syntax /// ("func()") within a member function that ends up calling a member /// function. The callee in either case is a MemberExpr that contains /// both the object argument and the member function, while the /// arguments are the arguments within the parentheses (not including /// the object argument). class CXXMemberCallExpr final : public CallExpr { // CXXMemberCallExpr has some trailing objects belonging // to CallExpr. See CallExpr for the details.
CXXMemberCallExpr(Expr *Fn, ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, SourceLocation RP, FPOptionsOverride FPOptions, unsigned MinNumArgs);
CXXMemberCallExpr(unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty);
public: static CXXMemberCallExpr *Create(const ASTContext &Ctx, Expr *Fn, ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, SourceLocation RP, FPOptionsOverride FPFeatures, unsigned MinNumArgs = 0);
static CXXMemberCallExpr *CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty);
/// Retrieve the implicit object argument for the member call. /// /// For example, in "x.f(5)", this returns the sub-expression "x". Expr *getImplicitObjectArgument() const;
/// Retrieve the type of the object argument. /// /// Note that this always returns a non-pointer type. QualType getObjectType() const;
/// Retrieve the declaration of the called method. CXXMethodDecl *getMethodDecl() const;
/// Retrieve the CXXRecordDecl for the underlying type of /// the implicit object argument. /// /// Note that this is may not be the same declaration as that of the class /// context of the CXXMethodDecl which this function is calling. /// FIXME: Returns 0 for member pointer call exprs. CXXRecordDecl *getRecordDecl() const;
SourceLocation getExprLoc() const LLVM_READONLY { SourceLocation CLoc = getCallee()->getExprLoc(); if (CLoc.isValid()) return CLoc;
return getBeginLoc(); }
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXMemberCallExprClass; } };
/// Represents a call to a CUDA kernel function. class CUDAKernelCallExpr final : public CallExpr { friend class ASTStmtReader;
enum { CONFIG, END_PREARG };
// CUDAKernelCallExpr has some trailing objects belonging // to CallExpr. See CallExpr for the details.
CUDAKernelCallExpr(Expr *Fn, CallExpr *Config, ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, SourceLocation RP, FPOptionsOverride FPFeatures, unsigned MinNumArgs);
CUDAKernelCallExpr(unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty);
public: static CUDAKernelCallExpr *Create(const ASTContext &Ctx, Expr *Fn, CallExpr *Config, ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, SourceLocation RP, FPOptionsOverride FPFeatures, unsigned MinNumArgs = 0);
static CUDAKernelCallExpr *CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty);
const CallExpr *getConfig() const { return cast_or_null<CallExpr>(getPreArg(CONFIG)); } CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
static bool classof(const Stmt *T) { return T->getStmtClass() == CUDAKernelCallExprClass; } };
/// A rewritten comparison expression that was originally written using /// operator syntax. /// /// In C++20, the following rewrites are performed: /// - <tt>a == b</tt> -> <tt>b == a</tt> /// - <tt>a != b</tt> -> <tt>!(a == b)</tt> /// - <tt>a != b</tt> -> <tt>!(b == a)</tt> /// - For \c \@ in \c <, \c <=, \c >, \c >=, \c <=>: /// - <tt>a @ b</tt> -> <tt>(a <=> b) @ 0</tt> /// - <tt>a @ b</tt> -> <tt>0 @ (b <=> a)</tt> /// /// This expression provides access to both the original syntax and the /// rewritten expression. /// /// Note that the rewritten calls to \c ==, \c <=>, and \c \@ are typically /// \c CXXOperatorCallExprs, but could theoretically be \c BinaryOperators. class CXXRewrittenBinaryOperator : public Expr { friend class ASTStmtReader;
/// The rewritten semantic form. Stmt *SemanticForm;
public: CXXRewrittenBinaryOperator(Expr *SemanticForm, bool IsReversed) : Expr(CXXRewrittenBinaryOperatorClass, SemanticForm->getType(), SemanticForm->getValueKind(), SemanticForm->getObjectKind()), SemanticForm(SemanticForm) { CXXRewrittenBinaryOperatorBits.IsReversed = IsReversed; setDependence(computeDependence(this)); } CXXRewrittenBinaryOperator(EmptyShell Empty) : Expr(CXXRewrittenBinaryOperatorClass, Empty), SemanticForm() {}
/// Get an equivalent semantic form for this expression. Expr *getSemanticForm() { return cast<Expr>(SemanticForm); } const Expr *getSemanticForm() const { return cast<Expr>(SemanticForm); }
struct DecomposedForm { /// The original opcode, prior to rewriting. BinaryOperatorKind Opcode; /// The original left-hand side. const Expr *LHS; /// The original right-hand side. const Expr *RHS; /// The inner \c == or \c <=> operator expression. const Expr *InnerBinOp; };
/// Decompose this operator into its syntactic form. DecomposedForm getDecomposedForm() const LLVM_READONLY;
/// Determine whether this expression was rewritten in reverse form. bool isReversed() const { return CXXRewrittenBinaryOperatorBits.IsReversed; }
BinaryOperatorKind getOperator() const { return getDecomposedForm().Opcode; } BinaryOperatorKind getOpcode() const { return getOperator(); } static StringRef getOpcodeStr(BinaryOperatorKind Op) { return BinaryOperator::getOpcodeStr(Op); } StringRef getOpcodeStr() const { return BinaryOperator::getOpcodeStr(getOpcode()); } bool isComparisonOp() const { return true; } bool isAssignmentOp() const { return false; }
const Expr *getLHS() const { return getDecomposedForm().LHS; } const Expr *getRHS() const { return getDecomposedForm().RHS; }
SourceLocation getOperatorLoc() const LLVM_READONLY { return getDecomposedForm().InnerBinOp->getExprLoc(); } SourceLocation getExprLoc() const LLVM_READONLY { return getOperatorLoc(); }
/// Compute the begin and end locations from the decomposed form. /// The locations of the semantic form are not reliable if this is /// a reversed expression. //@{ SourceLocation getBeginLoc() const LLVM_READONLY { return getDecomposedForm().LHS->getBeginLoc(); } SourceLocation getEndLoc() const LLVM_READONLY { return getDecomposedForm().RHS->getEndLoc(); } SourceRange getSourceRange() const LLVM_READONLY { DecomposedForm DF = getDecomposedForm(); return SourceRange(DF.LHS->getBeginLoc(), DF.RHS->getEndLoc()); } //@}
child_range children() { return child_range(&SemanticForm, &SemanticForm + 1); }
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXRewrittenBinaryOperatorClass; } };
/// Abstract class common to all of the C++ "named"/"keyword" casts. /// /// This abstract class is inherited by all of the classes /// representing "named" casts: CXXStaticCastExpr for \c static_cast, /// CXXDynamicCastExpr for \c dynamic_cast, CXXReinterpretCastExpr for /// reinterpret_cast, CXXConstCastExpr for \c const_cast and /// CXXAddrspaceCastExpr for addrspace_cast (in OpenCL). class CXXNamedCastExpr : public ExplicitCastExpr { private: // the location of the casting op SourceLocation Loc;
// the location of the right parenthesis SourceLocation RParenLoc;
// range for '<' '>' SourceRange AngleBrackets;
protected: friend class ASTStmtReader;
CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK, CastKind kind, Expr *op, unsigned PathSize, bool HasFPFeatures, TypeSourceInfo *writtenTy, SourceLocation l, SourceLocation RParenLoc, SourceRange AngleBrackets) : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, HasFPFeatures, writtenTy), Loc(l), RParenLoc(RParenLoc), AngleBrackets(AngleBrackets) {}
explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize, bool HasFPFeatures) : ExplicitCastExpr(SC, Shell, PathSize, HasFPFeatures) {}
public: const char *getCastName() const;
/// Retrieve the location of the cast operator keyword, e.g., /// \c static_cast. SourceLocation getOperatorLoc() const { return Loc; }
/// Retrieve the location of the closing parenthesis. SourceLocation getRParenLoc() const { return RParenLoc; }
SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; } SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; } SourceRange getAngleBrackets() const LLVM_READONLY { return AngleBrackets; }
static bool classof(const Stmt *T) { switch (T->getStmtClass()) { case CXXStaticCastExprClass: case CXXDynamicCastExprClass: case CXXReinterpretCastExprClass: case CXXConstCastExprClass: case CXXAddrspaceCastExprClass: return true; default: return false; } } };
/// A C++ \c static_cast expression (C++ [expr.static.cast]). /// /// This expression node represents a C++ static cast, e.g., /// \c static_cast<int>(1.0). class CXXStaticCastExpr final : public CXXNamedCastExpr, private llvm::TrailingObjects<CXXStaticCastExpr, CXXBaseSpecifier *, FPOptionsOverride> { CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy, FPOptionsOverride FPO, SourceLocation l, SourceLocation RParenLoc, SourceRange AngleBrackets) : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize, FPO.requiresTrailingStorage(), writtenTy, l, RParenLoc, AngleBrackets) { if (hasStoredFPFeatures()) *getTrailingFPFeatures() = FPO; }
explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize, bool HasFPFeatures) : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize, HasFPFeatures) {}
unsigned numTrailingObjects(OverloadToken<CXXBaseSpecifier *>) const { return path_size(); }
public: friend class CastExpr; friend TrailingObjects;
static CXXStaticCastExpr * Create(const ASTContext &Context, QualType T, ExprValueKind VK, CastKind K, Expr *Op, const CXXCastPath *Path, TypeSourceInfo *Written, FPOptionsOverride FPO, SourceLocation L, SourceLocation RParenLoc, SourceRange AngleBrackets); static CXXStaticCastExpr *CreateEmpty(const ASTContext &Context, unsigned PathSize, bool hasFPFeatures);
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXStaticCastExprClass; } };
/// A C++ @c dynamic_cast expression (C++ [expr.dynamic.cast]). /// /// This expression node represents a dynamic cast, e.g., /// \c dynamic_cast<Derived*>(BasePtr). Such a cast may perform a run-time /// check to determine how to perform the type conversion. class CXXDynamicCastExpr final : public CXXNamedCastExpr, private llvm::TrailingObjects<CXXDynamicCastExpr, CXXBaseSpecifier *> { CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind, Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy, SourceLocation l, SourceLocation RParenLoc, SourceRange AngleBrackets) : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize, /*HasFPFeatures*/ false, writtenTy, l, RParenLoc, AngleBrackets) {}
explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize) : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize, /*HasFPFeatures*/ false) {}
public: friend class CastExpr; friend TrailingObjects;
static CXXDynamicCastExpr *Create(const ASTContext &Context, QualType T, ExprValueKind VK, CastKind Kind, Expr *Op, const CXXCastPath *Path, TypeSourceInfo *Written, SourceLocation L, SourceLocation RParenLoc, SourceRange AngleBrackets);
static CXXDynamicCastExpr *CreateEmpty(const ASTContext &Context, unsigned pathSize);
bool isAlwaysNull() const;
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXDynamicCastExprClass; } };
/// A C++ @c reinterpret_cast expression (C++ [expr.reinterpret.cast]). /// /// This expression node represents a reinterpret cast, e.g., /// @c reinterpret_cast<int>(VoidPtr). /// /// A reinterpret_cast provides a differently-typed view of a value but /// (in Clang, as in most C++ implementations) performs no actual work at /// run time. class CXXReinterpretCastExpr final : public CXXNamedCastExpr, private llvm::TrailingObjects<CXXReinterpretCastExpr, CXXBaseSpecifier *> { CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy, SourceLocation l, SourceLocation RParenLoc, SourceRange AngleBrackets) : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op, pathSize, /*HasFPFeatures*/ false, writtenTy, l, RParenLoc, AngleBrackets) {}
CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize) : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize, /*HasFPFeatures*/ false) {}
public: friend class CastExpr; friend TrailingObjects;
static CXXReinterpretCastExpr *Create(const ASTContext &Context, QualType T, ExprValueKind VK, CastKind Kind, Expr *Op, const CXXCastPath *Path, TypeSourceInfo *WrittenTy, SourceLocation L, SourceLocation RParenLoc, SourceRange AngleBrackets); static CXXReinterpretCastExpr *CreateEmpty(const ASTContext &Context, unsigned pathSize);
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXReinterpretCastExprClass; } };
/// A C++ \c const_cast expression (C++ [expr.const.cast]). /// /// This expression node represents a const cast, e.g., /// \c const_cast<char*>(PtrToConstChar). /// /// A const_cast can remove type qualifiers but does not change the underlying /// value. class CXXConstCastExpr final : public CXXNamedCastExpr, private llvm::TrailingObjects<CXXConstCastExpr, CXXBaseSpecifier *> { CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op, TypeSourceInfo *writtenTy, SourceLocation l, SourceLocation RParenLoc, SourceRange AngleBrackets) : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op, 0, /*HasFPFeatures*/ false, writtenTy, l, RParenLoc, AngleBrackets) {}
explicit CXXConstCastExpr(EmptyShell Empty) : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0, /*HasFPFeatures*/ false) {}
public: friend class CastExpr; friend TrailingObjects;
static CXXConstCastExpr *Create(const ASTContext &Context, QualType T, ExprValueKind VK, Expr *Op, TypeSourceInfo *WrittenTy, SourceLocation L, SourceLocation RParenLoc, SourceRange AngleBrackets); static CXXConstCastExpr *CreateEmpty(const ASTContext &Context);
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXConstCastExprClass; } };
/// A C++ addrspace_cast expression (currently only enabled for OpenCL). /// /// This expression node represents a cast between pointers to objects in /// different address spaces e.g., /// \c addrspace_cast<global int*>(PtrToGenericInt). /// /// A addrspace_cast can cast address space type qualifiers but does not change /// the underlying value. class CXXAddrspaceCastExpr final : public CXXNamedCastExpr, private llvm::TrailingObjects<CXXAddrspaceCastExpr, CXXBaseSpecifier *> { CXXAddrspaceCastExpr(QualType ty, ExprValueKind VK, CastKind Kind, Expr *op, TypeSourceInfo *writtenTy, SourceLocation l, SourceLocation RParenLoc, SourceRange AngleBrackets) : CXXNamedCastExpr(CXXAddrspaceCastExprClass, ty, VK, Kind, op, 0, /*HasFPFeatures*/ false, writtenTy, l, RParenLoc, AngleBrackets) {}
explicit CXXAddrspaceCastExpr(EmptyShell Empty) : CXXNamedCastExpr(CXXAddrspaceCastExprClass, Empty, 0, /*HasFPFeatures*/ false) {}
public: friend class CastExpr; friend TrailingObjects;
static CXXAddrspaceCastExpr * Create(const ASTContext &Context, QualType T, ExprValueKind VK, CastKind Kind, Expr *Op, TypeSourceInfo *WrittenTy, SourceLocation L, SourceLocation RParenLoc, SourceRange AngleBrackets); static CXXAddrspaceCastExpr *CreateEmpty(const ASTContext &Context);
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXAddrspaceCastExprClass; } };
/// A call to a literal operator (C++11 [over.literal]) /// written as a user-defined literal (C++11 [lit.ext]). /// /// Represents a user-defined literal, e.g. "foo"_bar or 1.23_xyz. While this /// is semantically equivalent to a normal call, this AST node provides better /// information about the syntactic representation of the literal. /// /// Since literal operators are never found by ADL and can only be declared at /// namespace scope, a user-defined literal is never dependent. class UserDefinedLiteral final : public CallExpr { friend class ASTStmtReader; friend class ASTStmtWriter;
/// The location of a ud-suffix within the literal. SourceLocation UDSuffixLoc;
// UserDefinedLiteral has some trailing objects belonging // to CallExpr. See CallExpr for the details.
UserDefinedLiteral(Expr *Fn, ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, SourceLocation LitEndLoc, SourceLocation SuffixLoc, FPOptionsOverride FPFeatures);
UserDefinedLiteral(unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty);
public: static UserDefinedLiteral *Create(const ASTContext &Ctx, Expr *Fn, ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, SourceLocation LitEndLoc, SourceLocation SuffixLoc, FPOptionsOverride FPFeatures);
static UserDefinedLiteral *CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, bool HasFPOptions, EmptyShell Empty);
/// The kind of literal operator which is invoked. enum LiteralOperatorKind { /// Raw form: operator "" X (const char *) LOK_Raw,
/// Raw form: operator "" X<cs...> () LOK_Template,
/// operator "" X (unsigned long long) LOK_Integer,
/// operator "" X (long double) LOK_Floating,
/// operator "" X (const CharT *, size_t) LOK_String,
/// operator "" X (CharT) LOK_Character };
/// Returns the kind of literal operator invocation /// which this expression represents. LiteralOperatorKind getLiteralOperatorKind() const;
/// If this is not a raw user-defined literal, get the /// underlying cooked literal (representing the literal with the suffix /// removed). Expr *getCookedLiteral(); const Expr *getCookedLiteral() const { return const_cast<UserDefinedLiteral*>(this)->getCookedLiteral(); }
SourceLocation getBeginLoc() const { if (getLiteralOperatorKind() == LOK_Template) return getRParenLoc(); return getArg(0)->getBeginLoc(); }
SourceLocation getEndLoc() const { return getRParenLoc(); }
/// Returns the location of a ud-suffix in the expression. /// /// For a string literal, there may be multiple identical suffixes. This /// returns the first. SourceLocation getUDSuffixLoc() const { return UDSuffixLoc; }
/// Returns the ud-suffix specified for this literal. const IdentifierInfo *getUDSuffix() const;
static bool classof(const Stmt *S) { return S->getStmtClass() == UserDefinedLiteralClass; } };
/// A boolean literal, per ([C++ lex.bool] Boolean literals). class CXXBoolLiteralExpr : public Expr { public: CXXBoolLiteralExpr(bool Val, QualType Ty, SourceLocation Loc) : Expr(CXXBoolLiteralExprClass, Ty, VK_PRValue, OK_Ordinary) { CXXBoolLiteralExprBits.Value = Val; CXXBoolLiteralExprBits.Loc = Loc; setDependence(ExprDependence::None); }
explicit CXXBoolLiteralExpr(EmptyShell Empty) : Expr(CXXBoolLiteralExprClass, Empty) {}
static CXXBoolLiteralExpr *Create(const ASTContext &C, bool Val, QualType Ty, SourceLocation Loc) { return new (C) CXXBoolLiteralExpr(Val, Ty, Loc); }
bool getValue() const { return CXXBoolLiteralExprBits.Value; } void setValue(bool V) { CXXBoolLiteralExprBits.Value = V; }
SourceLocation getBeginLoc() const { return getLocation(); } SourceLocation getEndLoc() const { return getLocation(); }
SourceLocation getLocation() const { return CXXBoolLiteralExprBits.Loc; } void setLocation(SourceLocation L) { CXXBoolLiteralExprBits.Loc = L; }
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXBoolLiteralExprClass; }
// Iterators child_range children() { return child_range(child_iterator(), child_iterator()); }
const_child_range children() const { return const_child_range(const_child_iterator(), const_child_iterator()); } };
/// The null pointer literal (C++11 [lex.nullptr]) /// /// Introduced in C++11, the only literal of type \c nullptr_t is \c nullptr. /// This also implements the null pointer literal in C23 (C23 6.4.1) which is /// intended to have the same semantics as the feature in C++. class CXXNullPtrLiteralExpr : public Expr { public: CXXNullPtrLiteralExpr(QualType Ty, SourceLocation Loc) : Expr(CXXNullPtrLiteralExprClass, Ty, VK_PRValue, OK_Ordinary) { CXXNullPtrLiteralExprBits.Loc = Loc; setDependence(ExprDependence::None); }
explicit CXXNullPtrLiteralExpr(EmptyShell Empty) : Expr(CXXNullPtrLiteralExprClass, Empty) {}
SourceLocation getBeginLoc() const { return getLocation(); } SourceLocation getEndLoc() const { return getLocation(); }
SourceLocation getLocation() const { return CXXNullPtrLiteralExprBits.Loc; } void setLocation(SourceLocation L) { CXXNullPtrLiteralExprBits.Loc = L; }
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXNullPtrLiteralExprClass; }
child_range children() { return child_range(child_iterator(), child_iterator()); }
const_child_range children() const { return const_child_range(const_child_iterator(), const_child_iterator()); } };
/// Implicit construction of a std::initializer_list<T> object from an /// array temporary within list-initialization (C++11 [dcl.init.list]p5). class CXXStdInitializerListExpr : public Expr { Stmt *SubExpr = nullptr;
CXXStdInitializerListExpr(EmptyShell Empty) : Expr(CXXStdInitializerListExprClass, Empty) {}
public: friend class ASTReader; friend class ASTStmtReader;
CXXStdInitializerListExpr(QualType Ty, Expr *SubExpr) : Expr(CXXStdInitializerListExprClass, Ty, VK_PRValue, OK_Ordinary), SubExpr(SubExpr) { setDependence(computeDependence(this)); }
Expr *getSubExpr() { return static_cast<Expr*>(SubExpr); } const Expr *getSubExpr() const { return static_cast<const Expr*>(SubExpr); }
SourceLocation getBeginLoc() const LLVM_READONLY { return SubExpr->getBeginLoc(); }
SourceLocation getEndLoc() const LLVM_READONLY { return SubExpr->getEndLoc(); }
/// Retrieve the source range of the expression. SourceRange getSourceRange() const LLVM_READONLY { return SubExpr->getSourceRange(); }
static bool classof(const Stmt *S) { return S->getStmtClass() == CXXStdInitializerListExprClass; }
child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
const_child_range children() const { return const_child_range(&SubExpr, &SubExpr + 1); } };
/// A C++ \c typeid expression (C++ [expr.typeid]), which gets /// the \c type_info that corresponds to the supplied type, or the (possibly /// dynamic) type of the supplied expression. /// /// This represents code like \c typeid(int) or \c typeid(*objPtr) class CXXTypeidExpr : public Expr { friend class ASTStmtReader;
private: llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand; SourceRange Range;
public: CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R) : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary), Operand(Operand), Range(R) { setDependence(computeDependence(this)); }
CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R) : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary), Operand(Operand), Range(R) { setDependence(computeDependence(this)); }
CXXTypeidExpr(EmptyShell Empty, bool isExpr) : Expr(CXXTypeidExprClass, Empty) { if (isExpr) Operand = (Expr*)nullptr; else Operand = (TypeSourceInfo*)nullptr; }
/// Determine whether this typeid has a type operand which is potentially /// evaluated, per C++11 [expr.typeid]p3. bool isPotentiallyEvaluated() const;
/// Best-effort check if the expression operand refers to a most derived /// object. This is not a strong guarantee. bool isMostDerived(ASTContext &Context) const;
bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
/// Retrieves the type operand of this typeid() expression after /// various required adjustments (removing reference types, cv-qualifiers). QualType getTypeOperand(ASTContext &Context) const;
/// Retrieve source information for the type operand. TypeSourceInfo *getTypeOperandSourceInfo() const { assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)"); return Operand.get<TypeSourceInfo *>(); } Expr *getExprOperand() const { assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)"); return static_cast<Expr*>(Operand.get<Stmt *>()); }
SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); } SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); } SourceRange getSourceRange() const LLVM_READONLY { return Range; } void setSourceRange(SourceRange R) { Range = R; }
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXTypeidExprClass; }
// Iterators child_range children() { if (isTypeOperand()) return child_range(child_iterator(), child_iterator()); auto **begin = reinterpret_cast<Stmt **>(&Operand); return child_range(begin, begin + 1); }
const_child_range children() const { if (isTypeOperand()) return const_child_range(const_child_iterator(), const_child_iterator());
auto **begin = reinterpret_cast<Stmt **>(&const_cast<CXXTypeidExpr *>(this)->Operand); return const_child_range(begin, begin + 1); }
/// Whether this is of a form like "typeid(*ptr)" that can throw a /// std::bad_typeid if a pointer is a null pointer ([expr.typeid]p2) bool hasNullCheck() const; };
/// A member reference to an MSPropertyDecl. /// /// This expression always has pseudo-object type, and therefore it is /// typically not encountered in a fully-typechecked expression except /// within the syntactic form of a PseudoObjectExpr. class MSPropertyRefExpr : public Expr { Expr *BaseExpr; MSPropertyDecl *TheDecl; SourceLocation MemberLoc; bool IsArrow; NestedNameSpecifierLoc QualifierLoc;
public: friend class ASTStmtReader;
MSPropertyRefExpr(Expr *baseExpr, MSPropertyDecl *decl, bool isArrow, QualType ty, ExprValueKind VK, NestedNameSpecifierLoc qualifierLoc, SourceLocation nameLoc) : Expr(MSPropertyRefExprClass, ty, VK, OK_Ordinary), BaseExpr(baseExpr), TheDecl(decl), MemberLoc(nameLoc), IsArrow(isArrow), QualifierLoc(qualifierLoc) { setDependence(computeDependence(this)); }
MSPropertyRefExpr(EmptyShell Empty) : Expr(MSPropertyRefExprClass, Empty) {}
SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(getBeginLoc(), getEndLoc()); }
bool isImplicitAccess() const { return getBaseExpr() && getBaseExpr()->isImplicitCXXThis(); }
SourceLocation getBeginLoc() const { if (!isImplicitAccess()) return BaseExpr->getBeginLoc(); else if (QualifierLoc) return QualifierLoc.getBeginLoc(); else return MemberLoc; }
SourceLocation getEndLoc() const { return getMemberLoc(); }
child_range children() { return child_range((Stmt**)&BaseExpr, (Stmt**)&BaseExpr + 1); }
const_child_range children() const { auto Children = const_cast<MSPropertyRefExpr *>(this)->children(); return const_child_range(Children.begin(), Children.end()); }
static bool classof(const Stmt *T) { return T->getStmtClass() == MSPropertyRefExprClass; }
Expr *getBaseExpr() const { return BaseExpr; } MSPropertyDecl *getPropertyDecl() const { return TheDecl; } bool isArrow() const { return IsArrow; } SourceLocation getMemberLoc() const { return MemberLoc; } NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; } };
/// MS property subscript expression. /// MSVC supports 'property' attribute and allows to apply it to the /// declaration of an empty array in a class or structure definition. /// For example: /// \code /// __declspec(property(get=GetX, put=PutX)) int x[]; /// \endcode /// The above statement indicates that x[] can be used with one or more array /// indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b), and /// p->x[a][b] = i will be turned into p->PutX(a, b, i). /// This is a syntactic pseudo-object expression. class MSPropertySubscriptExpr : public Expr { friend class ASTStmtReader;
enum { BASE_EXPR, IDX_EXPR, NUM_SUBEXPRS = 2 };
Stmt *SubExprs[NUM_SUBEXPRS]; SourceLocation RBracketLoc;
void setBase(Expr *Base) { SubExprs[BASE_EXPR] = Base; } void setIdx(Expr *Idx) { SubExprs[IDX_EXPR] = Idx; }
public: MSPropertySubscriptExpr(Expr *Base, Expr *Idx, QualType Ty, ExprValueKind VK, ExprObjectKind OK, SourceLocation RBracketLoc) : Expr(MSPropertySubscriptExprClass, Ty, VK, OK), RBracketLoc(RBracketLoc) { SubExprs[BASE_EXPR] = Base; SubExprs[IDX_EXPR] = Idx; setDependence(computeDependence(this)); }
/// Create an empty array subscript expression. explicit MSPropertySubscriptExpr(EmptyShell Shell) : Expr(MSPropertySubscriptExprClass, Shell) {}
Expr *getBase() { return cast<Expr>(SubExprs[BASE_EXPR]); } const Expr *getBase() const { return cast<Expr>(SubExprs[BASE_EXPR]); }
Expr *getIdx() { return cast<Expr>(SubExprs[IDX_EXPR]); } const Expr *getIdx() const { return cast<Expr>(SubExprs[IDX_EXPR]); }
SourceLocation getBeginLoc() const LLVM_READONLY { return getBase()->getBeginLoc(); }
SourceLocation getEndLoc() const LLVM_READONLY { return RBracketLoc; }
SourceLocation getRBracketLoc() const { return RBracketLoc; } void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
SourceLocation getExprLoc() const LLVM_READONLY { return getBase()->getExprLoc(); }
static bool classof(const Stmt *T) { return T->getStmtClass() == MSPropertySubscriptExprClass; }
// Iterators child_range children() { return child_range(&SubExprs[0], &SubExprs[0] + NUM_SUBEXPRS); }
const_child_range children() const { return const_child_range(&SubExprs[0], &SubExprs[0] + NUM_SUBEXPRS); } };
/// A Microsoft C++ @c __uuidof expression, which gets /// the _GUID that corresponds to the supplied type or expression. /// /// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr) class CXXUuidofExpr : public Expr { friend class ASTStmtReader;
private: llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand; MSGuidDecl *Guid; SourceRange Range;
public: CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, MSGuidDecl *Guid, SourceRange R) : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary), Operand(Operand), Guid(Guid), Range(R) { setDependence(computeDependence(this)); }
CXXUuidofExpr(QualType Ty, Expr *Operand, MSGuidDecl *Guid, SourceRange R) : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary), Operand(Operand), Guid(Guid), Range(R) { setDependence(computeDependence(this)); }
CXXUuidofExpr(EmptyShell Empty, bool isExpr) : Expr(CXXUuidofExprClass, Empty) { if (isExpr) Operand = (Expr*)nullptr; else Operand = (TypeSourceInfo*)nullptr; }
bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
/// Retrieves the type operand of this __uuidof() expression after /// various required adjustments (removing reference types, cv-qualifiers). QualType getTypeOperand(ASTContext &Context) const;
/// Retrieve source information for the type operand. TypeSourceInfo *getTypeOperandSourceInfo() const { assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)"); return Operand.get<TypeSourceInfo *>(); } Expr *getExprOperand() const { assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)"); return static_cast<Expr*>(Operand.get<Stmt *>()); }
MSGuidDecl *getGuidDecl() const { return Guid; }
SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); } SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); } SourceRange getSourceRange() const LLVM_READONLY { return Range; } void setSourceRange(SourceRange R) { Range = R; }
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXUuidofExprClass; }
// Iterators child_range children() { if (isTypeOperand()) return child_range(child_iterator(), child_iterator()); auto **begin = reinterpret_cast<Stmt **>(&Operand); return child_range(begin, begin + 1); }
const_child_range children() const { if (isTypeOperand()) return const_child_range(const_child_iterator(), const_child_iterator()); auto **begin = reinterpret_cast<Stmt **>(&const_cast<CXXUuidofExpr *>(this)->Operand); return const_child_range(begin, begin + 1); } };
/// Represents the \c this expression in C++. /// /// This is a pointer to the object on which the current member function is /// executing (C++ [expr.prim]p3). Example: /// /// \code /// class Foo { /// public: /// void bar(); /// void test() { this->bar(); } /// }; /// \endcode class CXXThisExpr : public Expr { CXXThisExpr(SourceLocation L, QualType Ty, bool IsImplicit, ExprValueKind VK) : Expr(CXXThisExprClass, Ty, VK, OK_Ordinary) { CXXThisExprBits.IsImplicit = IsImplicit; CXXThisExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false; CXXThisExprBits.Loc = L; setDependence(computeDependence(this)); }
CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
public: static CXXThisExpr *Create(const ASTContext &Ctx, SourceLocation L, QualType Ty, bool IsImplicit);
static CXXThisExpr *CreateEmpty(const ASTContext &Ctx);
SourceLocation getLocation() const { return CXXThisExprBits.Loc; } void setLocation(SourceLocation L) { CXXThisExprBits.Loc = L; }
SourceLocation getBeginLoc() const { return getLocation(); } SourceLocation getEndLoc() const { return getLocation(); }
bool isImplicit() const { return CXXThisExprBits.IsImplicit; } void setImplicit(bool I) { CXXThisExprBits.IsImplicit = I; }
bool isCapturedByCopyInLambdaWithExplicitObjectParameter() const { return CXXThisExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter; }
void setCapturedByCopyInLambdaWithExplicitObjectParameter(bool Set) { CXXThisExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = Set; setDependence(computeDependence(this)); }
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXThisExprClass; }
// Iterators child_range children() { return child_range(child_iterator(), child_iterator()); }
const_child_range children() const { return const_child_range(const_child_iterator(), const_child_iterator()); } };
/// A C++ throw-expression (C++ [except.throw]). /// /// This handles 'throw' (for re-throwing the current exception) and /// 'throw' assignment-expression. When assignment-expression isn't /// present, Op will be null. class CXXThrowExpr : public Expr { friend class ASTStmtReader;
/// The optional expression in the throw statement. Stmt *Operand;
public: // \p Ty is the void type which is used as the result type of the // expression. The \p Loc is the location of the throw keyword. // \p Operand is the expression in the throw statement, and can be // null if not present. CXXThrowExpr(Expr *Operand, QualType Ty, SourceLocation Loc, bool IsThrownVariableInScope) : Expr(CXXThrowExprClass, Ty, VK_PRValue, OK_Ordinary), Operand(Operand) { CXXThrowExprBits.ThrowLoc = Loc; CXXThrowExprBits.IsThrownVariableInScope = IsThrownVariableInScope; setDependence(computeDependence(this)); } CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
const Expr *getSubExpr() const { return cast_or_null<Expr>(Operand); } Expr *getSubExpr() { return cast_or_null<Expr>(Operand); }
SourceLocation getThrowLoc() const { return CXXThrowExprBits.ThrowLoc; }
/// Determines whether the variable thrown by this expression (if any!) /// is within the innermost try block. /// /// This information is required to determine whether the NRVO can apply to /// this variable. bool isThrownVariableInScope() const { return CXXThrowExprBits.IsThrownVariableInScope; }
SourceLocation getBeginLoc() const { return getThrowLoc(); } SourceLocation getEndLoc() const LLVM_READONLY { if (!getSubExpr()) return getThrowLoc(); return getSubExpr()->getEndLoc(); }
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXThrowExprClass; }
// Iterators child_range children() { return child_range(&Operand, Operand ? &Operand + 1 : &Operand); }
const_child_range children() const { return const_child_range(&Operand, Operand ? &Operand + 1 : &Operand); } };
/// A default argument (C++ [dcl.fct.default]). /// /// This wraps up a function call argument that was created from the /// corresponding parameter's default argument, when the call did not /// explicitly supply arguments for all of the parameters. class CXXDefaultArgExpr final : public Expr, private llvm::TrailingObjects<CXXDefaultArgExpr, Expr *> { friend class ASTStmtReader; friend class ASTReader; friend TrailingObjects;
/// The parameter whose default is being used. ParmVarDecl *Param;
/// The context where the default argument expression was used. DeclContext *UsedContext;
CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *Param, Expr *RewrittenExpr, DeclContext *UsedContext) : Expr(SC, Param->hasUnparsedDefaultArg() ? Param->getType().getNonReferenceType() : Param->getDefaultArg()->getType(), Param->getDefaultArg()->getValueKind(), Param->getDefaultArg()->getObjectKind()), Param(Param), UsedContext(UsedContext) { CXXDefaultArgExprBits.Loc = Loc; CXXDefaultArgExprBits.HasRewrittenInit = RewrittenExpr != nullptr; if (RewrittenExpr) *getTrailingObjects<Expr *>() = RewrittenExpr; setDependence(computeDependence(this)); }
CXXDefaultArgExpr(EmptyShell Empty, bool HasRewrittenInit) : Expr(CXXDefaultArgExprClass, Empty) { CXXDefaultArgExprBits.HasRewrittenInit = HasRewrittenInit; }
public: static CXXDefaultArgExpr *CreateEmpty(const ASTContext &C, bool HasRewrittenInit);
// \p Param is the parameter whose default argument is used by this // expression. static CXXDefaultArgExpr *Create(const ASTContext &C, SourceLocation Loc, ParmVarDecl *Param, Expr *RewrittenExpr, DeclContext *UsedContext); // Retrieve the parameter that the argument was created from. const ParmVarDecl *getParam() const { return Param; } ParmVarDecl *getParam() { return Param; }
bool hasRewrittenInit() const { return CXXDefaultArgExprBits.HasRewrittenInit; }
// Retrieve the argument to the function call. Expr *getExpr(); const Expr *getExpr() const { return const_cast<CXXDefaultArgExpr *>(this)->getExpr(); }
Expr *getRewrittenExpr() { return hasRewrittenInit() ? *getTrailingObjects<Expr *>() : nullptr; }
const Expr *getRewrittenExpr() const { return const_cast<CXXDefaultArgExpr *>(this)->getRewrittenExpr(); }
// Retrieve the rewritten init expression (for an init expression containing // immediate calls) with the top level FullExpr and ConstantExpr stripped off. Expr *getAdjustedRewrittenExpr(); const Expr *getAdjustedRewrittenExpr() const { return const_cast<CXXDefaultArgExpr *>(this)->getAdjustedRewrittenExpr(); }
const DeclContext *getUsedContext() const { return UsedContext; } DeclContext *getUsedContext() { return UsedContext; }
/// Retrieve the location where this default argument was actually used. SourceLocation getUsedLocation() const { return CXXDefaultArgExprBits.Loc; }
/// Default argument expressions have no representation in the /// source, so they have an empty source range. SourceLocation getBeginLoc() const { return SourceLocation(); } SourceLocation getEndLoc() const { return SourceLocation(); }
SourceLocation getExprLoc() const { return getUsedLocation(); }
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXDefaultArgExprClass; }
// Iterators child_range children() { return child_range(child_iterator(), child_iterator()); }
const_child_range children() const { return const_child_range(const_child_iterator(), const_child_iterator()); } };
/// A use of a default initializer in a constructor or in aggregate /// initialization. /// /// This wraps a use of a C++ default initializer (technically, /// a brace-or-equal-initializer for a non-static data member) when it /// is implicitly used in a mem-initializer-list in a constructor /// (C++11 [class.base.init]p8) or in aggregate initialization /// (C++1y [dcl.init.aggr]p7). class CXXDefaultInitExpr final : public Expr, private llvm::TrailingObjects<CXXDefaultInitExpr, Expr *> {
friend class ASTStmtReader; friend class ASTReader; friend TrailingObjects; /// The field whose default is being used. FieldDecl *Field;
/// The context where the default initializer expression was used. DeclContext *UsedContext;
CXXDefaultInitExpr(const ASTContext &Ctx, SourceLocation Loc, FieldDecl *Field, QualType Ty, DeclContext *UsedContext, Expr *RewrittenInitExpr);
CXXDefaultInitExpr(EmptyShell Empty, bool HasRewrittenInit) : Expr(CXXDefaultInitExprClass, Empty) { CXXDefaultInitExprBits.HasRewrittenInit = HasRewrittenInit; }
public: static CXXDefaultInitExpr *CreateEmpty(const ASTContext &C, bool HasRewrittenInit); /// \p Field is the non-static data member whose default initializer is used /// by this expression. static CXXDefaultInitExpr *Create(const ASTContext &Ctx, SourceLocation Loc, FieldDecl *Field, DeclContext *UsedContext, Expr *RewrittenInitExpr);
bool hasRewrittenInit() const { return CXXDefaultInitExprBits.HasRewrittenInit; }
/// Get the field whose initializer will be used. FieldDecl *getField() { return Field; } const FieldDecl *getField() const { return Field; }
/// Get the initialization expression that will be used. Expr *getExpr(); const Expr *getExpr() const { return const_cast<CXXDefaultInitExpr *>(this)->getExpr(); }
/// Retrieve the initializing expression with evaluated immediate calls, if /// any. const Expr *getRewrittenExpr() const { assert(hasRewrittenInit() && "expected a rewritten init expression"); return *getTrailingObjects<Expr *>(); }
/// Retrieve the initializing expression with evaluated immediate calls, if /// any. Expr *getRewrittenExpr() { assert(hasRewrittenInit() && "expected a rewritten init expression"); return *getTrailingObjects<Expr *>(); }
const DeclContext *getUsedContext() const { return UsedContext; } DeclContext *getUsedContext() { return UsedContext; }
/// Retrieve the location where this default initializer expression was /// actually used. SourceLocation getUsedLocation() const { return getBeginLoc(); }
SourceLocation getBeginLoc() const { return CXXDefaultInitExprBits.Loc; } SourceLocation getEndLoc() const { return CXXDefaultInitExprBits.Loc; }
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXDefaultInitExprClass; }
// Iterators child_range children() { return child_range(child_iterator(), child_iterator()); }
const_child_range children() const { return const_child_range(const_child_iterator(), const_child_iterator()); } };
/// Represents a C++ temporary. class CXXTemporary { /// The destructor that needs to be called. const CXXDestructorDecl *Destructor;
explicit CXXTemporary(const CXXDestructorDecl *destructor) : Destructor(destructor) {}
public: static CXXTemporary *Create(const ASTContext &C, const CXXDestructorDecl *Destructor);
const CXXDestructorDecl *getDestructor() const { return Destructor; }
void setDestructor(const CXXDestructorDecl *Dtor) { Destructor = Dtor; } };
/// Represents binding an expression to a temporary. /// /// This ensures the destructor is called for the temporary. It should only be /// needed for non-POD, non-trivially destructable class types. For example: /// /// \code /// struct S { /// S() { } // User defined constructor makes S non-POD. /// ~S() { } // User defined destructor makes it non-trivial. /// }; /// void test() { /// const S &s_ref = S(); // Requires a CXXBindTemporaryExpr. /// } /// \endcode /// /// Destructor might be null if destructor declaration is not valid. class CXXBindTemporaryExpr : public Expr { CXXTemporary *Temp = nullptr; Stmt *SubExpr = nullptr;
CXXBindTemporaryExpr(CXXTemporary *temp, Expr *SubExpr) : Expr(CXXBindTemporaryExprClass, SubExpr->getType(), VK_PRValue, OK_Ordinary), Temp(temp), SubExpr(SubExpr) { setDependence(computeDependence(this)); }
public: CXXBindTemporaryExpr(EmptyShell Empty) : Expr(CXXBindTemporaryExprClass, Empty) {}
static CXXBindTemporaryExpr *Create(const ASTContext &C, CXXTemporary *Temp, Expr* SubExpr);
CXXTemporary *getTemporary() { return Temp; } const CXXTemporary *getTemporary() const { return Temp; } void setTemporary(CXXTemporary *T) { Temp = T; }
const Expr *getSubExpr() const { return cast<Expr>(SubExpr); } Expr *getSubExpr() { return cast<Expr>(SubExpr); } void setSubExpr(Expr *E) { SubExpr = E; }
SourceLocation getBeginLoc() const LLVM_READONLY { return SubExpr->getBeginLoc(); }
SourceLocation getEndLoc() const LLVM_READONLY { return SubExpr->getEndLoc(); }
// Implement isa/cast/dyncast/etc. static bool classof(const Stmt *T) { return T->getStmtClass() == CXXBindTemporaryExprClass; }
// Iterators child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
const_child_range children() const { return const_child_range(&SubExpr, &SubExpr + 1); } };
enum class CXXConstructionKind { Complete, NonVirtualBase, VirtualBase, Delegating };
/// Represents a call to a C++ constructor. class CXXConstructExpr : public Expr { friend class ASTStmtReader;
/// A pointer to the constructor which will be ultimately called. CXXConstructorDecl *Constructor;
SourceRange ParenOrBraceRange;
/// The number of arguments. unsigned NumArgs;
// We would like to stash the arguments of the constructor call after // CXXConstructExpr. However CXXConstructExpr is used as a base class of // CXXTemporaryObjectExpr which makes the use of llvm::TrailingObjects // impossible. // // Instead we manually stash the trailing object after the full object // containing CXXConstructExpr (that is either CXXConstructExpr or // CXXTemporaryObjectExpr). // // The trailing objects are: // // * An array of getNumArgs() "Stmt *" for the arguments of the // constructor call.
/// Return a pointer to the start of the trailing arguments. /// Defined just after CXXTemporaryObjectExpr. inline Stmt **getTrailingArgs(); const Stmt *const *getTrailingArgs() const { return const_cast<CXXConstructExpr *>(this)->getTrailingArgs(); }
protected: /// Build a C++ construction expression. CXXConstructExpr(StmtClass SC, QualType Ty, SourceLocation Loc, CXXConstructorDecl *Ctor, bool Elidable, ArrayRef<Expr *> Args, bool HadMultipleCandidates, bool ListInitialization, bool StdInitListInitialization, bool ZeroInitialization, CXXConstructionKind ConstructKind, SourceRange ParenOrBraceRange);
/// Build an empty C++ construction expression. CXXConstructExpr(StmtClass SC, EmptyShell Empty, unsigned NumArgs);
/// Return the size in bytes of the trailing objects. Used by /// CXXTemporaryObjectExpr to allocate the right amount of storage. static unsigned sizeOfTrailingObjects(unsigned NumArgs) { return NumArgs * sizeof(Stmt *); }
public: /// Create a C++ construction expression. static CXXConstructExpr * Create(const ASTContext &Ctx, QualType Ty, SourceLocation Loc, CXXConstructorDecl *Ctor, bool Elidable, ArrayRef<Expr *> Args, bool HadMultipleCandidates, bool ListInitialization, bool StdInitListInitialization, bool ZeroInitialization, CXXConstructionKind ConstructKind, SourceRange ParenOrBraceRange);
/// Create an empty C++ construction expression. static CXXConstructExpr *CreateEmpty(const ASTContext &Ctx, unsigned NumArgs);
/// Get the constructor that this expression will (ultimately) call. CXXConstructorDecl *getConstructor() const { return Constructor; }
SourceLocation getLocation() const { return CXXConstructExprBits.Loc; } void setLocation(SourceLocation Loc) { CXXConstructExprBits.Loc = Loc; }
/// Whether this construction is elidable. bool isElidable() const { return CXXConstructExprBits.Elidable; } void setElidable(bool E) { CXXConstructExprBits.Elidable = E; }
/// Whether the referred constructor was resolved from /// an overloaded set having size greater than 1. bool hadMultipleCandidates() const { return CXXConstructExprBits.HadMultipleCandidates; } void setHadMultipleCandidates(bool V) { CXXConstructExprBits.HadMultipleCandidates = V; }
/// Whether this constructor call was written as list-initialization. bool isListInitialization() const { return CXXConstructExprBits.ListInitialization; } void setListInitialization(bool V) { CXXConstructExprBits.ListInitialization = V; }
/// Whether this constructor call was written as list-initialization, /// but was interpreted as forming a std::initializer_list<T> from the list /// and passing that as a single constructor argument. /// See C++11 [over.match.list]p1 bullet 1. bool isStdInitListInitialization() const { return CXXConstructExprBits.StdInitListInitialization; } void setStdInitListInitialization(bool V) { CXXConstructExprBits.StdInitListInitialization = V; }
/// Whether this construction first requires /// zero-initialization before the initializer is called. bool requiresZeroInitialization() const { return CXXConstructExprBits.ZeroInitialization; } void setRequiresZeroInitialization(bool ZeroInit) { CXXConstructExprBits.ZeroInitialization = ZeroInit; }
/// Determine whether this constructor is actually constructing /// a base class (rather than a complete object). CXXConstructionKind getConstructionKind() const { return static_cast<CXXConstructionKind>( CXXConstructExprBits.ConstructionKind); } void setConstructionKind(CXXConstructionKind CK) { CXXConstructExprBits.ConstructionKind = llvm::to_underlying(CK); }
using arg_iterator = ExprIterator; using const_arg_iterator = ConstExprIterator; using arg_range = llvm::iterator_range<arg_iterator>; using const_arg_range = llvm::iterator_range<const_arg_iterator>;
arg_range arguments() { return arg_range(arg_begin(), arg_end()); } const_arg_range arguments() const { return const_arg_range(arg_begin(), arg_end()); }
arg_iterator arg_begin() { return getTrailingArgs(); } arg_iterator arg_end() { return arg_begin() + getNumArgs(); } const_arg_iterator arg_begin() const { return getTrailingArgs(); } const_arg_iterator arg_end() const { return arg_begin() + getNumArgs(); }
Expr **getArgs() { return reinterpret_cast<Expr **>(getTrailingArgs()); } const Expr *const *getArgs() const { return reinterpret_cast<const Expr *const *>(getTrailingArgs()); }
/// Return the number of arguments to the constructor call. unsigned getNumArgs() const { return NumArgs; }
/// Return the specified argument. Expr *getArg(unsigned Arg) { assert(Arg < getNumArgs() && "Arg access out of range!"); return getArgs()[Arg]; } const Expr *getArg(unsigned Arg) const { assert(Arg < getNumArgs() && "Arg access out of range!"); return getArgs()[Arg]; }
/// Set the specified argument. void setArg(unsigned Arg, Expr *ArgExpr) { assert(Arg < getNumArgs() && "Arg access out of range!"); getArgs()[Arg] = ArgExpr; }
bool isImmediateEscalating() const { return CXXConstructExprBits.IsImmediateEscalating; }
void setIsImmediateEscalating(bool Set) { CXXConstructExprBits.IsImmediateEscalating = Set; }
SourceLocation getBeginLoc() const LLVM_READONLY; SourceLocation getEndLoc() const LLVM_READONLY; SourceRange getParenOrBraceRange() const { return ParenOrBraceRange; } void setParenOrBraceRange(SourceRange Range) { ParenOrBraceRange = Range; }
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXConstructExprClass || T->getStmtClass() == CXXTemporaryObjectExprClass; }
// Iterators child_range children() { return child_range(getTrailingArgs(), getTrailingArgs() + getNumArgs()); }
const_child_range children() const { auto Children = const_cast<CXXConstructExpr *>(this)->children(); return const_child_range(Children.begin(), Children.end()); } };
/// Represents a call to an inherited base class constructor from an /// inheriting constructor. This call implicitly forwards the arguments from /// the enclosing context (an inheriting constructor) to the specified inherited /// base class constructor. class CXXInheritedCtorInitExpr : public Expr { private: CXXConstructorDecl *Constructor = nullptr;
/// The location of the using declaration. SourceLocation Loc;
/// Whether this is the construction of a virtual base. LLVM_PREFERRED_TYPE(bool) unsigned ConstructsVirtualBase : 1;
/// Whether the constructor is inherited from a virtual base class of the /// class that we construct. LLVM_PREFERRED_TYPE(bool) unsigned InheritedFromVirtualBase : 1;
public: friend class ASTStmtReader;
/// Construct a C++ inheriting construction expression. CXXInheritedCtorInitExpr(SourceLocation Loc, QualType T, CXXConstructorDecl *Ctor, bool ConstructsVirtualBase, bool InheritedFromVirtualBase) : Expr(CXXInheritedCtorInitExprClass, T, VK_PRValue, OK_Ordinary), Constructor(Ctor), Loc(Loc), ConstructsVirtualBase(ConstructsVirtualBase), InheritedFromVirtualBase(InheritedFromVirtualBase) { assert(!T->isDependentType()); setDependence(ExprDependence::None); }
/// Construct an empty C++ inheriting construction expression. explicit CXXInheritedCtorInitExpr(EmptyShell Empty) : Expr(CXXInheritedCtorInitExprClass, Empty), ConstructsVirtualBase(false), InheritedFromVirtualBase(false) {}
/// Get the constructor that this expression will call. CXXConstructorDecl *getConstructor() const { return Constructor; }
/// Determine whether this constructor is actually constructing /// a base class (rather than a complete object). bool constructsVBase() const { return ConstructsVirtualBase; } CXXConstructionKind getConstructionKind() const { return ConstructsVirtualBase ? CXXConstructionKind::VirtualBase : CXXConstructionKind::NonVirtualBase; }
/// Determine whether the inherited constructor is inherited from a /// virtual base of the object we construct. If so, we are not responsible /// for calling the inherited constructor (the complete object constructor /// does that), and so we don't need to pass any arguments. bool inheritedFromVBase() const { return InheritedFromVirtualBase; }
SourceLocation getLocation() const LLVM_READONLY { return Loc; } SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; } SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXInheritedCtorInitExprClass; }
child_range children() { return child_range(child_iterator(), child_iterator()); }
const_child_range children() const { return const_child_range(const_child_iterator(), const_child_iterator()); } };
/// Represents an explicit C++ type conversion that uses "functional" /// notation (C++ [expr.type.conv]). /// /// Example: /// \code /// x = int(0.5); /// \endcode class CXXFunctionalCastExpr final : public ExplicitCastExpr, private llvm::TrailingObjects<CXXFunctionalCastExpr, CXXBaseSpecifier *, FPOptionsOverride> { SourceLocation LParenLoc; SourceLocation RParenLoc;
CXXFunctionalCastExpr(QualType ty, ExprValueKind VK, TypeSourceInfo *writtenTy, CastKind kind, Expr *castExpr, unsigned pathSize, FPOptionsOverride FPO, SourceLocation lParenLoc, SourceLocation rParenLoc) : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind, castExpr, pathSize, FPO.requiresTrailingStorage(), writtenTy), LParenLoc(lParenLoc), RParenLoc(rParenLoc) { if (hasStoredFPFeatures()) *getTrailingFPFeatures() = FPO; }
explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize, bool HasFPFeatures) : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize, HasFPFeatures) {}
unsigned numTrailingObjects(OverloadToken<CXXBaseSpecifier *>) const { return path_size(); }
public: friend class CastExpr; friend TrailingObjects;
static CXXFunctionalCastExpr * Create(const ASTContext &Context, QualType T, ExprValueKind VK, TypeSourceInfo *Written, CastKind Kind, Expr *Op, const CXXCastPath *Path, FPOptionsOverride FPO, SourceLocation LPLoc, SourceLocation RPLoc); static CXXFunctionalCastExpr * CreateEmpty(const ASTContext &Context, unsigned PathSize, bool HasFPFeatures);
SourceLocation getLParenLoc() const { return LParenLoc; } void setLParenLoc(SourceLocation L) { LParenLoc = L; } SourceLocation getRParenLoc() const { return RParenLoc; } void setRParenLoc(SourceLocation L) { RParenLoc = L; }
/// Determine whether this expression models list-initialization. bool isListInitialization() const { return LParenLoc.isInvalid(); }
SourceLocation getBeginLoc() const LLVM_READONLY; SourceLocation getEndLoc() const LLVM_READONLY;
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXFunctionalCastExprClass; } };
/// Represents a C++ functional cast expression that builds a /// temporary object. /// /// This expression type represents a C++ "functional" cast /// (C++[expr.type.conv]) with N != 1 arguments that invokes a /// constructor to build a temporary object. With N == 1 arguments the /// functional cast expression will be represented by CXXFunctionalCastExpr. /// Example: /// \code /// struct X { X(int, float); } /// /// X create_X() { /// return X(1, 3.14f); // creates a CXXTemporaryObjectExpr /// }; /// \endcode class CXXTemporaryObjectExpr final : public CXXConstructExpr { friend class ASTStmtReader;
// CXXTemporaryObjectExpr has some trailing objects belonging // to CXXConstructExpr. See the comment inside CXXConstructExpr // for more details.
TypeSourceInfo *TSI;
CXXTemporaryObjectExpr(CXXConstructorDecl *Cons, QualType Ty, TypeSourceInfo *TSI, ArrayRef<Expr *> Args, SourceRange ParenOrBraceRange, bool HadMultipleCandidates, bool ListInitialization, bool StdInitListInitialization, bool ZeroInitialization);
CXXTemporaryObjectExpr(EmptyShell Empty, unsigned NumArgs);
public: static CXXTemporaryObjectExpr * Create(const ASTContext &Ctx, CXXConstructorDecl *Cons, QualType Ty, TypeSourceInfo *TSI, ArrayRef<Expr *> Args, SourceRange ParenOrBraceRange, bool HadMultipleCandidates, bool ListInitialization, bool StdInitListInitialization, bool ZeroInitialization);
static CXXTemporaryObjectExpr *CreateEmpty(const ASTContext &Ctx, unsigned NumArgs);
TypeSourceInfo *getTypeSourceInfo() const { return TSI; }
SourceLocation getBeginLoc() const LLVM_READONLY; SourceLocation getEndLoc() const LLVM_READONLY;
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXTemporaryObjectExprClass; } };
Stmt **CXXConstructExpr::getTrailingArgs() { if (auto *E = dyn_cast<CXXTemporaryObjectExpr>(this)) return reinterpret_cast<Stmt **>(E + 1); assert((getStmtClass() == CXXConstructExprClass) && "Unexpected class deriving from CXXConstructExpr!"); return reinterpret_cast<Stmt **>(this + 1); }
/// A C++ lambda expression, which produces a function object /// (of unspecified type) that can be invoked later. /// /// Example: /// \code /// void low_pass_filter(std::vector<double> &values, double cutoff) { /// values.erase(std::remove_if(values.begin(), values.end(), /// [=](double value) { return value > cutoff; }); /// } /// \endcode /// /// C++11 lambda expressions can capture local variables, either by copying /// the values of those local variables at the time the function /// object is constructed (not when it is called!) or by holding a /// reference to the local variable. These captures can occur either /// implicitly or can be written explicitly between the square /// brackets ([...]) that start the lambda expression. /// /// C++1y introduces a new form of "capture" called an init-capture that /// includes an initializing expression (rather than capturing a variable), /// and which can never occur implicitly. class LambdaExpr final : public Expr, private llvm::TrailingObjects<LambdaExpr, Stmt *> { // LambdaExpr has some data stored in LambdaExprBits.
/// The source range that covers the lambda introducer ([...]). SourceRange IntroducerRange;
/// The source location of this lambda's capture-default ('=' or '&'). SourceLocation CaptureDefaultLoc;
/// The location of the closing brace ('}') that completes /// the lambda. /// /// The location of the brace is also available by looking up the /// function call operator in the lambda class. However, it is /// stored here to improve the performance of getSourceRange(), and /// to avoid having to deserialize the function call operator from a /// module file just to determine the source range. SourceLocation ClosingBrace;
/// Construct a lambda expression. LambdaExpr(QualType T, SourceRange IntroducerRange, LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc, bool ExplicitParams, bool ExplicitResultType, ArrayRef<Expr *> CaptureInits, SourceLocation ClosingBrace, bool ContainsUnexpandedParameterPack);
/// Construct an empty lambda expression. LambdaExpr(EmptyShell Empty, unsigned NumCaptures);
Stmt **getStoredStmts() { return getTrailingObjects<Stmt *>(); } Stmt *const *getStoredStmts() const { return getTrailingObjects<Stmt *>(); }
void initBodyIfNeeded() const;
public: friend class ASTStmtReader; friend class ASTStmtWriter; friend TrailingObjects;
/// Construct a new lambda expression. static LambdaExpr * Create(const ASTContext &C, CXXRecordDecl *Class, SourceRange IntroducerRange, LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc, bool ExplicitParams, bool ExplicitResultType, ArrayRef<Expr *> CaptureInits, SourceLocation ClosingBrace, bool ContainsUnexpandedParameterPack);
/// Construct a new lambda expression that will be deserialized from /// an external source. static LambdaExpr *CreateDeserialized(const ASTContext &C, unsigned NumCaptures);
/// Determine the default capture kind for this lambda. LambdaCaptureDefault getCaptureDefault() const { return static_cast<LambdaCaptureDefault>(LambdaExprBits.CaptureDefault); }
/// Retrieve the location of this lambda's capture-default, if any. SourceLocation getCaptureDefaultLoc() const { return CaptureDefaultLoc; }
/// Determine whether one of this lambda's captures is an init-capture. bool isInitCapture(const LambdaCapture *Capture) const;
/// An iterator that walks over the captures of the lambda, /// both implicit and explicit. using capture_iterator = const LambdaCapture *;
/// An iterator over a range of lambda captures. using capture_range = llvm::iterator_range<capture_iterator>;
/// Retrieve this lambda's captures. capture_range captures() const;
/// Retrieve an iterator pointing to the first lambda capture. capture_iterator capture_begin() const;
/// Retrieve an iterator pointing past the end of the /// sequence of lambda captures. capture_iterator capture_end() const;
/// Determine the number of captures in this lambda. unsigned capture_size() const { return LambdaExprBits.NumCaptures; }
/// Retrieve this lambda's explicit captures. capture_range explicit_captures() const;
/// Retrieve an iterator pointing to the first explicit /// lambda capture. capture_iterator explicit_capture_begin() const;
/// Retrieve an iterator pointing past the end of the sequence of /// explicit lambda captures. capture_iterator explicit_capture_end() const;
/// Retrieve this lambda's implicit captures. capture_range implicit_captures() const;
/// Retrieve an iterator pointing to the first implicit /// lambda capture. capture_iterator implicit_capture_begin() const;
/// Retrieve an iterator pointing past the end of the sequence of /// implicit lambda captures. capture_iterator implicit_capture_end() const;
/// Iterator that walks over the capture initialization /// arguments. using capture_init_iterator = Expr **;
/// Const iterator that walks over the capture initialization /// arguments. /// FIXME: This interface is prone to being used incorrectly. using const_capture_init_iterator = Expr *const *;
/// Retrieve the initialization expressions for this lambda's captures. llvm::iterator_range<capture_init_iterator> capture_inits() { return llvm::make_range(capture_init_begin(), capture_init_end()); }
/// Retrieve the initialization expressions for this lambda's captures. llvm::iterator_range<const_capture_init_iterator> capture_inits() const { return llvm::make_range(capture_init_begin(), capture_init_end()); }
/// Retrieve the first initialization argument for this /// lambda expression (which initializes the first capture field). capture_init_iterator capture_init_begin() { return reinterpret_cast<Expr **>(getStoredStmts()); }
/// Retrieve the first initialization argument for this /// lambda expression (which initializes the first capture field). const_capture_init_iterator capture_init_begin() const { return reinterpret_cast<Expr *const *>(getStoredStmts()); }
/// Retrieve the iterator pointing one past the last /// initialization argument for this lambda expression. capture_init_iterator capture_init_end() { return capture_init_begin() + capture_size(); }
/// Retrieve the iterator pointing one past the last /// initialization argument for this lambda expression. const_capture_init_iterator capture_init_end() const { return capture_init_begin() + capture_size(); }
/// Retrieve the source range covering the lambda introducer, /// which contains the explicit capture list surrounded by square /// brackets ([...]). SourceRange getIntroducerRange() const { return IntroducerRange; }
/// Retrieve the class that corresponds to the lambda. /// /// This is the "closure type" (C++1y [expr.prim.lambda]), and stores the /// captures in its fields and provides the various operations permitted /// on a lambda (copying, calling). CXXRecordDecl *getLambdaClass() const;
/// Retrieve the function call operator associated with this /// lambda expression. CXXMethodDecl *getCallOperator() const;
/// Retrieve the function template call operator associated with this /// lambda expression. FunctionTemplateDecl *getDependentCallOperator() const;
/// If this is a generic lambda expression, retrieve the template /// parameter list associated with it, or else return null. TemplateParameterList *getTemplateParameterList() const;
/// Get the template parameters were explicitly specified (as opposed to being /// invented by use of an auto parameter). ArrayRef<NamedDecl *> getExplicitTemplateParameters() const;
/// Get the trailing requires clause, if any. Expr *getTrailingRequiresClause() const;
/// Whether this is a generic lambda. bool isGenericLambda() const { return getTemplateParameterList(); }
/// Retrieve the body of the lambda. This will be most of the time /// a \p CompoundStmt, but can also be \p CoroutineBodyStmt wrapping /// a \p CompoundStmt. Note that unlike functions, lambda-expressions /// cannot have a function-try-block. Stmt *getBody() const;
/// Retrieve the \p CompoundStmt representing the body of the lambda. /// This is a convenience function for callers who do not need /// to handle node(s) which may wrap a \p CompoundStmt. const CompoundStmt *getCompoundStmtBody() const; CompoundStmt *getCompoundStmtBody() { const auto *ConstThis = this; return const_cast<CompoundStmt *>(ConstThis->getCompoundStmtBody()); }
/// Determine whether the lambda is mutable, meaning that any /// captures values can be modified. bool isMutable() const;
/// Determine whether this lambda has an explicit parameter /// list vs. an implicit (empty) parameter list. bool hasExplicitParameters() const { return LambdaExprBits.ExplicitParams; }
/// Whether this lambda had its result type explicitly specified. bool hasExplicitResultType() const { return LambdaExprBits.ExplicitResultType; }
static bool classof(const Stmt *T) { return T->getStmtClass() == LambdaExprClass; }
SourceLocation getBeginLoc() const LLVM_READONLY { return IntroducerRange.getBegin(); }
SourceLocation getEndLoc() const LLVM_READONLY { return ClosingBrace; }
/// Includes the captures and the body of the lambda. child_range children(); const_child_range children() const; };
/// An expression "T()" which creates a value-initialized rvalue of type /// T, which is a non-class type. See (C++98 [5.2.3p2]). class CXXScalarValueInitExpr : public Expr { friend class ASTStmtReader;
TypeSourceInfo *TypeInfo;
public: /// Create an explicitly-written scalar-value initialization /// expression. CXXScalarValueInitExpr(QualType Type, TypeSourceInfo *TypeInfo, SourceLocation RParenLoc) : Expr(CXXScalarValueInitExprClass, Type, VK_PRValue, OK_Ordinary), TypeInfo(TypeInfo) { CXXScalarValueInitExprBits.RParenLoc = RParenLoc; setDependence(computeDependence(this)); }
explicit CXXScalarValueInitExpr(EmptyShell Shell) : Expr(CXXScalarValueInitExprClass, Shell) {}
TypeSourceInfo *getTypeSourceInfo() const { return TypeInfo; }
SourceLocation getRParenLoc() const { return CXXScalarValueInitExprBits.RParenLoc; }
SourceLocation getBeginLoc() const LLVM_READONLY; SourceLocation getEndLoc() const { return getRParenLoc(); }
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXScalarValueInitExprClass; }
// Iterators child_range children() { return child_range(child_iterator(), child_iterator()); }
const_child_range children() const { return const_child_range(const_child_iterator(), const_child_iterator()); } };
enum class CXXNewInitializationStyle { /// New-expression has no initializer as written. None,
/// New-expression has a C++98 paren-delimited initializer. Parens,
/// New-expression has a C++11 list-initializer. Braces };
/// Represents a new-expression for memory allocation and constructor /// calls, e.g: "new CXXNewExpr(foo)". class CXXNewExpr final : public Expr, private llvm::TrailingObjects<CXXNewExpr, Stmt *, SourceRange> { friend class ASTStmtReader; friend class ASTStmtWriter; friend TrailingObjects;
/// Points to the allocation function used. FunctionDecl *OperatorNew;
/// Points to the deallocation function used in case of error. May be null. FunctionDecl *OperatorDelete;
/// The allocated type-source information, as written in the source. TypeSourceInfo *AllocatedTypeInfo;
/// Range of the entire new expression. SourceRange Range;
/// Source-range of a paren-delimited initializer. SourceRange DirectInitRange;
// CXXNewExpr is followed by several optional trailing objects. // They are in order: // // * An optional "Stmt *" for the array size expression. // Present if and ony if isArray(). // // * An optional "Stmt *" for the init expression. // Present if and only if hasInitializer(). // // * An array of getNumPlacementArgs() "Stmt *" for the placement new // arguments, if any. // // * An optional SourceRange for the range covering the parenthesized type-id // if the allocated type was expressed as a parenthesized type-id. // Present if and only if isParenTypeId(). unsigned arraySizeOffset() const { return 0; } unsigned initExprOffset() const { return arraySizeOffset() + isArray(); } unsigned placementNewArgsOffset() const { return initExprOffset() + hasInitializer(); }
unsigned numTrailingObjects(OverloadToken<Stmt *>) const { return isArray() + hasInitializer() + getNumPlacementArgs(); }
unsigned numTrailingObjects(OverloadToken<SourceRange>) const { return isParenTypeId(); }
/// Build a c++ new expression. CXXNewExpr(bool IsGlobalNew, FunctionDecl *OperatorNew, FunctionDecl *OperatorDelete, bool ShouldPassAlignment, bool UsualArrayDeleteWantsSize, ArrayRef<Expr *> PlacementArgs, SourceRange TypeIdParens, std::optional<Expr *> ArraySize, CXXNewInitializationStyle InitializationStyle, Expr *Initializer, QualType Ty, TypeSourceInfo *AllocatedTypeInfo, SourceRange Range, SourceRange DirectInitRange);
/// Build an empty c++ new expression. CXXNewExpr(EmptyShell Empty, bool IsArray, unsigned NumPlacementArgs, bool IsParenTypeId);
public: /// Create a c++ new expression. static CXXNewExpr * Create(const ASTContext &Ctx, bool IsGlobalNew, FunctionDecl *OperatorNew, FunctionDecl *OperatorDelete, bool ShouldPassAlignment, bool UsualArrayDeleteWantsSize, ArrayRef<Expr *> PlacementArgs, SourceRange TypeIdParens, std::optional<Expr *> ArraySize, CXXNewInitializationStyle InitializationStyle, Expr *Initializer, QualType Ty, TypeSourceInfo *AllocatedTypeInfo, SourceRange Range, SourceRange DirectInitRange);
/// Create an empty c++ new expression. static CXXNewExpr *CreateEmpty(const ASTContext &Ctx, bool IsArray, bool HasInit, unsigned NumPlacementArgs, bool IsParenTypeId);
QualType getAllocatedType() const { return getType()->castAs<PointerType>()->getPointeeType(); }
TypeSourceInfo *getAllocatedTypeSourceInfo() const { return AllocatedTypeInfo; }
/// True if the allocation result needs to be null-checked. /// /// C++11 [expr.new]p13: /// If the allocation function returns null, initialization shall /// not be done, the deallocation function shall not be called, /// and the value of the new-expression shall be null. /// /// C++ DR1748: /// If the allocation function is a reserved placement allocation /// function that returns null, the behavior is undefined. /// /// An allocation function is not allowed to return null unless it /// has a non-throwing exception-specification. The '03 rule is /// identical except that the definition of a non-throwing /// exception specification is just "is it throw()?". bool shouldNullCheckAllocation() const;
FunctionDecl *getOperatorNew() const { return OperatorNew; } void setOperatorNew(FunctionDecl *D) { OperatorNew = D; } FunctionDecl *getOperatorDelete() const { return OperatorDelete; } void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
bool isArray() const { return CXXNewExprBits.IsArray; }
/// This might return std::nullopt even if isArray() returns true, /// since there might not be an array size expression. /// If the result is not std::nullopt, it will never wrap a nullptr. std::optional<Expr *> getArraySize() { if (!isArray()) return std::nullopt;
if (auto *Result = cast_or_null<Expr>(getTrailingObjects<Stmt *>()[arraySizeOffset()])) return Result;
return std::nullopt; }
/// This might return std::nullopt even if isArray() returns true, /// since there might not be an array size expression. /// If the result is not std::nullopt, it will never wrap a nullptr. std::optional<const Expr *> getArraySize() const { if (!isArray()) return std::nullopt;
if (auto *Result = cast_or_null<Expr>(getTrailingObjects<Stmt *>()[arraySizeOffset()])) return Result;
return std::nullopt; }
unsigned getNumPlacementArgs() const { return CXXNewExprBits.NumPlacementArgs; }
Expr **getPlacementArgs() { return reinterpret_cast<Expr **>(getTrailingObjects<Stmt *>() + placementNewArgsOffset()); }
Expr *getPlacementArg(unsigned I) { assert((I < getNumPlacementArgs()) && "Index out of range!"); return getPlacementArgs()[I]; } const Expr *getPlacementArg(unsigned I) const { return const_cast<CXXNewExpr *>(this)->getPlacementArg(I); }
bool isParenTypeId() const { return CXXNewExprBits.IsParenTypeId; } SourceRange getTypeIdParens() const { return isParenTypeId() ? getTrailingObjects<SourceRange>()[0] : SourceRange(); }
bool isGlobalNew() const { return CXXNewExprBits.IsGlobalNew; }
/// Whether this new-expression has any initializer at all. bool hasInitializer() const { return CXXNewExprBits.HasInitializer; }
/// The kind of initializer this new-expression has. CXXNewInitializationStyle getInitializationStyle() const { return static_cast<CXXNewInitializationStyle>( CXXNewExprBits.StoredInitializationStyle); }
/// The initializer of this new-expression. Expr *getInitializer() { return hasInitializer() ? cast<Expr>(getTrailingObjects<Stmt *>()[initExprOffset()]) : nullptr; } const Expr *getInitializer() const { return hasInitializer() ? cast<Expr>(getTrailingObjects<Stmt *>()[initExprOffset()]) : nullptr; }
/// Returns the CXXConstructExpr from this new-expression, or null. const CXXConstructExpr *getConstructExpr() const { return dyn_cast_or_null<CXXConstructExpr>(getInitializer()); }
/// Indicates whether the required alignment should be implicitly passed to /// the allocation function. bool passAlignment() const { return CXXNewExprBits.ShouldPassAlignment; }
/// Answers whether the usual array deallocation function for the /// allocated type expects the size of the allocation as a /// parameter. bool doesUsualArrayDeleteWantSize() const { return CXXNewExprBits.UsualArrayDeleteWantsSize; }
using arg_iterator = ExprIterator; using const_arg_iterator = ConstExprIterator;
llvm::iterator_range<arg_iterator> placement_arguments() { return llvm::make_range(placement_arg_begin(), placement_arg_end()); }
llvm::iterator_range<const_arg_iterator> placement_arguments() const { return llvm::make_range(placement_arg_begin(), placement_arg_end()); }
arg_iterator placement_arg_begin() { return getTrailingObjects<Stmt *>() + placementNewArgsOffset(); } arg_iterator placement_arg_end() { return placement_arg_begin() + getNumPlacementArgs(); } const_arg_iterator placement_arg_begin() const { return getTrailingObjects<Stmt *>() + placementNewArgsOffset(); } const_arg_iterator placement_arg_end() const { return placement_arg_begin() + getNumPlacementArgs(); }
using raw_arg_iterator = Stmt **;
raw_arg_iterator raw_arg_begin() { return getTrailingObjects<Stmt *>(); } raw_arg_iterator raw_arg_end() { return raw_arg_begin() + numTrailingObjects(OverloadToken<Stmt *>()); } const_arg_iterator raw_arg_begin() const { return getTrailingObjects<Stmt *>(); } const_arg_iterator raw_arg_end() const { return raw_arg_begin() + numTrailingObjects(OverloadToken<Stmt *>()); }
SourceLocation getBeginLoc() const { return Range.getBegin(); } SourceLocation getEndLoc() const { return Range.getEnd(); }
SourceRange getDirectInitRange() const { return DirectInitRange; } SourceRange getSourceRange() const { return Range; }
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXNewExprClass; }
// Iterators child_range children() { return child_range(raw_arg_begin(), raw_arg_end()); }
const_child_range children() const { return const_child_range(const_cast<CXXNewExpr *>(this)->children()); } };
/// Represents a \c delete expression for memory deallocation and /// destructor calls, e.g. "delete[] pArray". class CXXDeleteExpr : public Expr { friend class ASTStmtReader;
/// Points to the operator delete overload that is used. Could be a member. FunctionDecl *OperatorDelete = nullptr;
/// The pointer expression to be deleted. Stmt *Argument = nullptr;
public: CXXDeleteExpr(QualType Ty, bool GlobalDelete, bool ArrayForm, bool ArrayFormAsWritten, bool UsualArrayDeleteWantsSize, FunctionDecl *OperatorDelete, Expr *Arg, SourceLocation Loc) : Expr(CXXDeleteExprClass, Ty, VK_PRValue, OK_Ordinary), OperatorDelete(OperatorDelete), Argument(Arg) { CXXDeleteExprBits.GlobalDelete = GlobalDelete; CXXDeleteExprBits.ArrayForm = ArrayForm; CXXDeleteExprBits.ArrayFormAsWritten = ArrayFormAsWritten; CXXDeleteExprBits.UsualArrayDeleteWantsSize = UsualArrayDeleteWantsSize; CXXDeleteExprBits.Loc = Loc; setDependence(computeDependence(this)); }
explicit CXXDeleteExpr(EmptyShell Shell) : Expr(CXXDeleteExprClass, Shell) {}
bool isGlobalDelete() const { return CXXDeleteExprBits.GlobalDelete; } bool isArrayForm() const { return CXXDeleteExprBits.ArrayForm; } bool isArrayFormAsWritten() const { return CXXDeleteExprBits.ArrayFormAsWritten; }
/// Answers whether the usual array deallocation function for the /// allocated type expects the size of the allocation as a /// parameter. This can be true even if the actual deallocation /// function that we're using doesn't want a size. bool doesUsualArrayDeleteWantSize() const { return CXXDeleteExprBits.UsualArrayDeleteWantsSize; }
FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
Expr *getArgument() { return cast<Expr>(Argument); } const Expr *getArgument() const { return cast<Expr>(Argument); }
/// Retrieve the type being destroyed. /// /// If the type being destroyed is a dependent type which may or may not /// be a pointer, return an invalid type. QualType getDestroyedType() const;
SourceLocation getBeginLoc() const { return CXXDeleteExprBits.Loc; } SourceLocation getEndLoc() const LLVM_READONLY { return Argument->getEndLoc(); }
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXDeleteExprClass; }
// Iterators child_range children() { return child_range(&Argument, &Argument + 1); }
const_child_range children() const { return const_child_range(&Argument, &Argument + 1); } };
/// Stores the type being destroyed by a pseudo-destructor expression. class PseudoDestructorTypeStorage { /// Either the type source information or the name of the type, if /// it couldn't be resolved due to type-dependence. llvm::PointerUnion<TypeSourceInfo *, const IdentifierInfo *> Type;
/// The starting source location of the pseudo-destructor type. SourceLocation Location;
public: PseudoDestructorTypeStorage() = default;
PseudoDestructorTypeStorage(const IdentifierInfo *II, SourceLocation Loc) : Type(II), Location(Loc) {}
PseudoDestructorTypeStorage(TypeSourceInfo *Info);
TypeSourceInfo *getTypeSourceInfo() const { return Type.dyn_cast<TypeSourceInfo *>(); }
const IdentifierInfo *getIdentifier() const { return Type.dyn_cast<const IdentifierInfo *>(); }
SourceLocation getLocation() const { return Location; } };
/// Represents a C++ pseudo-destructor (C++ [expr.pseudo]). /// /// A pseudo-destructor is an expression that looks like a member access to a /// destructor of a scalar type, except that scalar types don't have /// destructors. For example: /// /// \code /// typedef int T; /// void f(int *p) { /// p->T::~T(); /// } /// \endcode /// /// Pseudo-destructors typically occur when instantiating templates such as: /// /// \code /// template<typename T> /// void destroy(T* ptr) { /// ptr->T::~T(); /// } /// \endcode /// /// for scalar types. A pseudo-destructor expression has no run-time semantics /// beyond evaluating the base expression. class CXXPseudoDestructorExpr : public Expr { friend class ASTStmtReader;
/// The base expression (that is being destroyed). Stmt *Base = nullptr;
/// Whether the operator was an arrow ('->'); otherwise, it was a /// period ('.'). LLVM_PREFERRED_TYPE(bool) bool IsArrow : 1;
/// The location of the '.' or '->' operator. SourceLocation OperatorLoc;
/// The nested-name-specifier that follows the operator, if present. NestedNameSpecifierLoc QualifierLoc;
/// The type that precedes the '::' in a qualified pseudo-destructor /// expression. TypeSourceInfo *ScopeType = nullptr;
/// The location of the '::' in a qualified pseudo-destructor /// expression. SourceLocation ColonColonLoc;
/// The location of the '~'. SourceLocation TildeLoc;
/// The type being destroyed, or its name if we were unable to /// resolve the name. PseudoDestructorTypeStorage DestroyedType;
public: CXXPseudoDestructorExpr(const ASTContext &Context, Expr *Base, bool isArrow, SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc, TypeSourceInfo *ScopeType, SourceLocation ColonColonLoc, SourceLocation TildeLoc, PseudoDestructorTypeStorage DestroyedType);
explicit CXXPseudoDestructorExpr(EmptyShell Shell) : Expr(CXXPseudoDestructorExprClass, Shell), IsArrow(false) {}
Expr *getBase() const { return cast<Expr>(Base); }
/// Determines whether this member expression actually had /// a C++ nested-name-specifier prior to the name of the member, e.g., /// x->Base::foo. bool hasQualifier() const { return QualifierLoc.hasQualifier(); }
/// Retrieves the nested-name-specifier that qualifies the type name, /// with source-location information. NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// If the member name was qualified, retrieves the /// nested-name-specifier that precedes the member name. Otherwise, returns /// null. NestedNameSpecifier *getQualifier() const { return QualifierLoc.getNestedNameSpecifier(); }
/// Determine whether this pseudo-destructor expression was written /// using an '->' (otherwise, it used a '.'). bool isArrow() const { return IsArrow; }
/// Retrieve the location of the '.' or '->' operator. SourceLocation getOperatorLoc() const { return OperatorLoc; }
/// Retrieve the scope type in a qualified pseudo-destructor /// expression. /// /// Pseudo-destructor expressions can have extra qualification within them /// that is not part of the nested-name-specifier, e.g., \c p->T::~T(). /// Here, if the object type of the expression is (or may be) a scalar type, /// \p T may also be a scalar type and, therefore, cannot be part of a /// nested-name-specifier. It is stored as the "scope type" of the pseudo- /// destructor expression. TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
/// Retrieve the location of the '::' in a qualified pseudo-destructor /// expression. SourceLocation getColonColonLoc() const { return ColonColonLoc; }
/// Retrieve the location of the '~'. SourceLocation getTildeLoc() const { return TildeLoc; }
/// Retrieve the source location information for the type /// being destroyed. /// /// This type-source information is available for non-dependent /// pseudo-destructor expressions and some dependent pseudo-destructor /// expressions. Returns null if we only have the identifier for a /// dependent pseudo-destructor expression. TypeSourceInfo *getDestroyedTypeInfo() const { return DestroyedType.getTypeSourceInfo(); }
/// In a dependent pseudo-destructor expression for which we do not /// have full type information on the destroyed type, provides the name /// of the destroyed type. const IdentifierInfo *getDestroyedTypeIdentifier() const { return DestroyedType.getIdentifier(); }
/// Retrieve the type being destroyed. QualType getDestroyedType() const;
/// Retrieve the starting location of the type being destroyed. SourceLocation getDestroyedTypeLoc() const { return DestroyedType.getLocation(); }
/// Set the name of destroyed type for a dependent pseudo-destructor /// expression. void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) { DestroyedType = PseudoDestructorTypeStorage(II, Loc); }
/// Set the destroyed type. void setDestroyedType(TypeSourceInfo *Info) { DestroyedType = PseudoDestructorTypeStorage(Info); }
SourceLocation getBeginLoc() const LLVM_READONLY { return Base->getBeginLoc(); } SourceLocation getEndLoc() const LLVM_READONLY;
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXPseudoDestructorExprClass; }
// Iterators child_range children() { return child_range(&Base, &Base + 1); }
const_child_range children() const { return const_child_range(&Base, &Base + 1); } };
/// A type trait used in the implementation of various C++11 and /// Library TR1 trait templates. /// /// \code /// __is_pod(int) == true /// __is_enum(std::string) == false /// __is_trivially_constructible(vector<int>, int*, int*) /// \endcode class TypeTraitExpr final : public Expr, private llvm::TrailingObjects<TypeTraitExpr, TypeSourceInfo *> { /// The location of the type trait keyword. SourceLocation Loc;
/// The location of the closing parenthesis. SourceLocation RParenLoc;
// Note: The TypeSourceInfos for the arguments are allocated after the // TypeTraitExpr.
TypeTraitExpr(QualType T, SourceLocation Loc, TypeTrait Kind, ArrayRef<TypeSourceInfo *> Args, SourceLocation RParenLoc, bool Value);
TypeTraitExpr(EmptyShell Empty) : Expr(TypeTraitExprClass, Empty) {}
size_t numTrailingObjects(OverloadToken<TypeSourceInfo *>) const { return getNumArgs(); }
public: friend class ASTStmtReader; friend class ASTStmtWriter; friend TrailingObjects;
/// Create a new type trait expression. static TypeTraitExpr *Create(const ASTContext &C, QualType T, SourceLocation Loc, TypeTrait Kind, ArrayRef<TypeSourceInfo *> Args, SourceLocation RParenLoc, bool Value);
static TypeTraitExpr *CreateDeserialized(const ASTContext &C, unsigned NumArgs);
/// Determine which type trait this expression uses. TypeTrait getTrait() const { return static_cast<TypeTrait>(TypeTraitExprBits.Kind); }
bool getValue() const { assert(!isValueDependent()); return TypeTraitExprBits.Value; }
/// Determine the number of arguments to this type trait. unsigned getNumArgs() const { return TypeTraitExprBits.NumArgs; }
/// Retrieve the Ith argument. TypeSourceInfo *getArg(unsigned I) const { assert(I < getNumArgs() && "Argument out-of-range"); return getArgs()[I]; }
/// Retrieve the argument types. ArrayRef<TypeSourceInfo *> getArgs() const { return llvm::ArrayRef(getTrailingObjects<TypeSourceInfo *>(), getNumArgs()); }
SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; } SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) { return T->getStmtClass() == TypeTraitExprClass; }
// Iterators child_range children() { return child_range(child_iterator(), child_iterator()); }
const_child_range children() const { return const_child_range(const_child_iterator(), const_child_iterator()); } };
/// An Embarcadero array type trait, as used in the implementation of /// __array_rank and __array_extent. /// /// Example: /// \code /// __array_rank(int[10][20]) == 2 /// __array_extent(int, 1) == 20 /// \endcode class ArrayTypeTraitExpr : public Expr { /// The trait. An ArrayTypeTrait enum in MSVC compat unsigned. LLVM_PREFERRED_TYPE(ArrayTypeTrait) unsigned ATT : 2;
/// The value of the type trait. Unspecified if dependent. uint64_t Value = 0;
/// The array dimension being queried, or -1 if not used. Expr *Dimension;
/// The location of the type trait keyword. SourceLocation Loc;
/// The location of the closing paren. SourceLocation RParen;
/// The type being queried. TypeSourceInfo *QueriedType = nullptr;
public: friend class ASTStmtReader;
ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att, TypeSourceInfo *queried, uint64_t value, Expr *dimension, SourceLocation rparen, QualType ty) : Expr(ArrayTypeTraitExprClass, ty, VK_PRValue, OK_Ordinary), ATT(att), Value(value), Dimension(dimension), Loc(loc), RParen(rparen), QueriedType(queried) { assert(att <= ATT_Last && "invalid enum value!"); assert(static_cast<unsigned>(att) == ATT && "ATT overflow!"); setDependence(computeDependence(this)); }
explicit ArrayTypeTraitExpr(EmptyShell Empty) : Expr(ArrayTypeTraitExprClass, Empty), ATT(0) {}
SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; } SourceLocation getEndLoc() const LLVM_READONLY { return RParen; }
ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
QualType getQueriedType() const { return QueriedType->getType(); }
TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
Expr *getDimensionExpression() const { return Dimension; }
static bool classof(const Stmt *T) { return T->getStmtClass() == ArrayTypeTraitExprClass; }
// Iterators child_range children() { return child_range(child_iterator(), child_iterator()); }
const_child_range children() const { return const_child_range(const_child_iterator(), const_child_iterator()); } };
/// An expression trait intrinsic. /// /// Example: /// \code /// __is_lvalue_expr(std::cout) == true /// __is_lvalue_expr(1) == false /// \endcode class ExpressionTraitExpr : public Expr { /// The trait. A ExpressionTrait enum in MSVC compatible unsigned. LLVM_PREFERRED_TYPE(ExpressionTrait) unsigned ET : 31;
/// The value of the type trait. Unspecified if dependent. LLVM_PREFERRED_TYPE(bool) unsigned Value : 1;
/// The location of the type trait keyword. SourceLocation Loc;
/// The location of the closing paren. SourceLocation RParen;
/// The expression being queried. Expr* QueriedExpression = nullptr;
public: friend class ASTStmtReader;
ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et, Expr *queried, bool value, SourceLocation rparen, QualType resultType) : Expr(ExpressionTraitExprClass, resultType, VK_PRValue, OK_Ordinary), ET(et), Value(value), Loc(loc), RParen(rparen), QueriedExpression(queried) { assert(et <= ET_Last && "invalid enum value!"); assert(static_cast<unsigned>(et) == ET && "ET overflow!"); setDependence(computeDependence(this)); }
explicit ExpressionTraitExpr(EmptyShell Empty) : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false) {}
SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; } SourceLocation getEndLoc() const LLVM_READONLY { return RParen; }
ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
Expr *getQueriedExpression() const { return QueriedExpression; }
bool getValue() const { return Value; }
static bool classof(const Stmt *T) { return T->getStmtClass() == ExpressionTraitExprClass; }
// Iterators child_range children() { return child_range(child_iterator(), child_iterator()); }
const_child_range children() const { return const_child_range(const_child_iterator(), const_child_iterator()); } };
/// A reference to an overloaded function set, either an /// \c UnresolvedLookupExpr or an \c UnresolvedMemberExpr. class OverloadExpr : public Expr { friend class ASTStmtReader; friend class ASTStmtWriter;
/// The common name of these declarations. DeclarationNameInfo NameInfo;
/// The nested-name-specifier that qualifies the name, if any. NestedNameSpecifierLoc QualifierLoc;
protected: OverloadExpr(StmtClass SC, const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs, UnresolvedSetIterator Begin, UnresolvedSetIterator End, bool KnownDependent, bool KnownInstantiationDependent, bool KnownContainsUnexpandedParameterPack);
OverloadExpr(StmtClass SC, EmptyShell Empty, unsigned NumResults, bool HasTemplateKWAndArgsInfo);
/// Return the results. Defined after UnresolvedMemberExpr. inline DeclAccessPair *getTrailingResults(); const DeclAccessPair *getTrailingResults() const { return const_cast<OverloadExpr *>(this)->getTrailingResults(); }
/// Return the optional template keyword and arguments info. /// Defined after UnresolvedMemberExpr. inline ASTTemplateKWAndArgsInfo *getTrailingASTTemplateKWAndArgsInfo(); const ASTTemplateKWAndArgsInfo *getTrailingASTTemplateKWAndArgsInfo() const { return const_cast<OverloadExpr *>(this) ->getTrailingASTTemplateKWAndArgsInfo(); }
/// Return the optional template arguments. Defined after /// UnresolvedMemberExpr. inline TemplateArgumentLoc *getTrailingTemplateArgumentLoc(); const TemplateArgumentLoc *getTrailingTemplateArgumentLoc() const { return const_cast<OverloadExpr *>(this)->getTrailingTemplateArgumentLoc(); }
bool hasTemplateKWAndArgsInfo() const { return OverloadExprBits.HasTemplateKWAndArgsInfo; }
public: struct FindResult { OverloadExpr *Expression = nullptr; bool IsAddressOfOperand = false; bool IsAddressOfOperandWithParen = false; bool HasFormOfMemberPointer = false; };
/// Finds the overloaded expression in the given expression \p E of /// OverloadTy. /// /// \return the expression (which must be there) and true if it has /// the particular form of a member pointer expression static FindResult find(Expr *E) { assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
FindResult Result; bool HasParen = isa<ParenExpr>(E);
E = E->IgnoreParens(); if (isa<UnaryOperator>(E)) { assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf); E = cast<UnaryOperator>(E)->getSubExpr(); auto *Ovl = cast<OverloadExpr>(E->IgnoreParens());
Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier()); Result.IsAddressOfOperand = true; Result.IsAddressOfOperandWithParen = HasParen; Result.Expression = Ovl; } else { Result.Expression = cast<OverloadExpr>(E); }
return Result; }
/// Gets the naming class of this lookup, if any. /// Defined after UnresolvedMemberExpr. inline CXXRecordDecl *getNamingClass(); const CXXRecordDecl *getNamingClass() const { return const_cast<OverloadExpr *>(this)->getNamingClass(); }
using decls_iterator = UnresolvedSetImpl::iterator;
decls_iterator decls_begin() const { return UnresolvedSetIterator(getTrailingResults()); } decls_iterator decls_end() const { return UnresolvedSetIterator(getTrailingResults() + getNumDecls()); } llvm::iterator_range<decls_iterator> decls() const { return llvm::make_range(decls_begin(), decls_end()); }
/// Gets the number of declarations in the unresolved set. unsigned getNumDecls() const { return OverloadExprBits.NumResults; }
/// Gets the full name info. const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
/// Gets the name looked up. DeclarationName getName() const { return NameInfo.getName(); }
/// Gets the location of the name. SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
/// Fetches the nested-name qualifier, if one was given. NestedNameSpecifier *getQualifier() const { return QualifierLoc.getNestedNameSpecifier(); }
/// Fetches the nested-name qualifier with source-location /// information, if one was given. NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// Retrieve the location of the template keyword preceding /// this name, if any. SourceLocation getTemplateKeywordLoc() const { if (!hasTemplateKWAndArgsInfo()) return SourceLocation(); return getTrailingASTTemplateKWAndArgsInfo()->TemplateKWLoc; }
/// Retrieve the location of the left angle bracket starting the /// explicit template argument list following the name, if any. SourceLocation getLAngleLoc() const { if (!hasTemplateKWAndArgsInfo()) return SourceLocation(); return getTrailingASTTemplateKWAndArgsInfo()->LAngleLoc; }
/// Retrieve the location of the right angle bracket ending the /// explicit template argument list following the name, if any. SourceLocation getRAngleLoc() const { if (!hasTemplateKWAndArgsInfo()) return SourceLocation(); return getTrailingASTTemplateKWAndArgsInfo()->RAngleLoc; }
/// Determines whether the name was preceded by the template keyword. bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
/// Determines whether this expression had explicit template arguments. bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
TemplateArgumentLoc const *getTemplateArgs() const { if (!hasExplicitTemplateArgs()) return nullptr; return const_cast<OverloadExpr *>(this)->getTrailingTemplateArgumentLoc(); }
unsigned getNumTemplateArgs() const { if (!hasExplicitTemplateArgs()) return 0;
return getTrailingASTTemplateKWAndArgsInfo()->NumTemplateArgs; }
ArrayRef<TemplateArgumentLoc> template_arguments() const { return {getTemplateArgs(), getNumTemplateArgs()}; }
/// Copies the template arguments into the given structure. void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const { if (hasExplicitTemplateArgs()) getTrailingASTTemplateKWAndArgsInfo()->copyInto(getTemplateArgs(), List); }
static bool classof(const Stmt *T) { return T->getStmtClass() == UnresolvedLookupExprClass || T->getStmtClass() == UnresolvedMemberExprClass; } };
/// A reference to a name which we were able to look up during /// parsing but could not resolve to a specific declaration. /// /// This arises in several ways: /// * we might be waiting for argument-dependent lookup; /// * the name might resolve to an overloaded function; /// * the name might resolve to a non-function template; for example, in the /// following snippet, the return expression of the member function /// 'foo()' might remain unresolved until instantiation: /// /// \code /// struct P { /// template <class T> using I = T; /// }; /// /// struct Q { /// template <class T> int foo() { /// return T::template I<int>; /// } /// }; /// \endcode /// /// ...which is distinct from modeling function overloads, and therefore we use /// a different builtin type 'UnresolvedTemplate' to avoid confusion. This is /// done in Sema::BuildTemplateIdExpr. /// /// and eventually: /// * the lookup might have included a function template. /// * the unresolved template gets transformed in an instantiation or gets /// diagnosed for its direct use. /// /// These never include UnresolvedUsingValueDecls, which are always class /// members and therefore appear only in UnresolvedMemberLookupExprs. class UnresolvedLookupExpr final : public OverloadExpr, private llvm::TrailingObjects<UnresolvedLookupExpr, DeclAccessPair, ASTTemplateKWAndArgsInfo, TemplateArgumentLoc> { friend class ASTStmtReader; friend class OverloadExpr; friend TrailingObjects;
/// The naming class (C++ [class.access.base]p5) of the lookup, if /// any. This can generally be recalculated from the context chain, /// but that can be fairly expensive for unqualified lookups. CXXRecordDecl *NamingClass;
// UnresolvedLookupExpr is followed by several trailing objects. // They are in order: // // * An array of getNumResults() DeclAccessPair for the results. These are // undesugared, which is to say, they may include UsingShadowDecls. // Access is relative to the naming class. // // * An optional ASTTemplateKWAndArgsInfo for the explicitly specified // template keyword and arguments. Present if and only if // hasTemplateKWAndArgsInfo(). // // * An array of getNumTemplateArgs() TemplateArgumentLoc containing // location information for the explicitly specified template arguments.
UnresolvedLookupExpr(const ASTContext &Context, CXXRecordDecl *NamingClass, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo, bool RequiresADL, const TemplateArgumentListInfo *TemplateArgs, UnresolvedSetIterator Begin, UnresolvedSetIterator End, bool KnownDependent, bool KnownInstantiationDependent);
UnresolvedLookupExpr(EmptyShell Empty, unsigned NumResults, bool HasTemplateKWAndArgsInfo);
unsigned numTrailingObjects(OverloadToken<DeclAccessPair>) const { return getNumDecls(); }
unsigned numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const { return hasTemplateKWAndArgsInfo(); }
public: static UnresolvedLookupExpr * Create(const ASTContext &Context, CXXRecordDecl *NamingClass, NestedNameSpecifierLoc QualifierLoc, const DeclarationNameInfo &NameInfo, bool RequiresADL, UnresolvedSetIterator Begin, UnresolvedSetIterator End, bool KnownDependent, bool KnownInstantiationDependent);
// After canonicalization, there may be dependent template arguments in // CanonicalConverted But none of Args is dependent. When any of // CanonicalConverted dependent, KnownDependent is true. static UnresolvedLookupExpr * Create(const ASTContext &Context, CXXRecordDecl *NamingClass, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo, bool RequiresADL, const TemplateArgumentListInfo *Args, UnresolvedSetIterator Begin, UnresolvedSetIterator End, bool KnownDependent, bool KnownInstantiationDependent);
static UnresolvedLookupExpr *CreateEmpty(const ASTContext &Context, unsigned NumResults, bool HasTemplateKWAndArgsInfo, unsigned NumTemplateArgs);
/// True if this declaration should be extended by /// argument-dependent lookup. bool requiresADL() const { return UnresolvedLookupExprBits.RequiresADL; }
/// Gets the 'naming class' (in the sense of C++0x /// [class.access.base]p5) of the lookup. This is the scope /// that was looked in to find these results. CXXRecordDecl *getNamingClass() { return NamingClass; } const CXXRecordDecl *getNamingClass() const { return NamingClass; }
SourceLocation getBeginLoc() const LLVM_READONLY { if (NestedNameSpecifierLoc l = getQualifierLoc()) return l.getBeginLoc(); return getNameInfo().getBeginLoc(); }
SourceLocation getEndLoc() const LLVM_READONLY { if (hasExplicitTemplateArgs()) return getRAngleLoc(); return getNameInfo().getEndLoc(); }
child_range children() { return child_range(child_iterator(), child_iterator()); }
const_child_range children() const { return const_child_range(const_child_iterator(), const_child_iterator()); }
static bool classof(const Stmt *T) { return T->getStmtClass() == UnresolvedLookupExprClass; } };
/// A qualified reference to a name whose declaration cannot /// yet be resolved. /// /// DependentScopeDeclRefExpr is similar to DeclRefExpr in that /// it expresses a reference to a declaration such as /// X<T>::value. The difference, however, is that an /// DependentScopeDeclRefExpr node is used only within C++ templates when /// the qualification (e.g., X<T>::) refers to a dependent type. In /// this case, X<T>::value cannot resolve to a declaration because the /// declaration will differ from one instantiation of X<T> to the /// next. Therefore, DependentScopeDeclRefExpr keeps track of the /// qualifier (X<T>::) and the name of the entity being referenced /// ("value"). Such expressions will instantiate to a DeclRefExpr once the /// declaration can be found. class DependentScopeDeclRefExpr final : public Expr, private llvm::TrailingObjects<DependentScopeDeclRefExpr, ASTTemplateKWAndArgsInfo, TemplateArgumentLoc> { friend class ASTStmtReader; friend class ASTStmtWriter; friend TrailingObjects;
/// The nested-name-specifier that qualifies this unresolved /// declaration name. NestedNameSpecifierLoc QualifierLoc;
/// The name of the entity we will be referencing. DeclarationNameInfo NameInfo;
DependentScopeDeclRefExpr(QualType Ty, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *Args);
size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const { return hasTemplateKWAndArgsInfo(); }
bool hasTemplateKWAndArgsInfo() const { return DependentScopeDeclRefExprBits.HasTemplateKWAndArgsInfo; }
public: static DependentScopeDeclRefExpr * Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs);
static DependentScopeDeclRefExpr *CreateEmpty(const ASTContext &Context, bool HasTemplateKWAndArgsInfo, unsigned NumTemplateArgs);
/// Retrieve the name that this expression refers to. const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
/// Retrieve the name that this expression refers to. DeclarationName getDeclName() const { return NameInfo.getName(); }
/// Retrieve the location of the name within the expression. /// /// For example, in "X<T>::value" this is the location of "value". SourceLocation getLocation() const { return NameInfo.getLoc(); }
/// Retrieve the nested-name-specifier that qualifies the /// name, with source location information. NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// Retrieve the nested-name-specifier that qualifies this /// declaration. NestedNameSpecifier *getQualifier() const { return QualifierLoc.getNestedNameSpecifier(); }
/// Retrieve the location of the template keyword preceding /// this name, if any. SourceLocation getTemplateKeywordLoc() const { if (!hasTemplateKWAndArgsInfo()) return SourceLocation(); return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc; }
/// Retrieve the location of the left angle bracket starting the /// explicit template argument list following the name, if any. SourceLocation getLAngleLoc() const { if (!hasTemplateKWAndArgsInfo()) return SourceLocation(); return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc; }
/// Retrieve the location of the right angle bracket ending the /// explicit template argument list following the name, if any. SourceLocation getRAngleLoc() const { if (!hasTemplateKWAndArgsInfo()) return SourceLocation(); return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc; }
/// Determines whether the name was preceded by the template keyword. bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
/// Determines whether this lookup had explicit template arguments. bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
/// Copies the template arguments (if present) into the given /// structure. void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const { if (hasExplicitTemplateArgs()) getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto( getTrailingObjects<TemplateArgumentLoc>(), List); }
TemplateArgumentLoc const *getTemplateArgs() const { if (!hasExplicitTemplateArgs()) return nullptr;
return getTrailingObjects<TemplateArgumentLoc>(); }
unsigned getNumTemplateArgs() const { if (!hasExplicitTemplateArgs()) return 0;
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs; }
ArrayRef<TemplateArgumentLoc> template_arguments() const { return {getTemplateArgs(), getNumTemplateArgs()}; }
/// Note: getBeginLoc() is the start of the whole DependentScopeDeclRefExpr, /// and differs from getLocation().getStart(). SourceLocation getBeginLoc() const LLVM_READONLY { return QualifierLoc.getBeginLoc(); }
SourceLocation getEndLoc() const LLVM_READONLY { if (hasExplicitTemplateArgs()) return getRAngleLoc(); return getLocation(); }
static bool classof(const Stmt *T) { return T->getStmtClass() == DependentScopeDeclRefExprClass; }
child_range children() { return child_range(child_iterator(), child_iterator()); }
const_child_range children() const { return const_child_range(const_child_iterator(), const_child_iterator()); } };
/// Represents an expression -- generally a full-expression -- that /// introduces cleanups to be run at the end of the sub-expression's /// evaluation. The most common source of expression-introduced /// cleanups is temporary objects in C++, but several other kinds of /// expressions can create cleanups, including basically every /// call in ARC that returns an Objective-C pointer. /// /// This expression also tracks whether the sub-expression contains a /// potentially-evaluated block literal. The lifetime of a block /// literal is the extent of the enclosing scope. class ExprWithCleanups final : public FullExpr, private llvm::TrailingObjects< ExprWithCleanups, llvm::PointerUnion<BlockDecl *, CompoundLiteralExpr *>> { public: /// The type of objects that are kept in the cleanup. /// It's useful to remember the set of blocks and block-scoped compound /// literals; we could also remember the set of temporaries, but there's /// currently no need. using CleanupObject = llvm::PointerUnion<BlockDecl *, CompoundLiteralExpr *>;
private: friend class ASTStmtReader; friend TrailingObjects;
ExprWithCleanups(EmptyShell, unsigned NumObjects); ExprWithCleanups(Expr *SubExpr, bool CleanupsHaveSideEffects, ArrayRef<CleanupObject> Objects);
public: static ExprWithCleanups *Create(const ASTContext &C, EmptyShell empty, unsigned numObjects);
static ExprWithCleanups *Create(const ASTContext &C, Expr *subexpr, bool CleanupsHaveSideEffects, ArrayRef<CleanupObject> objects);
ArrayRef<CleanupObject> getObjects() const { return llvm::ArrayRef(getTrailingObjects<CleanupObject>(), getNumObjects()); }
unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
CleanupObject getObject(unsigned i) const { assert(i < getNumObjects() && "Index out of range"); return getObjects()[i]; }
bool cleanupsHaveSideEffects() const { return ExprWithCleanupsBits.CleanupsHaveSideEffects; }
SourceLocation getBeginLoc() const LLVM_READONLY { return SubExpr->getBeginLoc(); }
SourceLocation getEndLoc() const LLVM_READONLY { return SubExpr->getEndLoc(); }
// Implement isa/cast/dyncast/etc. static bool classof(const Stmt *T) { return T->getStmtClass() == ExprWithCleanupsClass; }
// Iterators child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
const_child_range children() const { return const_child_range(&SubExpr, &SubExpr + 1); } };
/// Describes an explicit type conversion that uses functional /// notion but could not be resolved because one or more arguments are /// type-dependent. /// /// The explicit type conversions expressed by /// CXXUnresolvedConstructExpr have the form <tt>T(a1, a2, ..., aN)</tt>, /// where \c T is some type and \c a1, \c a2, ..., \c aN are values, and /// either \c T is a dependent type or one or more of the <tt>a</tt>'s is /// type-dependent. For example, this would occur in a template such /// as: /// /// \code /// template<typename T, typename A1> /// inline T make_a(const A1& a1) { /// return T(a1); /// } /// \endcode /// /// When the returned expression is instantiated, it may resolve to a /// constructor call, conversion function call, or some kind of type /// conversion. class CXXUnresolvedConstructExpr final : public Expr, private llvm::TrailingObjects<CXXUnresolvedConstructExpr, Expr *> { friend class ASTStmtReader; friend TrailingObjects;
/// The type being constructed, and whether the construct expression models /// list initialization or not. llvm::PointerIntPair<TypeSourceInfo *, 1> TypeAndInitForm;
/// The location of the left parentheses ('('). SourceLocation LParenLoc;
/// The location of the right parentheses (')'). SourceLocation RParenLoc;
CXXUnresolvedConstructExpr(QualType T, TypeSourceInfo *TSI, SourceLocation LParenLoc, ArrayRef<Expr *> Args, SourceLocation RParenLoc, bool IsListInit);
CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs) : Expr(CXXUnresolvedConstructExprClass, Empty) { CXXUnresolvedConstructExprBits.NumArgs = NumArgs; }
public: static CXXUnresolvedConstructExpr * Create(const ASTContext &Context, QualType T, TypeSourceInfo *TSI, SourceLocation LParenLoc, ArrayRef<Expr *> Args, SourceLocation RParenLoc, bool IsListInit);
static CXXUnresolvedConstructExpr *CreateEmpty(const ASTContext &Context, unsigned NumArgs);
/// Retrieve the type that is being constructed, as specified /// in the source code. QualType getTypeAsWritten() const { return getTypeSourceInfo()->getType(); }
/// Retrieve the type source information for the type being /// constructed. TypeSourceInfo *getTypeSourceInfo() const { return TypeAndInitForm.getPointer(); }
/// Retrieve the location of the left parentheses ('(') that /// precedes the argument list. SourceLocation getLParenLoc() const { return LParenLoc; } void setLParenLoc(SourceLocation L) { LParenLoc = L; }
/// Retrieve the location of the right parentheses (')') that /// follows the argument list. SourceLocation getRParenLoc() const { return RParenLoc; } void setRParenLoc(SourceLocation L) { RParenLoc = L; }
/// Determine whether this expression models list-initialization. /// If so, there will be exactly one subexpression, which will be /// an InitListExpr. bool isListInitialization() const { return TypeAndInitForm.getInt(); }
/// Retrieve the number of arguments. unsigned getNumArgs() const { return CXXUnresolvedConstructExprBits.NumArgs; }
using arg_iterator = Expr **; using arg_range = llvm::iterator_range<arg_iterator>;
arg_iterator arg_begin() { return getTrailingObjects<Expr *>(); } arg_iterator arg_end() { return arg_begin() + getNumArgs(); } arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
using const_arg_iterator = const Expr* const *; using const_arg_range = llvm::iterator_range<const_arg_iterator>;
const_arg_iterator arg_begin() const { return getTrailingObjects<Expr *>(); } const_arg_iterator arg_end() const { return arg_begin() + getNumArgs(); } const_arg_range arguments() const { return const_arg_range(arg_begin(), arg_end()); }
Expr *getArg(unsigned I) { assert(I < getNumArgs() && "Argument index out-of-range"); return arg_begin()[I]; }
const Expr *getArg(unsigned I) const { assert(I < getNumArgs() && "Argument index out-of-range"); return arg_begin()[I]; }
void setArg(unsigned I, Expr *E) { assert(I < getNumArgs() && "Argument index out-of-range"); arg_begin()[I] = E; }
SourceLocation getBeginLoc() const LLVM_READONLY; SourceLocation getEndLoc() const LLVM_READONLY { if (!RParenLoc.isValid() && getNumArgs() > 0) return getArg(getNumArgs() - 1)->getEndLoc(); return RParenLoc; }
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXUnresolvedConstructExprClass; }
// Iterators child_range children() { auto **begin = reinterpret_cast<Stmt **>(arg_begin()); return child_range(begin, begin + getNumArgs()); }
const_child_range children() const { auto **begin = reinterpret_cast<Stmt **>( const_cast<CXXUnresolvedConstructExpr *>(this)->arg_begin()); return const_child_range(begin, begin + getNumArgs()); } };
/// Represents a C++ member access expression where the actual /// member referenced could not be resolved because the base /// expression or the member name was dependent. /// /// Like UnresolvedMemberExprs, these can be either implicit or /// explicit accesses. It is only possible to get one of these with /// an implicit access if a qualifier is provided. class CXXDependentScopeMemberExpr final : public Expr, private llvm::TrailingObjects<CXXDependentScopeMemberExpr, ASTTemplateKWAndArgsInfo, TemplateArgumentLoc, NamedDecl *> { friend class ASTStmtReader; friend class ASTStmtWriter; friend TrailingObjects;
/// The expression for the base pointer or class reference, /// e.g., the \c x in x.f. Can be null in implicit accesses. Stmt *Base;
/// The type of the base expression. Never null, even for /// implicit accesses. QualType BaseType;
/// The nested-name-specifier that precedes the member name, if any. /// FIXME: This could be in principle store as a trailing object. /// However the performance impact of doing so should be investigated first. NestedNameSpecifierLoc QualifierLoc;
/// The member to which this member expression refers, which /// can be name, overloaded operator, or destructor. /// /// FIXME: could also be a template-id DeclarationNameInfo MemberNameInfo;
// CXXDependentScopeMemberExpr is followed by several trailing objects, // some of which optional. They are in order: // // * An optional ASTTemplateKWAndArgsInfo for the explicitly specified // template keyword and arguments. Present if and only if // hasTemplateKWAndArgsInfo(). // // * An array of getNumTemplateArgs() TemplateArgumentLoc containing location // information for the explicitly specified template arguments. // // * An optional NamedDecl *. In a qualified member access expression such // as t->Base::f, this member stores the resolves of name lookup in the // context of the member access expression, to be used at instantiation // time. Present if and only if hasFirstQualifierFoundInScope().
bool hasTemplateKWAndArgsInfo() const { return CXXDependentScopeMemberExprBits.HasTemplateKWAndArgsInfo; }
bool hasFirstQualifierFoundInScope() const { return CXXDependentScopeMemberExprBits.HasFirstQualifierFoundInScope; }
unsigned numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const { return hasTemplateKWAndArgsInfo(); }
unsigned numTrailingObjects(OverloadToken<TemplateArgumentLoc>) const { return getNumTemplateArgs(); }
unsigned numTrailingObjects(OverloadToken<NamedDecl *>) const { return hasFirstQualifierFoundInScope(); }
CXXDependentScopeMemberExpr(const ASTContext &Ctx, Expr *Base, QualType BaseType, bool IsArrow, SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierFoundInScope, DeclarationNameInfo MemberNameInfo, const TemplateArgumentListInfo *TemplateArgs);
CXXDependentScopeMemberExpr(EmptyShell Empty, bool HasTemplateKWAndArgsInfo, bool HasFirstQualifierFoundInScope);
public: static CXXDependentScopeMemberExpr * Create(const ASTContext &Ctx, Expr *Base, QualType BaseType, bool IsArrow, SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierFoundInScope, DeclarationNameInfo MemberNameInfo, const TemplateArgumentListInfo *TemplateArgs);
static CXXDependentScopeMemberExpr * CreateEmpty(const ASTContext &Ctx, bool HasTemplateKWAndArgsInfo, unsigned NumTemplateArgs, bool HasFirstQualifierFoundInScope);
/// True if this is an implicit access, i.e. one in which the /// member being accessed was not written in the source. The source /// location of the operator is invalid in this case. bool isImplicitAccess() const { if (!Base) return true; return cast<Expr>(Base)->isImplicitCXXThis(); }
/// Retrieve the base object of this member expressions, /// e.g., the \c x in \c x.m. Expr *getBase() const { assert(!isImplicitAccess()); return cast<Expr>(Base); }
QualType getBaseType() const { return BaseType; }
/// Determine whether this member expression used the '->' /// operator; otherwise, it used the '.' operator. bool isArrow() const { return CXXDependentScopeMemberExprBits.IsArrow; }
/// Retrieve the location of the '->' or '.' operator. SourceLocation getOperatorLoc() const { return CXXDependentScopeMemberExprBits.OperatorLoc; }
/// Retrieve the nested-name-specifier that qualifies the member name. NestedNameSpecifier *getQualifier() const { return QualifierLoc.getNestedNameSpecifier(); }
/// Retrieve the nested-name-specifier that qualifies the member /// name, with source location information. NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// Retrieve the first part of the nested-name-specifier that was /// found in the scope of the member access expression when the member access /// was initially parsed. /// /// This function only returns a useful result when member access expression /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration /// returned by this function describes what was found by unqualified name /// lookup for the identifier "Base" within the scope of the member access /// expression itself. At template instantiation time, this information is /// combined with the results of name lookup into the type of the object /// expression itself (the class type of x). NamedDecl *getFirstQualifierFoundInScope() const { if (!hasFirstQualifierFoundInScope()) return nullptr; return *getTrailingObjects<NamedDecl *>(); }
/// Retrieve the name of the member that this expression refers to. const DeclarationNameInfo &getMemberNameInfo() const { return MemberNameInfo; }
/// Retrieve the name of the member that this expression refers to. DeclarationName getMember() const { return MemberNameInfo.getName(); }
// Retrieve the location of the name of the member that this // expression refers to. SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
/// Retrieve the location of the template keyword preceding the /// member name, if any. SourceLocation getTemplateKeywordLoc() const { if (!hasTemplateKWAndArgsInfo()) return SourceLocation(); return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc; }
/// Retrieve the location of the left angle bracket starting the /// explicit template argument list following the member name, if any. SourceLocation getLAngleLoc() const { if (!hasTemplateKWAndArgsInfo()) return SourceLocation(); return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc; }
/// Retrieve the location of the right angle bracket ending the /// explicit template argument list following the member name, if any. SourceLocation getRAngleLoc() const { if (!hasTemplateKWAndArgsInfo()) return SourceLocation(); return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc; }
/// Determines whether the member name was preceded by the template keyword. bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
/// Determines whether this member expression actually had a C++ /// template argument list explicitly specified, e.g., x.f<int>. bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
/// Copies the template arguments (if present) into the given /// structure. void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const { if (hasExplicitTemplateArgs()) getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto( getTrailingObjects<TemplateArgumentLoc>(), List); }
/// Retrieve the template arguments provided as part of this /// template-id. const TemplateArgumentLoc *getTemplateArgs() const { if (!hasExplicitTemplateArgs()) return nullptr;
return getTrailingObjects<TemplateArgumentLoc>(); }
/// Retrieve the number of template arguments provided as part of this /// template-id. unsigned getNumTemplateArgs() const { if (!hasExplicitTemplateArgs()) return 0;
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs; }
ArrayRef<TemplateArgumentLoc> template_arguments() const { return {getTemplateArgs(), getNumTemplateArgs()}; }
SourceLocation getBeginLoc() const LLVM_READONLY { if (!isImplicitAccess()) return Base->getBeginLoc(); if (getQualifier()) return getQualifierLoc().getBeginLoc(); return MemberNameInfo.getBeginLoc(); }
SourceLocation getEndLoc() const LLVM_READONLY { if (hasExplicitTemplateArgs()) return getRAngleLoc(); return MemberNameInfo.getEndLoc(); }
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXDependentScopeMemberExprClass; }
// Iterators child_range children() { if (isImplicitAccess()) return child_range(child_iterator(), child_iterator()); return child_range(&Base, &Base + 1); }
const_child_range children() const { if (isImplicitAccess()) return const_child_range(const_child_iterator(), const_child_iterator()); return const_child_range(&Base, &Base + 1); } };
/// Represents a C++ member access expression for which lookup /// produced a set of overloaded functions. /// /// The member access may be explicit or implicit: /// \code /// struct A { /// int a, b; /// int explicitAccess() { return this->a + this->A::b; } /// int implicitAccess() { return a + A::b; } /// }; /// \endcode /// /// In the final AST, an explicit access always becomes a MemberExpr. /// An implicit access may become either a MemberExpr or a /// DeclRefExpr, depending on whether the member is static. class UnresolvedMemberExpr final : public OverloadExpr, private llvm::TrailingObjects<UnresolvedMemberExpr, DeclAccessPair, ASTTemplateKWAndArgsInfo, TemplateArgumentLoc> { friend class ASTStmtReader; friend class OverloadExpr; friend TrailingObjects;
/// The expression for the base pointer or class reference, /// e.g., the \c x in x.f. /// /// This can be null if this is an 'unbased' member expression. Stmt *Base;
/// The type of the base expression; never null. QualType BaseType;
/// The location of the '->' or '.' operator. SourceLocation OperatorLoc;
// UnresolvedMemberExpr is followed by several trailing objects. // They are in order: // // * An array of getNumResults() DeclAccessPair for the results. These are // undesugared, which is to say, they may include UsingShadowDecls. // Access is relative to the naming class. // // * An optional ASTTemplateKWAndArgsInfo for the explicitly specified // template keyword and arguments. Present if and only if // hasTemplateKWAndArgsInfo(). // // * An array of getNumTemplateArgs() TemplateArgumentLoc containing // location information for the explicitly specified template arguments.
UnresolvedMemberExpr(const ASTContext &Context, bool HasUnresolvedUsing, Expr *Base, QualType BaseType, bool IsArrow, SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, const DeclarationNameInfo &MemberNameInfo, const TemplateArgumentListInfo *TemplateArgs, UnresolvedSetIterator Begin, UnresolvedSetIterator End);
UnresolvedMemberExpr(EmptyShell Empty, unsigned NumResults, bool HasTemplateKWAndArgsInfo);
unsigned numTrailingObjects(OverloadToken<DeclAccessPair>) const { return getNumDecls(); }
unsigned numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const { return hasTemplateKWAndArgsInfo(); }
public: static UnresolvedMemberExpr * Create(const ASTContext &Context, bool HasUnresolvedUsing, Expr *Base, QualType BaseType, bool IsArrow, SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, const DeclarationNameInfo &MemberNameInfo, const TemplateArgumentListInfo *TemplateArgs, UnresolvedSetIterator Begin, UnresolvedSetIterator End);
static UnresolvedMemberExpr *CreateEmpty(const ASTContext &Context, unsigned NumResults, bool HasTemplateKWAndArgsInfo, unsigned NumTemplateArgs);
/// True if this is an implicit access, i.e., one in which the /// member being accessed was not written in the source. /// /// The source location of the operator is invalid in this case. bool isImplicitAccess() const;
/// Retrieve the base object of this member expressions, /// e.g., the \c x in \c x.m. Expr *getBase() { assert(!isImplicitAccess()); return cast<Expr>(Base); } const Expr *getBase() const { assert(!isImplicitAccess()); return cast<Expr>(Base); }
QualType getBaseType() const { return BaseType; }
/// Determine whether the lookup results contain an unresolved using /// declaration. bool hasUnresolvedUsing() const { return UnresolvedMemberExprBits.HasUnresolvedUsing; }
/// Determine whether this member expression used the '->' /// operator; otherwise, it used the '.' operator. bool isArrow() const { return UnresolvedMemberExprBits.IsArrow; }
/// Retrieve the location of the '->' or '.' operator. SourceLocation getOperatorLoc() const { return OperatorLoc; }
/// Retrieve the naming class of this lookup. CXXRecordDecl *getNamingClass(); const CXXRecordDecl *getNamingClass() const { return const_cast<UnresolvedMemberExpr *>(this)->getNamingClass(); }
/// Retrieve the full name info for the member that this expression /// refers to. const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
/// Retrieve the name of the member that this expression refers to. DeclarationName getMemberName() const { return getName(); }
/// Retrieve the location of the name of the member that this /// expression refers to. SourceLocation getMemberLoc() const { return getNameLoc(); }
/// Return the preferred location (the member name) for the arrow when /// diagnosing a problem with this expression. SourceLocation getExprLoc() const LLVM_READONLY { return getMemberLoc(); }
SourceLocation getBeginLoc() const LLVM_READONLY { if (!isImplicitAccess()) return Base->getBeginLoc(); if (NestedNameSpecifierLoc l = getQualifierLoc()) return l.getBeginLoc(); return getMemberNameInfo().getBeginLoc(); }
SourceLocation getEndLoc() const LLVM_READONLY { if (hasExplicitTemplateArgs()) return getRAngleLoc(); return getMemberNameInfo().getEndLoc(); }
static bool classof(const Stmt *T) { return T->getStmtClass() == UnresolvedMemberExprClass; }
// Iterators child_range children() { if (isImplicitAccess()) return child_range(child_iterator(), child_iterator()); return child_range(&Base, &Base + 1); }
const_child_range children() const { if (isImplicitAccess()) return const_child_range(const_child_iterator(), const_child_iterator()); return const_child_range(&Base, &Base + 1); } };
DeclAccessPair *OverloadExpr::getTrailingResults() { if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(this)) return ULE->getTrailingObjects<DeclAccessPair>(); return cast<UnresolvedMemberExpr>(this)->getTrailingObjects<DeclAccessPair>(); }
ASTTemplateKWAndArgsInfo *OverloadExpr::getTrailingASTTemplateKWAndArgsInfo() { if (!hasTemplateKWAndArgsInfo()) return nullptr;
if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(this)) return ULE->getTrailingObjects<ASTTemplateKWAndArgsInfo>(); return cast<UnresolvedMemberExpr>(this) ->getTrailingObjects<ASTTemplateKWAndArgsInfo>(); }
TemplateArgumentLoc *OverloadExpr::getTrailingTemplateArgumentLoc() { if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(this)) return ULE->getTrailingObjects<TemplateArgumentLoc>(); return cast<UnresolvedMemberExpr>(this) ->getTrailingObjects<TemplateArgumentLoc>(); }
CXXRecordDecl *OverloadExpr::getNamingClass() { if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(this)) return ULE->getNamingClass(); return cast<UnresolvedMemberExpr>(this)->getNamingClass(); }
/// Represents a C++11 noexcept expression (C++ [expr.unary.noexcept]). /// /// The noexcept expression tests whether a given expression might throw. Its /// result is a boolean constant. class CXXNoexceptExpr : public Expr { friend class ASTStmtReader;
Stmt *Operand; SourceRange Range;
public: CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val, SourceLocation Keyword, SourceLocation RParen) : Expr(CXXNoexceptExprClass, Ty, VK_PRValue, OK_Ordinary), Operand(Operand), Range(Keyword, RParen) { CXXNoexceptExprBits.Value = Val == CT_Cannot; setDependence(computeDependence(this, Val)); }
CXXNoexceptExpr(EmptyShell Empty) : Expr(CXXNoexceptExprClass, Empty) {}
Expr *getOperand() const { return static_cast<Expr *>(Operand); }
SourceLocation getBeginLoc() const { return Range.getBegin(); } SourceLocation getEndLoc() const { return Range.getEnd(); } SourceRange getSourceRange() const { return Range; }
bool getValue() const { return CXXNoexceptExprBits.Value; }
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXNoexceptExprClass; }
// Iterators child_range children() { return child_range(&Operand, &Operand + 1); }
const_child_range children() const { return const_child_range(&Operand, &Operand + 1); } };
/// Represents a C++11 pack expansion that produces a sequence of /// expressions. /// /// A pack expansion expression contains a pattern (which itself is an /// expression) followed by an ellipsis. For example: /// /// \code /// template<typename F, typename ...Types> /// void forward(F f, Types &&...args) { /// f(static_cast<Types&&>(args)...); /// } /// \endcode /// /// Here, the argument to the function object \c f is a pack expansion whose /// pattern is \c static_cast<Types&&>(args). When the \c forward function /// template is instantiated, the pack expansion will instantiate to zero or /// or more function arguments to the function object \c f. class PackExpansionExpr : public Expr { friend class ASTStmtReader; friend class ASTStmtWriter;
SourceLocation EllipsisLoc;
/// The number of expansions that will be produced by this pack /// expansion expression, if known. /// /// When zero, the number of expansions is not known. Otherwise, this value /// is the number of expansions + 1. unsigned NumExpansions;
Stmt *Pattern;
public: PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc, std::optional<unsigned> NumExpansions) : Expr(PackExpansionExprClass, T, Pattern->getValueKind(), Pattern->getObjectKind()), EllipsisLoc(EllipsisLoc), NumExpansions(NumExpansions ? *NumExpansions + 1 : 0), Pattern(Pattern) { setDependence(computeDependence(this)); }
PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) {}
/// Retrieve the pattern of the pack expansion. Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
/// Retrieve the pattern of the pack expansion. const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
/// Retrieve the location of the ellipsis that describes this pack /// expansion. SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
/// Determine the number of expansions that will be produced when /// this pack expansion is instantiated, if already known. std::optional<unsigned> getNumExpansions() const { if (NumExpansions) return NumExpansions - 1;
return std::nullopt; }
SourceLocation getBeginLoc() const LLVM_READONLY { return Pattern->getBeginLoc(); }
SourceLocation getEndLoc() const LLVM_READONLY { return EllipsisLoc; }
static bool classof(const Stmt *T) { return T->getStmtClass() == PackExpansionExprClass; }
// Iterators child_range children() { return child_range(&Pattern, &Pattern + 1); }
const_child_range children() const { return const_child_range(&Pattern, &Pattern + 1); } };
/// Represents an expression that computes the length of a parameter /// pack. /// /// \code /// template<typename ...Types> /// struct count { /// static const unsigned value = sizeof...(Types); /// }; /// \endcode class SizeOfPackExpr final : public Expr, private llvm::TrailingObjects<SizeOfPackExpr, TemplateArgument> { friend class ASTStmtReader; friend class ASTStmtWriter; friend TrailingObjects;
/// The location of the \c sizeof keyword. SourceLocation OperatorLoc;
/// The location of the name of the parameter pack. SourceLocation PackLoc;
/// The location of the closing parenthesis. SourceLocation RParenLoc;
/// The length of the parameter pack, if known. /// /// When this expression is not value-dependent, this is the length of /// the pack. When the expression was parsed rather than instantiated /// (and thus is value-dependent), this is zero. /// /// After partial substitution into a sizeof...(X) expression (for instance, /// within an alias template or during function template argument deduction), /// we store a trailing array of partially-substituted TemplateArguments, /// and this is the length of that array. unsigned Length;
/// The parameter pack. NamedDecl *Pack = nullptr;
/// Create an expression that computes the length of /// the given parameter pack. SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack, SourceLocation PackLoc, SourceLocation RParenLoc, std::optional<unsigned> Length, ArrayRef<TemplateArgument> PartialArgs) : Expr(SizeOfPackExprClass, SizeType, VK_PRValue, OK_Ordinary), OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc), Length(Length ? *Length : PartialArgs.size()), Pack(Pack) { assert((!Length || PartialArgs.empty()) && "have partial args for non-dependent sizeof... expression"); auto *Args = getTrailingObjects<TemplateArgument>(); std::uninitialized_copy(PartialArgs.begin(), PartialArgs.end(), Args); setDependence(Length ? ExprDependence::None : ExprDependence::ValueInstantiation); }
/// Create an empty expression. SizeOfPackExpr(EmptyShell Empty, unsigned NumPartialArgs) : Expr(SizeOfPackExprClass, Empty), Length(NumPartialArgs) {}
public: static SizeOfPackExpr * Create(ASTContext &Context, SourceLocation OperatorLoc, NamedDecl *Pack, SourceLocation PackLoc, SourceLocation RParenLoc, std::optional<unsigned> Length = std::nullopt, ArrayRef<TemplateArgument> PartialArgs = std::nullopt); static SizeOfPackExpr *CreateDeserialized(ASTContext &Context, unsigned NumPartialArgs);
/// Determine the location of the 'sizeof' keyword. SourceLocation getOperatorLoc() const { return OperatorLoc; }
/// Determine the location of the parameter pack. SourceLocation getPackLoc() const { return PackLoc; }
/// Determine the location of the right parenthesis. SourceLocation getRParenLoc() const { return RParenLoc; }
/// Retrieve the parameter pack. NamedDecl *getPack() const { return Pack; }
/// Retrieve the length of the parameter pack. /// /// This routine may only be invoked when the expression is not /// value-dependent. unsigned getPackLength() const { assert(!isValueDependent() && "Cannot get the length of a value-dependent pack size expression"); return Length; }
/// Determine whether this represents a partially-substituted sizeof... /// expression, such as is produced for: /// /// template<typename ...Ts> using X = int[sizeof...(Ts)]; /// template<typename ...Us> void f(X<Us..., 1, 2, 3, Us...>); bool isPartiallySubstituted() const { return isValueDependent() && Length; }
/// Get ArrayRef<TemplateArgument> getPartialArguments() const { assert(isPartiallySubstituted()); const auto *Args = getTrailingObjects<TemplateArgument>(); return llvm::ArrayRef(Args, Args + Length); }
SourceLocation getBeginLoc() const LLVM_READONLY { return OperatorLoc; } SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) { return T->getStmtClass() == SizeOfPackExprClass; }
// Iterators child_range children() { return child_range(child_iterator(), child_iterator()); }
const_child_range children() const { return const_child_range(const_child_iterator(), const_child_iterator()); } };
class PackIndexingExpr final : public Expr, private llvm::TrailingObjects<PackIndexingExpr, Expr *> { friend class ASTStmtReader; friend class ASTStmtWriter; friend TrailingObjects;
SourceLocation EllipsisLoc;
// The location of the closing bracket SourceLocation RSquareLoc;
// The pack being indexed, followed by the index Stmt *SubExprs[2];
// The size of the trailing expressions. unsigned TransformedExpressions : 31;
LLVM_PREFERRED_TYPE(bool) unsigned ExpandedToEmptyPack : 1;
PackIndexingExpr(QualType Type, SourceLocation EllipsisLoc, SourceLocation RSquareLoc, Expr *PackIdExpr, Expr *IndexExpr, ArrayRef<Expr *> SubstitutedExprs = {}, bool ExpandedToEmptyPack = false) : Expr(PackIndexingExprClass, Type, VK_LValue, OK_Ordinary), EllipsisLoc(EllipsisLoc), RSquareLoc(RSquareLoc), SubExprs{PackIdExpr, IndexExpr}, TransformedExpressions(SubstitutedExprs.size()), ExpandedToEmptyPack(ExpandedToEmptyPack) {
auto *Exprs = getTrailingObjects<Expr *>(); std::uninitialized_copy(SubstitutedExprs.begin(), SubstitutedExprs.end(), Exprs);
setDependence(computeDependence(this)); if (!isInstantiationDependent()) setValueKind(getSelectedExpr()->getValueKind()); }
/// Create an empty expression. PackIndexingExpr(EmptyShell Empty) : Expr(PackIndexingExprClass, Empty) {}
unsigned numTrailingObjects(OverloadToken<Expr *>) const { return TransformedExpressions; }
public: static PackIndexingExpr *Create(ASTContext &Context, SourceLocation EllipsisLoc, SourceLocation RSquareLoc, Expr *PackIdExpr, Expr *IndexExpr, std::optional<int64_t> Index, ArrayRef<Expr *> SubstitutedExprs = {}, bool ExpandedToEmptyPack = false); static PackIndexingExpr *CreateDeserialized(ASTContext &Context, unsigned NumTransformedExprs);
/// Determine if the expression was expanded to empty. bool expandsToEmptyPack() const { return ExpandedToEmptyPack; }
/// Determine the location of the 'sizeof' keyword. SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
/// Determine the location of the parameter pack. SourceLocation getPackLoc() const { return SubExprs[0]->getBeginLoc(); }
/// Determine the location of the right parenthesis. SourceLocation getRSquareLoc() const { return RSquareLoc; }
SourceLocation getBeginLoc() const LLVM_READONLY { return getPackLoc(); } SourceLocation getEndLoc() const LLVM_READONLY { return RSquareLoc; }
Expr *getPackIdExpression() const { return cast<Expr>(SubExprs[0]); }
NamedDecl *getPackDecl() const;
Expr *getIndexExpr() const { return cast<Expr>(SubExprs[1]); }
std::optional<unsigned> getSelectedIndex() const { if (isInstantiationDependent()) return std::nullopt; ConstantExpr *CE = cast<ConstantExpr>(getIndexExpr()); auto Index = CE->getResultAsAPSInt(); assert(Index.isNonNegative() && "Invalid index"); return static_cast<unsigned>(Index.getExtValue()); }
Expr *getSelectedExpr() const { std::optional<unsigned> Index = getSelectedIndex(); assert(Index && "extracting the indexed expression of a dependant pack"); return getTrailingObjects<Expr *>()[*Index]; }
/// Return the trailing expressions, regardless of the expansion. ArrayRef<Expr *> getExpressions() const { return {getTrailingObjects<Expr *>(), TransformedExpressions}; }
static bool classof(const Stmt *T) { return T->getStmtClass() == PackIndexingExprClass; }
// Iterators child_range children() { return child_range(SubExprs, SubExprs + 2); }
const_child_range children() const { return const_child_range(SubExprs, SubExprs + 2); } };
/// Represents a reference to a non-type template parameter /// that has been substituted with a template argument. class SubstNonTypeTemplateParmExpr : public Expr { friend class ASTReader; friend class ASTStmtReader;
/// The replacement expression. Stmt *Replacement;
/// The associated declaration and a flag indicating if it was a reference /// parameter. For class NTTPs, we can't determine that based on the value /// category alone. llvm::PointerIntPair<Decl *, 1, bool> AssociatedDeclAndRef;
unsigned Index : 15; unsigned PackIndex : 16;
explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty) : Expr(SubstNonTypeTemplateParmExprClass, Empty) {}
public: SubstNonTypeTemplateParmExpr(QualType Ty, ExprValueKind ValueKind, SourceLocation Loc, Expr *Replacement, Decl *AssociatedDecl, unsigned Index, std::optional<unsigned> PackIndex, bool RefParam) : Expr(SubstNonTypeTemplateParmExprClass, Ty, ValueKind, OK_Ordinary), Replacement(Replacement), AssociatedDeclAndRef(AssociatedDecl, RefParam), Index(Index), PackIndex(PackIndex ? *PackIndex + 1 : 0) { assert(AssociatedDecl != nullptr); SubstNonTypeTemplateParmExprBits.NameLoc = Loc; setDependence(computeDependence(this)); }
SourceLocation getNameLoc() const { return SubstNonTypeTemplateParmExprBits.NameLoc; } SourceLocation getBeginLoc() const { return getNameLoc(); } SourceLocation getEndLoc() const { return getNameLoc(); }
Expr *getReplacement() const { return cast<Expr>(Replacement); }
/// A template-like entity which owns the whole pattern being substituted. /// This will own a set of template parameters. Decl *getAssociatedDecl() const { return AssociatedDeclAndRef.getPointer(); }
/// Returns the index of the replaced parameter in the associated declaration. /// This should match the result of `getParameter()->getIndex()`. unsigned getIndex() const { return Index; }
std::optional<unsigned> getPackIndex() const { if (PackIndex == 0) return std::nullopt; return PackIndex - 1; }
NonTypeTemplateParmDecl *getParameter() const;
bool isReferenceParameter() const { return AssociatedDeclAndRef.getInt(); }
/// Determine the substituted type of the template parameter. QualType getParameterType(const ASTContext &Ctx) const;
static bool classof(const Stmt *s) { return s->getStmtClass() == SubstNonTypeTemplateParmExprClass; }
// Iterators child_range children() { return child_range(&Replacement, &Replacement + 1); }
const_child_range children() const { return const_child_range(&Replacement, &Replacement + 1); } };
/// Represents a reference to a non-type template parameter pack that /// has been substituted with a non-template argument pack. /// /// When a pack expansion in the source code contains multiple parameter packs /// and those parameter packs correspond to different levels of template /// parameter lists, this node is used to represent a non-type template /// parameter pack from an outer level, which has already had its argument pack /// substituted but that still lives within a pack expansion that itself /// could not be instantiated. When actually performing a substitution into /// that pack expansion (e.g., when all template parameters have corresponding /// arguments), this type will be replaced with the appropriate underlying /// expression at the current pack substitution index. class SubstNonTypeTemplateParmPackExpr : public Expr { friend class ASTReader; friend class ASTStmtReader;
/// The non-type template parameter pack itself. Decl *AssociatedDecl;
/// A pointer to the set of template arguments that this /// parameter pack is instantiated with. const TemplateArgument *Arguments;
/// The number of template arguments in \c Arguments. unsigned NumArguments : 16;
unsigned Index : 16;
/// The location of the non-type template parameter pack reference. SourceLocation NameLoc;
explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty) : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) {}
public: SubstNonTypeTemplateParmPackExpr(QualType T, ExprValueKind ValueKind, SourceLocation NameLoc, const TemplateArgument &ArgPack, Decl *AssociatedDecl, unsigned Index);
/// A template-like entity which owns the whole pattern being substituted. /// This will own a set of template parameters. Decl *getAssociatedDecl() const { return AssociatedDecl; }
/// Returns the index of the replaced parameter in the associated declaration. /// This should match the result of `getParameterPack()->getIndex()`. unsigned getIndex() const { return Index; }
/// Retrieve the non-type template parameter pack being substituted. NonTypeTemplateParmDecl *getParameterPack() const;
/// Retrieve the location of the parameter pack name. SourceLocation getParameterPackLocation() const { return NameLoc; }
/// Retrieve the template argument pack containing the substituted /// template arguments. TemplateArgument getArgumentPack() const;
SourceLocation getBeginLoc() const LLVM_READONLY { return NameLoc; } SourceLocation getEndLoc() const LLVM_READONLY { return NameLoc; }
static bool classof(const Stmt *T) { return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass; }
// Iterators child_range children() { return child_range(child_iterator(), child_iterator()); }
const_child_range children() const { return const_child_range(const_child_iterator(), const_child_iterator()); } };
/// Represents a reference to a function parameter pack or init-capture pack /// that has been substituted but not yet expanded. /// /// When a pack expansion contains multiple parameter packs at different levels, /// this node is used to represent a function parameter pack at an outer level /// which we have already substituted to refer to expanded parameters, but where /// the containing pack expansion cannot yet be expanded. /// /// \code /// template<typename...Ts> struct S { /// template<typename...Us> auto f(Ts ...ts) -> decltype(g(Us(ts)...)); /// }; /// template struct S<int, int>; /// \endcode class FunctionParmPackExpr final : public Expr, private llvm::TrailingObjects<FunctionParmPackExpr, VarDecl *> { friend class ASTReader; friend class ASTStmtReader; friend TrailingObjects;
/// The function parameter pack which was referenced. VarDecl *ParamPack;
/// The location of the function parameter pack reference. SourceLocation NameLoc;
/// The number of expansions of this pack. unsigned NumParameters;
FunctionParmPackExpr(QualType T, VarDecl *ParamPack, SourceLocation NameLoc, unsigned NumParams, VarDecl *const *Params);
public: static FunctionParmPackExpr *Create(const ASTContext &Context, QualType T, VarDecl *ParamPack, SourceLocation NameLoc, ArrayRef<VarDecl *> Params); static FunctionParmPackExpr *CreateEmpty(const ASTContext &Context, unsigned NumParams);
/// Get the parameter pack which this expression refers to. VarDecl *getParameterPack() const { return ParamPack; }
/// Get the location of the parameter pack. SourceLocation getParameterPackLocation() const { return NameLoc; }
/// Iterators over the parameters which the parameter pack expanded /// into. using iterator = VarDecl * const *; iterator begin() const { return getTrailingObjects<VarDecl *>(); } iterator end() const { return begin() + NumParameters; }
/// Get the number of parameters in this parameter pack. unsigned getNumExpansions() const { return NumParameters; }
/// Get an expansion of the parameter pack by index. VarDecl *getExpansion(unsigned I) const { return begin()[I]; }
SourceLocation getBeginLoc() const LLVM_READONLY { return NameLoc; } SourceLocation getEndLoc() const LLVM_READONLY { return NameLoc; }
static bool classof(const Stmt *T) { return T->getStmtClass() == FunctionParmPackExprClass; }
child_range children() { return child_range(child_iterator(), child_iterator()); }
const_child_range children() const { return const_child_range(const_child_iterator(), const_child_iterator()); } };
/// Represents a prvalue temporary that is written into memory so that /// a reference can bind to it. /// /// Prvalue expressions are materialized when they need to have an address /// in memory for a reference to bind to. This happens when binding a /// reference to the result of a conversion, e.g., /// /// \code /// const int &r = 1.0; /// \endcode /// /// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is /// then materialized via a \c MaterializeTemporaryExpr, and the reference /// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues /// (either an lvalue or an xvalue, depending on the kind of reference binding /// to it), maintaining the invariant that references always bind to glvalues. /// /// Reference binding and copy-elision can both extend the lifetime of a /// temporary. When either happens, the expression will also track the /// declaration which is responsible for the lifetime extension. class MaterializeTemporaryExpr : public Expr { private: friend class ASTStmtReader; friend class ASTStmtWriter;
llvm::PointerUnion<Stmt *, LifetimeExtendedTemporaryDecl *> State;
public: MaterializeTemporaryExpr(QualType T, Expr *Temporary, bool BoundToLvalueReference, LifetimeExtendedTemporaryDecl *MTD = nullptr);
MaterializeTemporaryExpr(EmptyShell Empty) : Expr(MaterializeTemporaryExprClass, Empty) {}
/// Retrieve the temporary-generating subexpression whose value will /// be materialized into a glvalue. Expr *getSubExpr() const { return cast<Expr>( State.is<Stmt *>() ? State.get<Stmt *>() : State.get<LifetimeExtendedTemporaryDecl *>()->getTemporaryExpr()); }
/// Retrieve the storage duration for the materialized temporary. StorageDuration getStorageDuration() const { return State.is<Stmt *>() ? SD_FullExpression : State.get<LifetimeExtendedTemporaryDecl *>() ->getStorageDuration(); }
/// Get the storage for the constant value of a materialized temporary /// of static storage duration. APValue *getOrCreateValue(bool MayCreate) const { assert(State.is<LifetimeExtendedTemporaryDecl *>() && "the temporary has not been lifetime extended"); return State.get<LifetimeExtendedTemporaryDecl *>()->getOrCreateValue( MayCreate); }
LifetimeExtendedTemporaryDecl *getLifetimeExtendedTemporaryDecl() { return State.dyn_cast<LifetimeExtendedTemporaryDecl *>(); } const LifetimeExtendedTemporaryDecl * getLifetimeExtendedTemporaryDecl() const { return State.dyn_cast<LifetimeExtendedTemporaryDecl *>(); }
/// Get the declaration which triggered the lifetime-extension of this /// temporary, if any. ValueDecl *getExtendingDecl() { return State.is<Stmt *>() ? nullptr : State.get<LifetimeExtendedTemporaryDecl *>() ->getExtendingDecl(); } const ValueDecl *getExtendingDecl() const { return const_cast<MaterializeTemporaryExpr *>(this)->getExtendingDecl(); }
void setExtendingDecl(ValueDecl *ExtendedBy, unsigned ManglingNumber);
unsigned getManglingNumber() const { return State.is<Stmt *>() ? 0 : State.get<LifetimeExtendedTemporaryDecl *>() ->getManglingNumber(); }
/// Determine whether this materialized temporary is bound to an /// lvalue reference; otherwise, it's bound to an rvalue reference. bool isBoundToLvalueReference() const { return isLValue(); }
/// Determine whether this temporary object is usable in constant /// expressions, as specified in C++20 [expr.const]p4. bool isUsableInConstantExpressions(const ASTContext &Context) const;
SourceLocation getBeginLoc() const LLVM_READONLY { return getSubExpr()->getBeginLoc(); }
SourceLocation getEndLoc() const LLVM_READONLY { return getSubExpr()->getEndLoc(); }
static bool classof(const Stmt *T) { return T->getStmtClass() == MaterializeTemporaryExprClass; }
// Iterators child_range children() { return State.is<Stmt *>() ? child_range(State.getAddrOfPtr1(), State.getAddrOfPtr1() + 1) : State.get<LifetimeExtendedTemporaryDecl *>()->childrenExpr(); }
const_child_range children() const { return State.is<Stmt *>() ? const_child_range(State.getAddrOfPtr1(), State.getAddrOfPtr1() + 1) : const_cast<const LifetimeExtendedTemporaryDecl *>( State.get<LifetimeExtendedTemporaryDecl *>()) ->childrenExpr(); } };
/// Represents a folding of a pack over an operator. /// /// This expression is always dependent and represents a pack expansion of the /// forms: /// /// ( expr op ... ) /// ( ... op expr ) /// ( expr op ... op expr ) class CXXFoldExpr : public Expr { friend class ASTStmtReader; friend class ASTStmtWriter;
enum SubExpr { Callee, LHS, RHS, Count };
SourceLocation LParenLoc; SourceLocation EllipsisLoc; SourceLocation RParenLoc; // When 0, the number of expansions is not known. Otherwise, this is one more // than the number of expansions. unsigned NumExpansions; Stmt *SubExprs[SubExpr::Count]; BinaryOperatorKind Opcode;
public: CXXFoldExpr(QualType T, UnresolvedLookupExpr *Callee, SourceLocation LParenLoc, Expr *LHS, BinaryOperatorKind Opcode, SourceLocation EllipsisLoc, Expr *RHS, SourceLocation RParenLoc, std::optional<unsigned> NumExpansions) : Expr(CXXFoldExprClass, T, VK_PRValue, OK_Ordinary), LParenLoc(LParenLoc), EllipsisLoc(EllipsisLoc), RParenLoc(RParenLoc), NumExpansions(NumExpansions ? *NumExpansions + 1 : 0), Opcode(Opcode) { SubExprs[SubExpr::Callee] = Callee; SubExprs[SubExpr::LHS] = LHS; SubExprs[SubExpr::RHS] = RHS; setDependence(computeDependence(this)); }
CXXFoldExpr(EmptyShell Empty) : Expr(CXXFoldExprClass, Empty) {}
UnresolvedLookupExpr *getCallee() const { return static_cast<UnresolvedLookupExpr *>(SubExprs[SubExpr::Callee]); } Expr *getLHS() const { return static_cast<Expr*>(SubExprs[SubExpr::LHS]); } Expr *getRHS() const { return static_cast<Expr*>(SubExprs[SubExpr::RHS]); }
/// Does this produce a right-associated sequence of operators? bool isRightFold() const { return getLHS() && getLHS()->containsUnexpandedParameterPack(); }
/// Does this produce a left-associated sequence of operators? bool isLeftFold() const { return !isRightFold(); }
/// Get the pattern, that is, the operand that contains an unexpanded pack. Expr *getPattern() const { return isLeftFold() ? getRHS() : getLHS(); }
/// Get the operand that doesn't contain a pack, for a binary fold. Expr *getInit() const { return isLeftFold() ? getLHS() : getRHS(); }
SourceLocation getLParenLoc() const { return LParenLoc; } SourceLocation getRParenLoc() const { return RParenLoc; } SourceLocation getEllipsisLoc() const { return EllipsisLoc; } BinaryOperatorKind getOperator() const { return Opcode; }
std::optional<unsigned> getNumExpansions() const { if (NumExpansions) return NumExpansions - 1; return std::nullopt; }
SourceLocation getBeginLoc() const LLVM_READONLY { if (LParenLoc.isValid()) return LParenLoc; if (isLeftFold()) return getEllipsisLoc(); return getLHS()->getBeginLoc(); }
SourceLocation getEndLoc() const LLVM_READONLY { if (RParenLoc.isValid()) return RParenLoc; if (isRightFold()) return getEllipsisLoc(); return getRHS()->getEndLoc(); }
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXFoldExprClass; }
// Iterators child_range children() { return child_range(SubExprs, SubExprs + SubExpr::Count); }
const_child_range children() const { return const_child_range(SubExprs, SubExprs + SubExpr::Count); } };
/// Represents a list-initialization with parenthesis. /// /// As per P0960R3, this is a C++20 feature that allows aggregate to /// be initialized with a parenthesized list of values: /// ``` /// struct A { /// int a; /// double b; /// }; /// /// void foo() { /// A a1(0); // Well-formed in C++20 /// A a2(1.5, 1.0); // Well-formed in C++20 /// } /// ``` /// It has some sort of similiarity to braced /// list-initialization, with some differences such as /// it allows narrowing conversion whilst braced /// list-initialization doesn't. /// ``` /// struct A { /// char a; /// }; /// void foo() { /// A a(1.5); // Well-formed in C++20 /// A b{1.5}; // Ill-formed ! /// } /// ``` class CXXParenListInitExpr final : public Expr, private llvm::TrailingObjects<CXXParenListInitExpr, Expr *> { friend class TrailingObjects; friend class ASTStmtReader; friend class ASTStmtWriter;
unsigned NumExprs; unsigned NumUserSpecifiedExprs; SourceLocation InitLoc, LParenLoc, RParenLoc; llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
CXXParenListInitExpr(ArrayRef<Expr *> Args, QualType T, unsigned NumUserSpecifiedExprs, SourceLocation InitLoc, SourceLocation LParenLoc, SourceLocation RParenLoc) : Expr(CXXParenListInitExprClass, T, getValueKindForType(T), OK_Ordinary), NumExprs(Args.size()), NumUserSpecifiedExprs(NumUserSpecifiedExprs), InitLoc(InitLoc), LParenLoc(LParenLoc), RParenLoc(RParenLoc) { std::copy(Args.begin(), Args.end(), getTrailingObjects<Expr *>()); assert(NumExprs >= NumUserSpecifiedExprs && "number of user specified inits is greater than the number of " "passed inits"); setDependence(computeDependence(this)); }
size_t numTrailingObjects(OverloadToken<Expr *>) const { return NumExprs; }
public: static CXXParenListInitExpr * Create(ASTContext &C, ArrayRef<Expr *> Args, QualType T, unsigned NumUserSpecifiedExprs, SourceLocation InitLoc, SourceLocation LParenLoc, SourceLocation RParenLoc);
static CXXParenListInitExpr *CreateEmpty(ASTContext &C, unsigned numExprs, EmptyShell Empty);
explicit CXXParenListInitExpr(EmptyShell Empty, unsigned NumExprs) : Expr(CXXParenListInitExprClass, Empty), NumExprs(NumExprs), NumUserSpecifiedExprs(0) {}
void updateDependence() { setDependence(computeDependence(this)); }
ArrayRef<Expr *> getInitExprs() { return ArrayRef(getTrailingObjects<Expr *>(), NumExprs); }
const ArrayRef<Expr *> getInitExprs() const { return ArrayRef(getTrailingObjects<Expr *>(), NumExprs); }
ArrayRef<Expr *> getUserSpecifiedInitExprs() { return ArrayRef(getTrailingObjects<Expr *>(), NumUserSpecifiedExprs); }
const ArrayRef<Expr *> getUserSpecifiedInitExprs() const { return ArrayRef(getTrailingObjects<Expr *>(), NumUserSpecifiedExprs); }
SourceLocation getBeginLoc() const LLVM_READONLY { return LParenLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
SourceLocation getInitLoc() const LLVM_READONLY { return InitLoc; }
SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(getBeginLoc(), getEndLoc()); }
void setArrayFiller(Expr *E) { ArrayFillerOrUnionFieldInit = E; }
Expr *getArrayFiller() { return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>(); }
const Expr *getArrayFiller() const { return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>(); }
void setInitializedFieldInUnion(FieldDecl *FD) { ArrayFillerOrUnionFieldInit = FD; }
FieldDecl *getInitializedFieldInUnion() { return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>(); }
const FieldDecl *getInitializedFieldInUnion() const { return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>(); }
child_range children() { Stmt **Begin = reinterpret_cast<Stmt **>(getTrailingObjects<Expr *>()); return child_range(Begin, Begin + NumExprs); }
const_child_range children() const { Stmt *const *Begin = reinterpret_cast<Stmt *const *>(getTrailingObjects<Expr *>()); return const_child_range(Begin, Begin + NumExprs); }
static bool classof(const Stmt *T) { return T->getStmtClass() == CXXParenListInitExprClass; } };
/// Represents an expression that might suspend coroutine execution; /// either a co_await or co_yield expression. /// /// Evaluation of this expression first evaluates its 'ready' expression. If /// that returns 'false': /// -- execution of the coroutine is suspended /// -- the 'suspend' expression is evaluated /// -- if the 'suspend' expression returns 'false', the coroutine is /// resumed /// -- otherwise, control passes back to the resumer. /// If the coroutine is not suspended, or when it is resumed, the 'resume' /// expression is evaluated, and its result is the result of the overall /// expression. class CoroutineSuspendExpr : public Expr { friend class ASTStmtReader;
SourceLocation KeywordLoc;
enum SubExpr { Operand, Common, Ready, Suspend, Resume, Count };
Stmt *SubExprs[SubExpr::Count]; OpaqueValueExpr *OpaqueValue = nullptr;
public: // These types correspond to the three C++ 'await_suspend' return variants enum class SuspendReturnType { SuspendVoid, SuspendBool, SuspendHandle };
CoroutineSuspendExpr(StmtClass SC, SourceLocation KeywordLoc, Expr *Operand, Expr *Common, Expr *Ready, Expr *Suspend, Expr *Resume, OpaqueValueExpr *OpaqueValue) : Expr(SC, Resume->getType(), Resume->getValueKind(), Resume->getObjectKind()), KeywordLoc(KeywordLoc), OpaqueValue(OpaqueValue) { SubExprs[SubExpr::Operand] = Operand; SubExprs[SubExpr::Common] = Common; SubExprs[SubExpr::Ready] = Ready; SubExprs[SubExpr::Suspend] = Suspend; SubExprs[SubExpr::Resume] = Resume; setDependence(computeDependence(this)); }
CoroutineSuspendExpr(StmtClass SC, SourceLocation KeywordLoc, QualType Ty, Expr *Operand, Expr *Common) : Expr(SC, Ty, VK_PRValue, OK_Ordinary), KeywordLoc(KeywordLoc) { assert(Common->isTypeDependent() && Ty->isDependentType() && "wrong constructor for non-dependent co_await/co_yield expression"); SubExprs[SubExpr::Operand] = Operand; SubExprs[SubExpr::Common] = Common; SubExprs[SubExpr::Ready] = nullptr; SubExprs[SubExpr::Suspend] = nullptr; SubExprs[SubExpr::Resume] = nullptr; setDependence(computeDependence(this)); }
CoroutineSuspendExpr(StmtClass SC, EmptyShell Empty) : Expr(SC, Empty) { SubExprs[SubExpr::Operand] = nullptr; SubExprs[SubExpr::Common] = nullptr; SubExprs[SubExpr::Ready] = nullptr; SubExprs[SubExpr::Suspend] = nullptr; SubExprs[SubExpr::Resume] = nullptr; }
Expr *getCommonExpr() const { return static_cast<Expr*>(SubExprs[SubExpr::Common]); }
/// getOpaqueValue - Return the opaque value placeholder. OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
Expr *getReadyExpr() const { return static_cast<Expr*>(SubExprs[SubExpr::Ready]); }
Expr *getSuspendExpr() const { return static_cast<Expr*>(SubExprs[SubExpr::Suspend]); }
Expr *getResumeExpr() const { return static_cast<Expr*>(SubExprs[SubExpr::Resume]); }
// The syntactic operand written in the code Expr *getOperand() const { return static_cast<Expr *>(SubExprs[SubExpr::Operand]); }
SuspendReturnType getSuspendReturnType() const { auto *SuspendExpr = getSuspendExpr(); assert(SuspendExpr);
auto SuspendType = SuspendExpr->getType();
if (SuspendType->isVoidType()) return SuspendReturnType::SuspendVoid; if (SuspendType->isBooleanType()) return SuspendReturnType::SuspendBool;
// Void pointer is the type of handle.address(), which is returned // from the await suspend wrapper so that the temporary coroutine handle // value won't go to the frame by mistake assert(SuspendType->isVoidPointerType()); return SuspendReturnType::SuspendHandle; }
SourceLocation getKeywordLoc() const { return KeywordLoc; }
SourceLocation getBeginLoc() const LLVM_READONLY { return KeywordLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return getOperand()->getEndLoc(); }
child_range children() { return child_range(SubExprs, SubExprs + SubExpr::Count); }
const_child_range children() const { return const_child_range(SubExprs, SubExprs + SubExpr::Count); }
static bool classof(const Stmt *T) { return T->getStmtClass() == CoawaitExprClass || T->getStmtClass() == CoyieldExprClass; } };
/// Represents a 'co_await' expression. class CoawaitExpr : public CoroutineSuspendExpr { friend class ASTStmtReader;
public: CoawaitExpr(SourceLocation CoawaitLoc, Expr *Operand, Expr *Common, Expr *Ready, Expr *Suspend, Expr *Resume, OpaqueValueExpr *OpaqueValue, bool IsImplicit = false) : CoroutineSuspendExpr(CoawaitExprClass, CoawaitLoc, Operand, Common, Ready, Suspend, Resume, OpaqueValue) { CoawaitBits.IsImplicit = IsImplicit; }
CoawaitExpr(SourceLocation CoawaitLoc, QualType Ty, Expr *Operand, Expr *Common, bool IsImplicit = false) : CoroutineSuspendExpr(CoawaitExprClass, CoawaitLoc, Ty, Operand, Common) { CoawaitBits.IsImplicit = IsImplicit; }
CoawaitExpr(EmptyShell Empty) : CoroutineSuspendExpr(CoawaitExprClass, Empty) {}
bool isImplicit() const { return CoawaitBits.IsImplicit; } void setIsImplicit(bool value = true) { CoawaitBits.IsImplicit = value; }
static bool classof(const Stmt *T) { return T->getStmtClass() == CoawaitExprClass; } };
/// Represents a 'co_await' expression while the type of the promise /// is dependent. class DependentCoawaitExpr : public Expr { friend class ASTStmtReader;
SourceLocation KeywordLoc; Stmt *SubExprs[2];
public: DependentCoawaitExpr(SourceLocation KeywordLoc, QualType Ty, Expr *Op, UnresolvedLookupExpr *OpCoawait) : Expr(DependentCoawaitExprClass, Ty, VK_PRValue, OK_Ordinary), KeywordLoc(KeywordLoc) { // NOTE: A co_await expression is dependent on the coroutines promise // type and may be dependent even when the `Op` expression is not. assert(Ty->isDependentType() && "wrong constructor for non-dependent co_await/co_yield expression"); SubExprs[0] = Op; SubExprs[1] = OpCoawait; setDependence(computeDependence(this)); }
DependentCoawaitExpr(EmptyShell Empty) : Expr(DependentCoawaitExprClass, Empty) {}
Expr *getOperand() const { return cast<Expr>(SubExprs[0]); }
UnresolvedLookupExpr *getOperatorCoawaitLookup() const { return cast<UnresolvedLookupExpr>(SubExprs[1]); }
SourceLocation getKeywordLoc() const { return KeywordLoc; }
SourceLocation getBeginLoc() const LLVM_READONLY { return KeywordLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return getOperand()->getEndLoc(); }
child_range children() { return child_range(SubExprs, SubExprs + 2); }
const_child_range children() const { return const_child_range(SubExprs, SubExprs + 2); }
static bool classof(const Stmt *T) { return T->getStmtClass() == DependentCoawaitExprClass; } };
/// Represents a 'co_yield' expression. class CoyieldExpr : public CoroutineSuspendExpr { friend class ASTStmtReader;
public: CoyieldExpr(SourceLocation CoyieldLoc, Expr *Operand, Expr *Common, Expr *Ready, Expr *Suspend, Expr *Resume, OpaqueValueExpr *OpaqueValue) : CoroutineSuspendExpr(CoyieldExprClass, CoyieldLoc, Operand, Common, Ready, Suspend, Resume, OpaqueValue) {} CoyieldExpr(SourceLocation CoyieldLoc, QualType Ty, Expr *Operand, Expr *Common) : CoroutineSuspendExpr(CoyieldExprClass, CoyieldLoc, Ty, Operand, Common) {} CoyieldExpr(EmptyShell Empty) : CoroutineSuspendExpr(CoyieldExprClass, Empty) {}
static bool classof(const Stmt *T) { return T->getStmtClass() == CoyieldExprClass; } };
/// Represents a C++2a __builtin_bit_cast(T, v) expression. Used to implement /// std::bit_cast. These can sometimes be evaluated as part of a constant /// expression, but otherwise CodeGen to a simple memcpy in general. class BuiltinBitCastExpr final : public ExplicitCastExpr, private llvm::TrailingObjects<BuiltinBitCastExpr, CXXBaseSpecifier *> { friend class ASTStmtReader; friend class CastExpr; friend TrailingObjects;
SourceLocation KWLoc; SourceLocation RParenLoc;
public: BuiltinBitCastExpr(QualType T, ExprValueKind VK, CastKind CK, Expr *SrcExpr, TypeSourceInfo *DstType, SourceLocation KWLoc, SourceLocation RParenLoc) : ExplicitCastExpr(BuiltinBitCastExprClass, T, VK, CK, SrcExpr, 0, false, DstType), KWLoc(KWLoc), RParenLoc(RParenLoc) {} BuiltinBitCastExpr(EmptyShell Empty) : ExplicitCastExpr(BuiltinBitCastExprClass, Empty, 0, false) {}
SourceLocation getBeginLoc() const LLVM_READONLY { return KWLoc; } SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) { return T->getStmtClass() == BuiltinBitCastExprClass; } };
} // namespace clang
#endif // LLVM_CLANG_AST_EXPRCXX_H
|